Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

做愛之後誰先睡?

科學松鼠會_96
・2012/09/24 ・2249字 ・閱讀時間約 4 分鐘 ・SR值 569 ・九年級

作為人類與生俱來的天性,飲食和男女這兩件事情都不可避免地要經歷「準備—中途—善後」這三部曲,缺一不可。以飲食為例,倘若半夜看日劇,不幸被《深夜食堂》挑起了胃裡的饞癆蟲,衝到廚房裡立刻尋找食材開刀燒水下鍋做熟吃掉,然而飯後,你翻出的鍋碗瓢盆泛著一層油光等待著你的清洗……

同樣是善後,男女之事則比刷鍋洗碗要來得更為複雜,扔套擦洗換床單這等俗務暫且不論,事關感情和心理方面的交流溝通至關重要,而且男方要注意的點要來得更多:「事後不要立即抽一根菸,使自己看來像姑爺仔或嫖客」,「事後不應立即穿上褲子離開」 ,諸如此類,不一而足。而張小嫻更是在「所以男人禮貌上不應立即睡覺,該聽聽女人說話」之前觸目驚心地用了「最介意」三字,並放到了《男人的床上禮儀》的事後頭條。相比之下,女性的善後工作則簡單的多:「事後不要纏著男人說話,應該理解他們是很疲倦的。」從女性的角度看去,一場完美的性生活固然少不了一番敵進我退敵駐我擾,但事後的敵疲我打,卻是大大地不可取。

善後工作,男女有別

世界上最遙遠的距離,不是生與死,而是男方急於呼呼大睡,女方想要侃侃而談。如何以正確的人生態度處理「善後」這個問題?科學家們給出了他們的意見。1979年,哈爾彭與謝爾曼(Halpern & Sherman)兩人提出了一個理論,認為性交後的時間間隔(Post-Coital Time Interval,PCTI,也就是俗稱的「事後」那段時間)是處於性關係中的雙方成功建立起情感紐帶的大好時光。這段時間越短(比如翻個身睡著了),就越有可能損害兩人之間的情感聯繫。

而男女面對事後那段時間,表現出的截然不同的態度,可能與兩性的繁殖策略有關。對於策略為廣播種的男性而言,擁有多名性伴侶意味著自己在繁殖上的巨大成功。所以男性會在邁入一夫一妻制的婚姻前,往往會不自覺地逃避承諾。

這種情緒在事後的體現,便是男性不願意與對方說話調情來鞏固感情的聯繫,索性一睡了事。而對於女性而言,由於自身一生中所能擁有的後代數量有限,因此在挑選終身伴侶時往往會慎之又慎。在事後,女性會更主動地尋找話題和男性聊天,以期枕邊人能夠伴自己走過一生。

大膽假設,小心求證

然而理論歸理論,即便男女在事後的形象已經根深蒂固,但在幾十年後的今天,仍有人覺得有必要去驗證下這個想法,密西根大學公共衛生學院的丹尼爾•克魯格(Kruger)教授就總結了現有的兩個假設:如果事後那段時間真的對兩者間的感情維繫起著重要作用的話,那麼那些性伴侶早早鼾聲大作的人,一定有更多的感情需求。此外,考慮到兩性的繁殖策略,克魯格教授還假設男性在性愛後更容易進入夢鄉。

限於研究題材的特殊性,想要獲得第一手的觀察資料自然不可行。克魯格以兩所大學的本科生為研究對象,採用網絡匿名調查問卷的方式,成功收集了456個樣本。在去除了163名沒有經歷過完整性生活的學生以及18名聲稱自己有同性戀傾向的學生後,克魯格開始分析起數據來。在篩選過的樣本裡,克魯格發現但凡性生活後自己的伴侶(不限男女)睡得比自己早的,都渴望更多情感上的羈絆和交流。

而在關於誰先入睡的調查中,克魯格設置了5個選項,對應的分數為:1. 基本是我;2. 經常是我;3. 雙方差不多 ;4. 經常是對方;5. 基本是對方。在問及性生活後哪方先入睡,男女雙方給出的答案出乎意料地一致:男方給出的平均答案為3.03,女性給出的平均答案為3.05,這意味著這次調查中並沒有出現普遍意義上的「男性倒頭就睡」。

而在沒做愛直接睡的調查中,女方依舊給出了3.01這個數字,而男方的答案則讓人吃驚——3.31!這意味著如果不及時跟進,女性更容易睡著。

克魯格是這樣解釋的:由於男性迫切想傳遞自己的種子,即便和性伴侶同床共枕也不能使男性獲得安全感,生怕自己睡著之後女性就和其他男性發生關係。於是在播種之前,男性先要確認伴侶睡著之後,才能安心入睡。雖然人類的文明已經發展了那麼多年,男性骨子裡的不安全感以及對應的「監視機制」,卻依舊保留至今。

圖1. 克魯格問卷中關於入睡時間的調查結果。男性表示如果不進行親密接觸的話,女性更容易睡著。

克魯格認為自己的研究暗示性生活並不止於性交過程結束,無論男女,「事後」的行為偏好也透露了自己和對方的擇偶態度。關於自己的實驗中並沒有出現 「男性更容易在事後入睡」這個預期結果,「要麼我們的研究方法可信度不夠,不足以反映這個事實;要麼我們一直以來都誤解了男性」,克魯格在論文的討論部分中如是說。

考慮到在「辦事」的過程中,男性往往會付出更多的體力,而高潮過後的催產素也有助眠的作用,如果諸位女同胞的男友們出現了即將入睡的症狀,也請多多包涵——要知道這不僅是一個心理上的現象,更是一個生理上的現象。而諸位男同胞們如果不想掃自己女友的興,也不妨強打起精神,多聊幾句話吧。根據沈宏非對於上海市革命出版組1970年9月第一次印刷出版的《「赤腳醫生」手冊》的解讀,「男人(在事後)不要只顧自己呼呼大睡,而應該關心女人。」

  1. Daniel J. Kruger and Susan M. Hughes. TENDENCIES TO FALL ASLEEP FIRST AFTER SEX ARE ASSOCIATED WITH GREATER PARTNER DESIRES FOR BONDING AND AFFECTION, Journal of Social, Evolutionary, and Cultural Psychology 2011, 5(4), 239-247.
  2. 張小嫻 《親密心事》
  3. 沈宏非 《笑場》

本文首發於果殼網性情主題站」《做愛之後誰先睡?》,作者:冷月如霜

轉載自 科學松鼠會

恩愛也有分類型!好好溝通絕對能替彼此的感情加溫,不過到底該怎麼做呢?

文章難易度

0

17
4

文字

分享

0
17
4
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
2

文字

分享

0
6
2
法醫覺得 BDSM 危險嗎?
胡中行_96
・2023/04/27 ・2028字 ・閱讀時間約 4 分鐘

警告:本文不適合未成年,十八歲以下讀者請速離,謝謝。正文於圖片後開始。

「假使我有留下來⋯會怎樣?」圖/電影《格雷的五十道陰影》(Fifty Shades of Grey,2015;GIPHY

BDSM 的定義與普及率

BDSM綁縛調教(bondage & discipline;BD)、支配臣服(dominance & submission;DS)以及施虐受虐(sadism & masochism;SM)的總稱。它是兩名以上合意的個人,透過肢體約束權力交換,達到強烈感受的性愛互動,但未必包含插入式性交。[1]

根據系統範疇界定文獻回顧,40% 至 70% 的人口有 BDSM 相關的性幻想。[1]問卷統計則顯示各國的文化差異:在澳洲,2.2% 的男性和 1.3% 的女性,曾於受訪前一年內進行 BDSM。[2]美國 20% 的受訪者嘗試過綁縛;30% 具打屁股的經驗;而 13% 曾戲謔性地鞭笞。[1]比利時有 BDSM 經驗的人口比例更高達 46.8%,而且 12.5% 常態性地執行。[2]另外,自稱最受歡迎的免費 BDSM 社群網站 FetLife,目前有超過 1 千萬來自世界各地的會員。[3]

圖/影集《宅男行不行》第 6 季第 10 集(The Big Bang Theory,2012;IMDb

BDSM 的風險

BDSM 從繩縛、鞭笞到戀物,涵蓋的範圍甚廣;潛在的健康風險,亦是類型繁多,例如:破皮、瘀青、感染、燒燙傷、血液傳染疾病、昏厥、窒息、情緒過激,以及肌肉、骨骼或神經損害等。44% 的 BDSM 實踐者,曾尋求專業的醫療建議;然而不少人擔心被歧視,即使需要也寧可不諮詢。[1]

死亡是 BDSM 極為罕見的後果,機率比在性愛時自然死亡,或是自慰致死都低。一般性愛中自然死亡的平均年紀,男性為57.2歲,女性則是45歲,常見的肇因依序是冠狀動脈心臟病和心肌梗塞等。相對地,BDSM 愛好者多半未滿 50 歲,相關案件的平均死亡年齡為 34.9 歲,死者和性伴侶許多都不是新手。88.2% 的死因是勒斃,而 64.3% 牽扯到酒精或藥物。這兩類物質會降低人的控制能力,進而增加性愛的危險,所以不少 BDSM 團體立規禁止。[1]

圖/電影《格雷的五十道陰影》(Fifty Shades of Grey,2015;IMDb

BDSM 的鑑識挑戰

當有人意外死於 BDSM,鑑識團隊就必須重建命案現場。在他們抵達之前,除了醫療人員或死者的性伴侶會在急救時移動擺設,後者也可能基於愧疚或害怕承擔責任,丟棄情趣用品和 BDSM 道具,或者乾脆逃離現場。偏偏這類案件僅有的目擊者,通常為驚嚇到支支吾吾的性伴侶。此時,警方如果想取得更多資訊,又訪談到對 BDSM 抱持負面態度的死者親戚,便會獲得偏頗的筆錄內容。因此,死者遺留的性愛錄影或隱藏式攝影機,有時就變成辦案的關鍵證據。[1]

此外,法醫難以從受傷的部位和型態,分辨性侵與合意性行為。持有參與各方簽署的書面契約,也不一定就能完全證明自身清白。[2]契約內容的擬定,更不該與法律牴觸。比方說,《中華民國刑法》第 296 條:「使人為奴隸或使人居於類似奴隸之不自由地位者,處一年以上七年以下有期徒刑。」[4]這就關係到BDSM裡,支配與臣服尺度的拿捏。

延伸閱讀:〈鑑識故事系列:性虐主奴契約無效〉

圖/影集《金融戰爭》第 1 季第 1 集(Billions,2016;IMDb

BDSM 的安全措施

當然,預防勝於治療,安全詞(safeword,亦作safe word)鎮守奈何橋。使用預設的特定用語或姿勢,能讓參與者在臨界身心極限時,立刻要求停止 BDSM 活動。國際通用的交通號誌系統,也是即時反應感受的方法:「綠」代表強度良好;「黃」為要求放慢步調;「紅」則是得馬上中止行為的訊號。[1]

在美國,85% 的 BDSM 實踐者曾向前輩學習;9% 未接受指導;而 79% 有加入相關組織。在交流操作技巧和指導事後照顧之餘,BDSM 社群也提供初學者急救課程,以降低傷亡風險。於《國際法醫期刊》(International Journal of Legal Medicine)發表研究的瑞士鑑識專家,認為 BDSM 的行為和幻想還算普遍,雖然不是所有相關活動都極度危險,但是絕對得事先安排急救方案。例如:在唾手可得之處,放置能迅速解放綁縛的工具等。[1]有鑑於此,對 BDSM 有興趣的讀者,與同好計劃活動時,請千萬別忘了將安全問題納入討論。

  

  1. Schori A, Jackowski C, Schön CA. (2022) ‘How safe is BDSM? A literature review on fatal outcome in BDSM play’. International Journal of Legal Medicine, 136, 287–295.
  2. Koelzer SC, Bunzel LM, Holz F, et al. (2023) ‘Esophageal rupture through extreme sadomasochistic practice’. International Journal of Legal Medicine.
  3. BitLove Ltd. ‘FetLife is the Most Popular Social Network for the BDSM, Fetish & Kinky Community.’ FetLife. (Accessed on 14 APR 2023)
  4. 中華民國刑法第 296 條」(08 FEB 2023)全國法規資料庫
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

4
2

文字

分享

1
4
2
人口有限的古代社會,依然盡量避免近親配對?
寒波_96
・2023/03/28 ・4848字 ・閱讀時間約 10 分鐘

現代台灣社會中,像是堂兄弟姊妹之間的近親結婚,直接受到法律禁止。不過台灣法律的標準並非舉世通用,當今世上許多人的父母,可謂血緣上的親上加親。

近親結婚與近親繁殖,是人類的「常態」嗎?近年蓬勃發展的古代 DNA 研究,讓我們有機會深入探索這些問題。

公元 2010 年時,世界各地近親婚姻的分布狀況。「大中東地區」的比例非常高。圖/Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report

每個人的遺傳組成都大同小異,兩個人的血緣關係愈近,彼此 DNA 的差異愈小。例如街上隨便找兩位台灣人,即使非親非故,台灣人彼此間的血緣差異,要比台灣人與非洲人更小。

一個人的基因組,源自父母各一半。例如第十一號染色體,各有一條來自父母。父母間的血緣關係愈近,小孩的一對染色體之間也愈相似;因此,要判斷一個人的父母是否為近親,不用知道兩人各自的遺傳訊息,只需要小孩的基因組。

也就是說,假如有幸獲得一位三萬年前古人的基因組,只要這個古代基因組殘留的 DNA 訊息夠多,即使完全缺乏其餘的考古脈絡,我們也能判斷他父母的血緣親疏。

最近十年來,各路科學家獲得愈來愈多古代基因組。儘管數量有限,不過目前應該足以做出初步推論:近親繁殖不是智人的天性。

尼安德塔人的父親母親,親上加親?

討論智人以前,先來看看我們的近親尼安德塔人。兩群人的祖先超過 50 萬年前分家後,各自在非洲與歐洲發展,總人口應該都不多。

這兒要先澄清一個概念:「族群人口少」和「近親繁殖」是兩回事。即使全體族群只有兩千人,整群人的遺傳變異加起來很有限,只要每一次配對時刻意選擇,依然能完全避免近親繁殖。相對地,就算總共有 20 萬人,還是有機會大量近親生寶寶。

重現尼安德塔人 DNA 是智人的重大成就,可惜目前為止累積的基因組樣本很少,只有 30 人左右,分散在不同時間點,廣大的地理範圍。

尼安德塔人的古代基因組,地點與數量。圖/參考資料3

如今了解最透徹的尼安德塔人,位於中亞的 Chagyrskaya 洞穴(現今的俄羅斯南部,知名的丹尼索瓦洞穴在附近),估計年代為 5 萬多年。這群人中有 8 位的遺傳訊息比較齊全,比對得知,所有人的父母都是近親!

尼安德塔人主要住在歐洲,中亞的人口極少。近親生寶寶如此普遍,或許是由於能選擇的對象有限。然而也有可能,這就是尼安德塔人一般的習慣。也許尼安德塔人不會刻意避免近親繁殖,不過程度如何並不清楚。

流動的人,流動的DNA

智人約一萬年前開始定居種田以前,生活方式和尼安德塔人一樣,也習慣分為一小群一小群人活動,不長期定居在一個地點。有意思的是,舊石器時代已知少少的智人基因組,都不存在近親繁殖。

依賴採集、狩獵的生產方式下,每一群的人數都不多,近親配對好像很難避免。不過移動性高的人群,應該也常有機會互相交換人口,增加配對選項。從古代 DNA 看來,這是古早智人的普遍行為。

現有證據似乎告訴我們,遠比文明誕生更早以前,智人已經習慣刻意和血親以外的對象配對,或許可稱之為智人的「天性」,但是不清楚能追溯到多早。

智人如今僅有尼安德塔人一種比較對象,而尼安德塔人好像不排斥近親繁殖。有可能兩者的共同祖先已經會避免近親配對,尼安德塔人卻不再在意;也有可能這是智人較新的性擇模式,與尼安德塔人分家以後的某個時候才形成。

捷克的 Moravia 的 Dolní Věstonice 遺址,2.6 萬年前想像畫面。當時智人人口有限,卻會避免近親配對。圖/Dolní Věstonice in Central Europe

這也可以澄清一個疑惑。有個說法是,原始人只知道媽媽,不知道爸爸,因為小孩明確由媽媽生出,爸爸的功能卻不直接。根據古代 DNA 的證據判斷,此說很顯然錯誤。

如果隨機配對,一群人中勢必會有一定比例的人,父母為血緣近親。由結果反推,倘若都沒有的話,表示這群人都會刻意避免近親配對。

假如多數人都不知道爸爸是誰,實在難以想像要怎麼如此徹底的避免近親繁殖。反過來則合理得多:每個人都知道自己的爸爸媽媽是誰,擇偶時才能避開。

定居的人,設法讓 DNA 流動

一萬多年前開始,世界許多地方陸續有人定居下來,改為依靠種田營生。從流動性高的採集狩獵小群體,變成長期住在一處的小農村,人類的生活方式改變很大,這會影響配對習慣嗎?

人人採集狩獵的時期,每一群的人數都不多,但是習慣跑來跑去,有不少機會交換人口。新石器時代定居下來以後,初期的人口還是不多,卻失去流動性,只能從住在附近的有限對象中擇偶。如此一來,近親配對的機率應該會提高?

目前對此問題的探討不多。資訊比較多的案例,來自安那托利亞(現今的土耳其)一萬多年前,人口頂多數百的小農村遺址 Boncuklu、Pınarbaşı。這兒新石器時代初期的居民,多數在本地長大;可是遺傳上看來,都會避免近親繁殖。

新石器時代小型農村,概念圖。圖/Paint The Past

具體狀況不明,本地與否是透過「鍶」的穩定同位素判斷,涵蓋的地理範圍不算太小。幾十公里遠的隔壁村,只要鍶同位素仍屬同一範圍,仍然會辨識為本地人。

不過我想這些線索應該足以支持,安那托利亞的人們邁入定居時代後,依然保持舊日的擇偶習慣,在有限的選項中盡量避免血親。但是近親繁殖也出現了。肥沃月灣西側的 Ba’ja 遺址(現今的約旦),至少有 1 位居民的父母為近親。

要提醒各位讀者,不同地方邁入定居的年代與狀況都不一樣,有時候差異很大,不可一概而論。

從城市到文明

隨著人口增長加上工作分化,漸漸有大型聚落誕生,有些或許可稱之為城市。人類發展可謂來到另一階段。

例如前述 Boncuklu、Pınarbaşı 遺址附近,就形成知名的加泰土丘(Çatalhöyük),數千年來都有數千人口居住。由鍶穩定同位素判斷,這兒多數人是土生土長,也有少量外來移民。

加泰土丘和我們習慣的「城市」有不少差異,卻昭示人類進入大量人口群聚的階段,各地一座又一座城市興起又衰落。長期保持數千人口的城市生活圈中,即使一輩子不出遠門,似乎也不難找到近親以外的異性配對。

大城市人口多,即使一輩子留在一個地方,也有不少機會找到血親以外的結婚對象。圖/IMDB

當然在現代以前,世界各地的大部分人類並不住在人擠人的城市,而是人口密度更低的郊區與鄉村。不過倘若有心避免近親配對,應該不難達成。

目前為止重現於世的古代基因組,不論何時何地,大部分不是近親繁殖的產物。某文化的眾多樣本中,有時候能見到零星幾位,甚至是兄弟姊妹或親子間的極近親,但是都不普遍。

人口有限的海島,近親繁殖好像更容易發生。義大利南方的馬爾他島,在新石器時代確實如此;但是不列顛北部的奧克尼島,青銅時代僅管人口很少,依然能幾乎避免。

是人性的扭曲,還是財富的累積?

至今所知近親繁殖最常見的古代社會,是青銅時代的愛琴世界,也就是希臘及其外島,距今 3000 到 5000 多年前,愛琴海一帶的米諾斯等文化。薩拉米斯島(Salamis)等小島的比例較高,希臘大陸相對低,整體比例約 30% 之高。

取樣一定有偏差,真正的近親比例不好說,但是大概足以判斷青銅時代的愛琴世界,堂表兄弟姊妹等級的近親婚配習以為常,不只少量統治家族,而是全民普及的現象。

愛琴在青銅時代的橄欖種植。圖/Marriage rules in Minoan Crete revealed by ancient DNA analysis

有史以來智人都會避免近親繁殖,為什麼愛琴人改變婚配方式?目前沒有答案。考古學家提出一個可能,種植橄欖之類的經濟作物,最好不要分割土地,而近親配對有助於保留土地,讓產業留在大家族內傳承。這聽起來合理,可惜缺乏更直接的證據。

社會中有人累積土地等資產,是人類發展的趨勢之一,而不論王公貴族或小地主,時常都有集中資產的需求。目前缺乏古代基因組的其他文化,是否也會見到類似愛琴世界的現象?我猜頗有可能,應該是有趣的探索方向。

隨著不同時空的樣本累積,加上容易操作的父母親緣分析軟體,未來「父母是否為近親」也許能成為古代基因組的標準化分析步驟,讓我們更方便認識人類的性擇。

延伸閱讀

參考資料

  1. Scott, E. M., Halees, A., Itan, Y., Spencer, E. G., He, Y., Azab, M. A., … & Gleeson, J. G. (2016). Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature genetics, 48(9), 1071-1076.
  2. Genomic landscape of the Greater Middle East
  3. Skov, L., Peyrégne, S., Popli, D., Iasi, L. N., Devièse, T., Slon, V., … & Peter, B. M. (2022). Genetic insights into the social organization of Neanderthals. Nature, 610(7932), 519-525.
  4. Sikora, M., Seguin-Orlando, A., Sousa, V. C., Albrechtsen, A., Korneliussen, T., Ko, A., … & Willerslev, E. (2017). Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science, 358(6363), 659-662.
  5. Svensson, E., Günther, T., Hoischen, A., Hervella, M., Munters, A. R., Ioana, M., … & Jakobsson, M. (2021). Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Current Biology, 31(14), 2973-2983.
  6. Pearson, J., Evans, J., Lamb, A., Baird, D., Hodder, I., Marciniak, A., … & Fernández-Domínguez, E. (2023). Mobility and kinship in the world’s first village societies. Proceedings of the National Academy of Sciences, 120(4), e2209480119.
  7. Yaka, R., Mapelli, I., Kaptan, D., Doğu, A., Chyleński, M., Erdal, Ö. D., … & Somel, M. (2021). Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Current Biology, 31(11), 2455-2468.
  8. Wang, X., Skourtanioti, E., Benz, M., Gresky, J., Ilgner, J., Lucas, M., … & Stockhammer, P. W. (2023). Isotopic and DNA analyses reveal multiscale PPNB mobility and migration across Southeastern Anatolia and the Southern Levant. Proceedings of the National Academy of Sciences, 120(4), e2210611120.
  9. Cassidy, L. M., Maoldúin, R. Ó., Kador, T., Lynch, A., Jones, C., Woodman, P. C., … & Bradley, D. G. (2020). A dynastic elite in monumental Neolithic society. Nature, 582(7812), 384-388.
  10. Fowler, C., Olalde, I., Cummings, V., Armit, I., Büster, L., Cuthbert, S., … & Reich, D. (2022). A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature, 601(7894), 584-587.
  11. Rivollat, M., Thomas, A., Ghesquière, E., Rohrlach, A. B., Späth, E., Pemonge, M. H., … & Deguilloux, M. F. (2022). Ancient DNA gives new insights into a Norman Neolithic monumental cemetery dedicated to male elites. Proceedings of the National Academy of Sciences, 119(18), e2120786119.
  12. Dulias, K., Foody, M. G. B., Justeau, P., Silva, M., Martiniano, R., Oteo-García, G., … & Richards, M. B. (2022). Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proceedings of the National Academy of Sciences, 119(8), e2108001119.
  13. Ariano, B., Mattiangeli, V., Breslin, E. M., Parkinson, E. W., McLaughlin, T. R., Thompson, J. E., … & Bradley, D. G. (2022). Ancient Maltese genomes and the genetic geography of Neolithic Europe. Current Biology, 32(12), 2668-2680.
  14. Freilich, S., Ringbauer, H., Los, D., Novak, M., Pavičić, D. T., Schiffels, S., & Pinhasi, R. (2021). Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Scientific Reports, 11(1), 16729.
  15. Gnecchi-Ruscone, G. A., Szecsenyi-Nagy, A., Koncz, I., Csiky, G., Racz, Z., Rohrlach, A. B., … & Krause, J. (2022). Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 185(8), 1402-1413.
  16. Fernandes, D. M., Sirak, K. A., Ringbauer, H., Sedig, J., Rohland, N., Cheronet, O., … & Reich, D. (2021). A genetic history of the pre-contact Caribbean. Nature, 590(7844), 103-110.
  17. Zhang, F., Ning, C., Scott, A., Fu, Q., Bjørn, R., Li, W., … & Cui, Y. (2021). The genomic origins of the Bronze Age Tarim Basin mummies. Nature, 599(7884), 256-261.
  18. Skourtanioti, E., Ringbauer, H., Gnecchi Ruscone, G. A., Bianco, R. A., Burri, M., Freund, C., … & Stockhammer, P. W. (2023). Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nature Ecology & Evolution, 1-14.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
193 篇文章 ・ 1126 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。