Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

可彎曲的電池與 LED 構成全可撓式電子系統

only-perception
・2012/08/28 ・1685字 ・閱讀時間約 3 分鐘 ・SR值 559 ・八年級

將一種新的可撓式、薄膜鋰離子電池連接到一個彈性有機 LED 上,一個來自南韓的研究團隊展示第一個功能完整的全可撓式電子系統(all-flexible electronic system,全軟性電子系統)。換句話說,他們證明了,在不需要大量電子零件的協助下,彈性顯示器與電池能完全整合在單一塑膠基質上。這項成就依賴一種新的製造方法,那使得彈性電池能與各種電極材料配合(work with),克服先前的電極限制。

研究者,來自南韓大田的 Korea Advanced Institute of Science and Technology (KAIST),已將其可彎曲鋰離子電池的研究發表在最近一期的《Nano Letters》上。

雖然已有其他數種彈性鋰離子電池被開發出來,但在運作穩定性上,沒有一種的表現,足以使其被應用到商業化產品中,例如可捲曲(rollable)顯示器以及其它可撓式消費性電子產品。理由是,由於製造上的困難度,這些電池的電極只能以少數幾種材料製成,而且這些材料的表現也不優。如共同作者,KAIST 的 Keon Jae Lee 的解釋,某類理想的陰極材料會是鋰過渡金屬氧化物,然而,這類材料目前無法被整合到可彎曲的鋰離子電池內。

「被當成陰極使用的鋰過渡金屬氧化物,為其結晶度(crystallinity),得在高溫下處理(例如:鋰鈷氧化物約需攝氏 700 度),」 Lee 表示。「然而,要熱處理彈性基質上的活性材料(如聚合物材料)是不可能的事。」

-----廣告,請繼續往下閱讀-----

為了克服這項限制,研究者開發出一種製造技術,允許他們熱處理電極材料,幾乎使任何材料都能拿來當電極用。這項技術,稱為萬能轉移法(universal transfer method),涉及將電池材料以有機方式沈積到脆雲母(brittle mica)基質上,與標準非可撓式電池組裝中所用的類似。接著,研究者使用膠帶將雲膜基質一層層地剝離。在大約 10 分鐘的「剝皮」後,研究者能移除所有的雲母基質而不會損害到薄膜電池。

接下來,彈性電池被轉移到一張彈性聚合物薄片上,並以另一張彈性聚合物薄片覆蓋。成果是一個彈性鋰離子電池,幾乎能以任何電極材料製成。在此,研究者把鋰鈷氧化物當陰極材料用,由於其高效能,在非可撓式鋰離子電池中,那目前是使用最廣的陰極。至於陽極,他們使用傳統的鋰。

「我們製造出一個高效能彈性鋰離子電池,利用高密度無機薄膜以萬用轉移法製成,不管電極化學成份為何,使各種不同的鋰離子電池得以實現,」Lee 表示。 「此外,為了高效能鋰離子電池,它能在聚合物基質上形成在高溫下退火的電極。」

測試時,研究者證明,新彈性鋰離子電池,具有可撓式鋰離子電池中,最高的充電電壓(4.2 V)與電荷容量(106 μAh/cm^2)。他們亦證明該電池能以高曲率角度彎曲。然而,在 100 次的充放電週期後,電池喪失掉一些容量。彎曲變形的程度,它維持在原本容量的 88.2% 與 98.4% 之間。

-----廣告,請繼續往下閱讀-----

如研究者的解釋,幫助他們在高曲率角度下達到有史以來最高效能的一項秘訣是,將電池的活動部件置於電池薄膜的力學中立空間(mechanically neutral space)內。當電池薄膜彎曲時,平衡作用(counterbalance)在外側的伸長應變(ensile strain)與內側的收縮應變(compressive strain)之間形成,那在中間創造出一個力學上的中立平面。此外,研究者算出,在某種程度的彎曲下,收縮應力轉變成拉伸應力的那一點,其穩定性甚至比在脆弱的基質上更大。這項發現暗示,可撓式鋰離子電池也許比非可撓式鋰離子電池具有更高的穩定性與更好的效能。

為了打造首個功能完整的全可撓式電子系統,研究者將彈性鋰離子電池連結到一種可撓式有機 LED 上,後者在一種可撓的氧化銦錫基質上被製造出來。研究者接著以彈性聚合物包裹整套系統以強化力學穩定性。他們證明,甚至當電池處於彎曲狀態下,仍然可以供電給 LED。

在未來,研究者計畫改良電池效能,尤其是它的能量密度,同時研究透過一階段雷射抬昇製程(one-step laser lift-off process)而非使用膠帶,來大量製造。他們亦注意到這種新穎的萬用轉移方法能延伸到其他彈性裝置的製造,例如:薄膜奈米發電機、薄膜電晶體以及熱電裝置。

「我對於可撓式能源與自力供電之壓電能量收成,叫做奈米發電機,的結合有興趣,」Lee 表示,「全彈性電子系統及其與奈米發電機的擴充,可以預期會改變我們的日常生活。此外,為了要在消費性電子產品中實用化,增加電容量很重要。因此,這種 10 微米厚薄膜電池的 3D 堆疊,將會是一個有趣的主題。」

-----廣告,請繼續往下閱讀-----

資料來源:Bendable battery and LED make up the first functional all-flexible electronic system. phys.org [August 10, 2012]

轉載自 only perception

-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
透明可撓的全石墨烯數位調制器問世
NanoScience
・2012/09/09 ・915字 ・閱讀時間約 1 分鐘 ・SR值 591 ・九年級

-----廣告,請繼續往下閱讀-----

美國研究人員研發出第一個具有彈性且透明的全石墨烯(graphene)數位調制器。此元件可望應用於許多領域,包含高速資料通訊電路、可撓式太陽電池、顯示器、電子紙以及智慧型服裝等。

石墨烯是單原子厚的平面碳材料,具有蜂巢狀晶格結構及許多獨特的電子與機械性質。例如,石墨烯極高的載子遷移率使其可作為超快電晶體的內連線材料以及通道材料;透明的石墨烯從可見光到中紅外光波段的光學性質也非常吸引人,而石墨烯具備機械彈性卻又極為強韌則是另一重要優點。

此研究由密西根(Michigan)大學的Zhaohui Zhong團隊所完成。Zhong表示,此研究成果對於結合高速通訊與可撓透明平台是相當重要的進展,而實驗中僅使用兩個石墨烯電晶體便達成四位元數位調變功能,更是全石墨烯高速資料通訊電路上的重要里程碑。他們的調制器包含電晶體通道、內連線、負載電阻及源/汲/閘極電極全部由石墨烯元件組成,利用石墨烯電晶體特有的「雙極性」(ambipolar)閘極響應進行數位訊號的編碼。雙極性意指材料內的電子與電洞皆能傳導電流,只需改變閘極偏壓便可切換使用的載子種類;相形之下,一般半導體中的載子種類在摻雜時便已決定。

大多數的調變技術是藉由改變載波信號的振幅、頻率、相位或以上三者來處理資訊。改變一個參數可以用來表示二位元資訊(0與1),結合兩種以上的二位元調制方式,便能用來表示四位元資訊(00, 01, 10及11),此即密西根團隊的石墨烯數位調製器的編碼運算方式。

-----廣告,請繼續往下閱讀-----

Zhong表示,四位元調制方式如四重相偏移調變(Quadrature Phase-Shift Keying, QPSK),是高效率編譯方法的主要建構基石,這些較高效率的編譯方式已廣泛使用於今日的電信通訊標準中。該團隊已使用此透明全石墨烯調制器執行QPSK,這顯示此類元件在可撓式無線通訊應用上極為看好;相形之下,一般以矽材料製作的調制器不具彈性,因此無法應用於可撓式電子設備上。另外,拜雙極性之賜,此調變器僅須使用兩個石墨烯電晶體,大幅化簡了電路的複雜度。

受到此初期實驗結果的激勵,該團隊打算進一步改良此石墨烯電路,使其能在十億赫茲(GHz)的頻率下工作。詳見Nature Communications|DOI:10.1038/ncomms2021。

譯者:翁任賢(成功大學物理系)
責任編輯:劉家銘

資料來源:Digital modulator goes transparent. NanoTech [Aug 23, 2012]

-----廣告,請繼續往下閱讀-----

轉載自 奈米科學網

-----廣告,請繼續往下閱讀-----
NanoScience
68 篇文章 ・ 4 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。