0

0
0

文字

分享

0
0
0

ALMA在年輕恆星旁偵測到與生命相關的有機分子

臺北天文館_96
・2012/09/04 ・1320字 ・閱讀時間約 2 分鐘 ・SR值 520 ・七年級

-----廣告,請繼續往下閱讀-----

丹麥波爾研究所(Niels Bohr Institute)天文學家Jes Jørgensen等人,利用位在智利的阿卡塔瑪大型毫米/次毫米電波陣列(Atacama Large Millimeter/submillimeter Array,ALMA),在一顆類太陽的年輕恆星周圍氣體中發現糖分子。這是首度在這類恆星周圍發現糖分子的蹤跡,顯示在年輕恆星周圍行星盤尚處在行星正在形成階段時,就已經存有這些與生命相關的基礎化合物。

天文學家發現糖分子的地點是編號為IRAS 16293-2422的一對雙星,雙星裡的兩顆子星質量都與太陽差不多,兩星相距約相當於太陽到天王星的距離(~19AU)。IRAS 16293-2422距離地約400光年,以天文尺度而言算是相當接近地球的了,因此天文學家得以詳細研究這些年輕恆星周圍的分子與化學性質。而他們所發現的這種糖分子是型態很簡單的乙醇醛(glycolaldehyde,C2H4O2,或稱為羥乙醛),是形成RNA很重要的組成之一;而RNA與DNA一樣,都是生命基石之一。

IRAS 16293-2422位在蛇夫座Rho星雲(Rho Ophiuchi)這個著名的的恆星形成區附近。右上圖為WISE衛星拍攝的蛇夫座Rho紅外影像,IRAS 16293-2422就是影像左側白框中間的紅色星點。除了乙醇醛之外,IRAS 16293-2422已知還含有許多其他複雜的有機分子,包括:乙二醇(ethylene glycol)、甲酸甲酯(methyl formate)和乙醇(ethanol,即酒精)等。

本文中所稱之「糖」,僅為一小部分碳水化合物的統稱,由名稱可知,這類碳水化合物含有碳、氫和氧;典型的這類分子,氫原子和氧原子的比例為2:1,一如水分子一般。這類分子應用在食物和飲料中最常見的就是蔗糖,其次就是本文中所提到的乙醇醛;蔗糖分子比本文中所提的乙醇醛分子還大。

-----廣告,請繼續往下閱讀-----

到目前為止,僅曾在太空兩處發現過乙醇醛,第一個是朝向銀河中心的人馬座B2星雲(Galactic Centre cloud Sgr B2),為2000年時利用美國基特峰天文臺(Kitt Peak)12米望遠鏡(12 Meter Telescope)和2004年時利用美國綠灣望遠鏡(Robert C. Byrd Green Bank Telescope)發現的,另一個就是2008年利用位在法國的IRAM干涉儀(IRAM Plateau de Bure Interferometer)於高質量高溫分子雲核G31.41+0.31中發現的。而本文中所提,則是首度在年輕恆星旁正在形成行星的地方發現乙醇醛。

ALMA是目前全球靈敏度最高的電波望遠鏡,而它現在甚至還沒有全部竣工,就已可達到這種精密程度,讓天文學家們喜出望外。讓Jørgensen等人最感訝異與驚喜的是他們從ALMA觀測資料發現這些糖分子正落向其中一顆子星,而且在發現這些糖分子之處不僅是行星正在形成之地,而且它們所落下的是「正確的」方向。

向內聚集塌縮以形成新恆星的氣體和塵埃,溫度都相當低,約絕對溫度10K(相當於攝氏零下263度),許多氣體都在塵粒表面凝華成固態的冰,因而這些氣體因而互相鍵結,形成更複雜的分子。但一旦恆星形成,會釋放熱量,讓殘餘在新恆星周圍、尚在環繞新恆星公轉的氣體和塵埃的溫度升高到接近室溫,使塵粒表面的複合分子被蒸發,再度變回氣態,因而能在電波波段發出具有此分子特徵的輻射,ALMA就是偵測到這些輻射而確認它們的存在。

不過,新發現解決某些問題之後,往往會引起更多的新問題。譬如,現在已知在行星形成階段,就已經會產生與生命相關的有機分子;但是,在這些分子在匯入變成新行星的一部份之前,到底可以變得多複雜?如果可以得到答案,那麼或許就可藉此得知生命將會如何在地球以外的其他地方崛起。這部分的答案,或許未來也可經由ALMA觀測來解決。

-----廣告,請繼續往下閱讀-----

資料來源:Building blocks of life found around young star. ESO [29 August 2012]

轉載自 網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

3
1

文字

分享

0
3
1
和外星人的第五類接觸!《三體》中的微中子通訊是真的?
PanSci_96
・2024/04/08 ・6799字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

不要回答!不要回答!不要回答!

Netflix 版「三體」終於上線了,你覺得與外星人接觸是安全的,還是冒險的?

其實啊,人類早就多次嘗試與外星文明接觸,三體中的「那個」技術,甚至也已經驗證成功了?到底誰能先與外星人取得聯繫?是中國還是美國?

接下來的討論可能會暴雷原版小說的設定,但應該不會暴雷 Netflix 版的劇情。

-----廣告,請繼續往下閱讀-----

如果你也有一點想跟外星人接觸,那就來看看人類到底已經跟外星人搭訕到什麼程度了吧!

我們與外星文明接觸過了嗎?

對於是否要與外星文明接觸,每個人都有不同想法。三體小說作者劉慈欣在小說中提出一種觀點,那就是人類太弱小,最好避免與外星文明接觸,以免招致不必要的風險。

但是回到現實世界,如果我們真的身處在三體的世界的話,那人類可真的是不停作死啊。早在 1974 年,科學家就利用阿雷西博天文台,向武仙座的 M13 球狀星團發射了一條著名的訊息,也就是「阿雷西博訊息」。這個目標距離地球不算遠,星星又多,被認為是潛在的外星文明所在。阿雷西博訊息中,則包含人類的 DNA 結構、太陽與九大行星、人類的姿態等資訊。每次想到總覺得是新開的炸雞排在發傳單攬客。

航海家金唱片。圖/wikimedia

除了無實體的電波訊息,人類還向太空中發送了實體的「信件」。1977 年,航海家探測器載著「航海家金唱片」進入太空。唱片中收錄了包含台語在內,55 種語言的問候語、大自然與鳥獸的聲音、115 張圖像、還用 14 顆銀河系內已知的脈衝星來標示出太陽系的位置。是一封向宇宙表達人類文明與友好意圖的信件。恩,如果接收到這個訊息的外星人不是很友善的話,那麼……。

-----廣告,請繼續往下閱讀-----

好吧,就算現在說應該要謹慎考慮接觸外星文明的風險,或許已經來不及了。對方是善還是惡,怎麼定義善或惡,會不會突然對我們發動攻擊,我們也只能聽天由命了。

反過來說,過了這麼久,我們收到外星文明的來信了嗎?

要確定有沒有外星文明,接收訊號當然跟發送訊號同等重要甚至更重要。1960 年,天文學家法蘭克.德雷克,就曾通過奧茲瑪計畫,使用直徑 26 公尺的電波望遠鏡,觀察可能有外星文明的天苑四和天倉五兩個恆星系統,標誌著「尋找外星智慧計畫」(the Search for Extraterrestrial Intelligence, SETI)的誕生。可惜,累積了超過 150 小時的訊息,都沒有搜尋到可辨識的訊號。

比較近的則是 1995 年的鳳凰計畫,要研究來自太陽附近一千個恆星所發出的一千兩百到三千百萬赫的無線電波。由於有經費支持,SETI 每年可以花五百萬美元,掃描一千多個恆星,但是目前還沒有任何發現。

中間有一個小插曲是,1967 年 10 月,英國劍橋大學的研究生喬絲琳.貝爾發現無線電望遠鏡收到了一個非常規律的脈衝訊號,訊號周期約為 1.34 秒,每次脈衝持續時間 0.04 秒。因為有可能是來自外星文明的訊號,因此訊號被開玩笑地取為 Little Green Man 1(LGM-1 號)。但後來他們又發現了多個類似的脈衝信號,最後證實這些脈衝是來自高速自轉的中子星,而非某個文明正在傳遞訊息。

-----廣告,請繼續往下閱讀-----
貴州天眼望遠鏡。圖/FAST

在中國也有探索外星生命的計畫,大家最關注的貴州天眼望遠鏡,直徑達五百公尺,是地球上最大的單一口徑電波望遠鏡。天眼望遠鏡在探索外星生命這件事,並不只是傳聞而已。2016 年 9 月天眼正式啟用後,也宣布加入 SETI 計畫。現在貴州天眼的六大任務之一,就包含探測星際通訊,希望能捕捉到來自其他星際文明的訊號。

而背負著地球最大單一口徑望遠鏡的名號,自然也引起不少關注。從 2016 年啟用到現在,就陸續出現不少檢測到可疑訊號的新聞。然而,這些訊號還需要經過檢驗,確定不是其他來自地面或地球附近的干擾源,或是我們過去難以發現的輻射源。可以確定的是,目前官方還未正式聲明找到外星文明訊號。

會不會是我們的通訊方法都選擇錯誤了?

即使電磁波用光速傳遞訊息,太陽系的直徑約 2 光年、銀河系直徑約 10 萬光年。或許我們的訊息還需要花很多時間才回得來,更別提那些被拋入太空的實體信件。航海家 1 號曾是世界上移動速度最快的人造物,現在仍以大約時速 6 萬公里的速度遠離地球,大約只有光速的一萬八千分之一倍。就算朝著最近的恆星——比鄰星飛去,最少也需要大約 7 萬 6 千年的時間才會到。

如果用電磁波傳遞訊息,又容易因為穿越星塵、行星、恆星等天體而被阻擋或吸收。不論是人類還是外星文明,都必須找到一個既快速,又不容易衰退的訊號,最好就是能以光速穿越任何障礙物的方式。

-----廣告,請繼續往下閱讀-----

在三體小說中,就給出了一個關鍵方法:微中子通訊。

微中子通訊是什麼?

微中子(Neutrino),中國通常翻譯為中微子,是一種基本粒子。也就是說它是物質的最基本組成單位,無法被進一步分割。這種粒子引起了廣泛關注,因為它與其他物質的交互作用極弱,並且以極高的速度運動。微中子能夠輕易穿過大部分物質,通過時幾乎不受阻礙,因此難以檢測。

在宇宙中,微中子的數量僅次於光子,是宇宙中第二多的粒子。有多多呢?地球上面向太陽的方向,每平方公分的面積,大約是你的手指指尖,每秒鐘都會被大約 650 億個來自太陽的微中子穿過,就是這麼多。但是因為微中子與物質的反應真的是太弱了,例如在純水中,它們平均需要向前走 250 光年,才會與水產生一次交互作用,以至於我們幾乎不會發現它們的存在。

藉由微中子撞擊氣泡室中氫原子裡的質子,進行微中子觀測,照片右方三條軌跡的匯集之處便是帶電粒子撞擊發生處。圖/wikimedia

但是對物理學家來說,更特別的是微中子展示出三種不同的「味」(flavor),也就是三種樣貌,電子微中子,渺子微中子和濤微中子,分別對應到不同的物理特性。 在粒子物理學裏,有個「標準模型」來描述強力、弱力及電磁力這三種基本力,以及所有基本粒子。在這個標準模型中,微中子是不具備質量的。 然而,當科學家發現微中子竟然有三種味,而且能透過微中子振盪,在三種「味」之間相互轉換,證明了微中子必須具有質量,推翻了標準模型中預測微中子是無質量的假設,表示標準模型還不完備。

-----廣告,請繼續往下閱讀-----

微中子在物理界是個非常有研究價值的對象,值得我們花上一整集來好好介紹,這邊就先點到為止。如果你對微中子或其他基本粒子很感興趣,歡迎在留言催促我們。

我們現在只要知道,微中子不僅推翻了標準模型。宇宙中含量第二多的粒子竟然有質量這件事情,更可能更新我們對宇宙的理解,以及增加對暗物質的了解。

但回到我們的問題,如果微中子幾乎不與其他粒子交互作用,我們要怎麼接收來自外星文明的微中子通訊呢?

要如何接收微中子?

Netflix 版《三體》預告片中,這個一閃而過,充滿金色圓球,帶有點宗教與科幻風格的大水缸,就是其中的關鍵。

-----廣告,請繼續往下閱讀-----

這個小說中沒有特別提到,但相信觀眾中也有人一眼就看出來。這就是位在日本岐阜縣飛驒市,地表 1,000 公尺之下,由廢棄礦坑改建而成的大型微中子探測器「神岡探測器」。

由廢棄砷礦坑改建而成,深達千米的神岡探測器。圖/Super-Kamiokande Construction

探測器的主要結構是一個高 41.4 米、直徑 39.3 米的巨大圓柱形的容器。容器的內壁上安裝有 11200 個光電倍增管,用於捕捉微小的訊號。水缸中則需灌滿 5 萬噸的超純水。捕捉微中子的方式是等待微中子穿過整座探測器時,微中子和水中的氫原子和氧原子發生交互作用,產生淡藍色的光芒。這與我們在核電系列中提到,核燃料池中會發出淡藍色光芒的原理一樣,是當粒子在水中超越介質光速時,產生類似音爆的「契忍可夫輻射」。

填水的神岡探測器。圖/Super-Kamiokande

也就是說,科學家準備一個超大的水缸來與微中子產生反應,並且用超過一萬個光電倍增管,來捕捉微小的契忍可夫輻射訊號。

但這樣的設計十分值得,前面提到的微中子可以在三種「味」中互相轉換,就是在這個水槽中被證實的。

-----廣告,請繼續往下閱讀-----

這座「神岡探測器」在建成後 40 幾年來,讓日本孕育出了 5 位的諾貝爾物理獎得主。

三體影集選在這邊拍攝,真的要說,選得好啊。

話說回來,有了微中子的捕捉方法之後,現實中還真的有人研究起了微中子通訊!

微中子通訊是怎麼做到的?

來自羅徹斯特大學與北卡羅來納州立大學的團隊,在 2012 年發表了一篇文章,說明它們已成功使用微中子,以接近光速的速度將訊息穿過 1 公里的距離,其中有 240 公尺是堅硬的岩石。訊息的內容是「Neutrino」,也就是微中子。

這套設備準備起來也不簡單,用來發射微中子的,是一部強大的粒子加速器 NuMI。質子在加速繞行一個周長 3.3 公里的軌道之後,與一個碳標靶相撞,發出高強度的微中子射束。

用磁場將微中子聚集成束的 NuMI。圖/Fermilab

用來接收微中子的則是邊長約 1.7 公尺,長 5 公尺的六角柱探測器 MINERvA,一樣身處於地底 100 公尺的洞穴中。

當然,這兩套設備的重點都是拿來研究微中子特性,而不是為了通訊設計的。團隊只是趁著主要任務之間的空檔,花了兩小時驗證通訊的可能性。

但微中子那麼難測量,要怎麼拿來通訊呢?團隊換了一個思維,目標只要能傳出0跟1就好,而這裡的0就是沒有發射微中子,而1則是發出微中子,而且是一大堆微中子。多到即使每百億個微中子只有一個會被 MINERvA 偵測到,只要靠著數量暴力,探測器就一定能接收到微中子。最後的實驗結果,平均一秒可以傳 0.1 個位元的訊息,錯誤率 1%。

MINERvA 實驗中的中微子偵測器示意圖。圖/wikimedia

看起來效率並不實用,卻是一個好的開始。

因為微中子「幾乎能穿透所有物體」的特性,即便我們還沒有其他外星文明可以通訊,或許還是有其他作用。例如潛水艇的通訊、或是與礦坑深處的通訊。進一步說,他幾乎可以在地球上的任一兩點建立點對點的直線通訊,完全不用擔心中間的阻礙。而對於現在最夯的太空競賽來說,月球背面的通訊問題,微中子也可以完美解決。

那麼,在微中子的研究上,各國的進度如何了呢?

除了前面提到的超級神岡,世界上還有幾個有趣的微中子探測器,例如位於加拿大的薩德伯里微中子觀測站(SNO),它有特殊的球體設計並且改為填充重水,專門用來觀測來自太陽的微中子。

薩德伯里中微子探測器。圖/wikimedia

而位於南極的冰立方微中子觀測站,則是將探測器直接埋在南極 1450 到 2450 公尺的冰層底下,將上方的冰層直接作為捕捉微中子的水。非常聰明的設計,這也讓冰立方成為地球上最大的微中子探測器。

除了已經在使用的這幾個探測器之外,美、中、日也即將打造更先進、更強大的探測器。

預計在美國打造的國際計畫——地下深處微中子實驗(Deep Underground Neutrino Experiment),預計成為世界上最大的低溫粒子偵測器。接收器位於南達科他州的地底一公里深處,用作研究的微中子訊號源則來自 1300 公里外的費米實驗室,百萬瓦等級的質子加速器,將產生有史以來最強的微中子束。這台地下深處微中子實驗(Deep Underground Neutrino Experiment)的縮寫非常有趣,就是 DUNE,沙丘。

中國呢,則預計在廣東的江門市,用 2 萬支 51 公分光電倍增管和 2 萬 5000 支 7.6 公分光電倍增管,在地底 700 公尺深處,打造巨大球形的微中子探測器-江門中微子實驗室,內部可以填充兩萬噸的純水。最新的消息是預計 2024 年就能啟用。

最後,經典的超級神岡探測器也不會就此原地踏步,日本預計打造更大的超巨型神岡探測器。容積將提升 5.2 倍、光電管從 11200 個變成 4 萬個,進一步研究微中子與反微中子之間的震盪。

超巨型神岡探測器設計圖。圖/Hyper-Kamiokande

結論

這些微中子探測器的研究目標必然是微中子本身的特性。但既然微中子通訊是有可能的,在任務之餘研究一下這個可能性,也不是說不行吧。

雖然我們現在還沒連繫上我們的好鄰居,但很難說明天就有哪個外星文明終於接收到我們對外宣傳的訊息,發出微中子通訊問候,甚至按圖索驥跑來地球。

至於那時我們應該怎麼辦呢?我們的網站上有幾篇文章,包括介紹黑暗森林法則,以及從《異星入境》看我們要如何與語言不通的外星文明溝通。有興趣的朋友,可以點擊資訊欄的連結觀看。在外星人降臨之前,也不妨參考我們的科學小物哦。

最後問問大家,你覺得我們應該主動聯繫外星文明嗎?

  1. 當然要,我相信探索一定是好的,我覺得引力波通訊更有機會!
  2. 先不要,我已經可以想像被外星文明奴役的未來了!
  3. 為了維繫美中之間的平衡,由台灣來率先接觸外星人,當仁不讓啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

延伸閱讀

參考資料

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

6
0

文字

分享

0
6
0
人腦是個很棒的東西!它是殘酷天擇的驚奇產物——《生命之鑰:一場對生命奧祕的美麗探索 》
三采文化集團_96
・2021/12/05 ・2401字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者 / 保羅.納斯爵士(Sir Paul Nurse)
  • 譯者 / 邱佳皇

編按:筆者是知名遺傳學家和細胞生物學家,致力於控制細胞複製的研究工作,也就是所有生物生長和發展的基礎。於 2001 年獲頒諾貝爾生理學/醫學獎(Nobel Prize in Physiology or Medicine),同時也是阿爾伯特.愛因斯坦世界科學獎、拉斯克獎與皇家學會科普利獎章的獲獎者。

在本書中,保羅.納斯用優美、詼諧的語調幫讀者上了一堂生物學簡史,引領我們思考科學家長久以來追尋的生命之謎,讓讀者彷彿身歷其境、穿梭在各個時代的實驗室裡,感受那些科學發現過程的挫敗和欣喜。並除了學術理解,更希望帶給讀者哲學性的思考能力。

天擇殘酷的篩選過程創造了許多意想不到的事情,其中最令人驚奇的就是創造了人類的大腦。據我們目前所知,沒有其他生物和人類一樣能意識到自己的存在,人類的自我意識一定也經過了演化,至少是部分經過演化,讓我們更懂得在這個世界發生變化時調整自己的行為。人類和蝴蝶不同,或許也和我們已知的所有生物都不同,人類能刻意去選擇和對激勵我們的目標進行深思。

人腦和所有其他生物一樣都是基於同樣的化學和物理學所演化出來的,然而,出於某些不明的原因,人腦卻能從同樣簡單的分子以及諸多常見的運作力當中,生出複雜的能力。這一切是如何從人腦的液態古典化學發展出來的?我們眼前有一堆困難的問題需要解決。我們知道人類的神經系統是基於數十億個神經細胞(也稱「神經元」)之間極為複雜的互動組成,這些神經元之間彼此有數兆的連結,稱為突觸。這些極為精密和經常變化且相互連結的神經元網絡會建立訊息傳遞路徑,傳遞和處理大量的電子訊息流。

脊椎動物腦的主要解剖結構,此處將鯊魚和人的腦相比較,基本的部分都可以一一對應,但是形狀和尺寸有巨大的不同。圖/WIKIPEDIA

就如生物界的常例,我們一樣是透過研究較為簡單的生物,像是蠕蟲、蒼蠅和老鼠才知道這些過程。透過神經系統的感覺器官,我們才知道這些系統是如何從環境中收集訊息的。研究人員追踪了視覺、聽覺、觸覺、嗅覺和味覺信號通過神經系統的活動,同時標示出神經元的一些連結,這些連結會形成記憶、產生感情回應,並創造出像是收縮肌肉等外在行為。

果蠅Drosophila)作為基因對腦發育影響的研究對象,已經得到了深入的研究。圖/WIKIPEDIA

這些運作都很重要,但這些都只是開始。數十億個獨立神經元之間的互動是如何產生抽象的思想、自我意識和明顯的自由意志?對於這些問題的答案我們只觸及了皮毛,想找到令人滿意的答案,我們可能需要整個世紀甚至更久的時間,而我不認為只依賴傳統自然科學就能達成這個目標。

-----廣告,請繼續往下閱讀-----

我們將必須更廣泛接受來自心理學、哲學和人文學的見解。電腦科學也能有所幫助,今天我們打造了一個最強大的人工智慧電腦程式,以高度簡化的形式模仿生物的神經網絡處理訊息的方式,這些電腦系統都有令人佩服且愈發強大的數據處理功能,但卻完全無法模仿人類抽象或想像的思考模式與自我察覺的能力或自我意識,就連要定義這些心理特質都非常困難。

現在,我們可以借助小說家、詩人或藝術家的協助,請他們貢獻創意,以更清楚的方式描述人類的心理狀態,或是去質問「活著」到底是指什麼意思。如果我們能在人文學和科學上擁有更加共通的語言,或至少是更多共享的知識能討論這些現象的話,或許更能了解演化如何和為何會讓我們以化學和訊息系統發展,而這個系統又出於某種原因,變成能意識到自己存在的實體。我們必須竭盡自己的想像力和創造力,才有可能了解這些力量可能帶來的結果。

宇宙之大超越我們想像,根據機率法則,似乎很難想像在這麼漫長的時間和廣大的空間中,生命─更何況是有感知能力的生命─只在地球上萌發過一次。我們是否會遇見外星生命是一個完全不同的議題,但假如我們真的遇到,我相信外星生命肯定也像人類一樣,是能自給自足的化學和物理機器,由訊息編碼合成的聚合物打造而成,而且同樣是透過天擇演化。

银河系, 暗星云, 宇宙, 天空, 日本
銀河系裡就有一千億顆行星,這還沒算上其他更遠的星系,也許宇宙的某個角落裡,也有著生機蓬勃的生命。圖/Pixabay

地球是我們唯一確定宇宙中有生命的星球。地球上包括人類在內的生命都非常卓越出色,這些生命經常令我們驚奇,儘管其多樣性令人困惑,科學家們還是努力理出了頭緒,我們對地球上生命的了解,也成為我們文化和文明發展的基礎。我們對生命日益增加的了解,很有可能可以改善全體人類的生活,但擁有這樣知識的助益遠不止於此。

-----廣告,請繼續往下閱讀-----

透過生物學我們知道所有生物都是彼此相連且緊密互動的,人類與其他生物息息相關,包括本書談論到的所有生物都是,像是爬行的昆蟲、感染的細菌、發酵的酵母、擁有好奇心的大猩猩和飛舞的黃色蝴蝶,當然還包括這個生物圈的所有成員。這些物種都是生命的佼佼者,是一個龐大家族譜系所延續下來的最新後代,這個大家族透過細胞分裂綿延相連到遠古的時光裡。

就我們所知,人類是唯一了解這樣深遠的連結,並且能去思考這有什麼意義的生物,因此我們對這個地球上的生物有一個特殊的責任,雖然有些生物和我們關係近,有些關係遠,但我們都必須去關心、照顧並盡可能地了解這些生物。

──本文摘自三采文化《生命之鑰:諾貝爾獎得主親撰 一場對生命奧祕的美麗探索》/ 保羅.納斯爵士,2021 年 12 月,三采

三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

9
1

文字

分享

0
9
1
天文學未來 10 年的 3 大目標:探索適居行星、動態宇宙與星系演化—— Astro2020 報告
EASY天文地科小站_96
・2021/11/26 ・3393字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/林彥興|EASY 總編輯,現就讀清大天文所,努力在陰溝中仰望繁星

經過三年的漫長等待,Astro2020 終於在台灣時間 11/5 凌晨公布了結果報告。這場十年一次的大型天文會議,產出了一份 600 多頁的報告書,對美國國家天文發展策略提出建議。這份報告,將影響未來數十年美國乃至於全世界的天文物理發展。

圖/NASA/ESA; NSF/LIGO/Sonoma State University/A. Simonnet; Illustris Collaboration; NASA Goddard; NASA/JPL-Caltech; NASA/Ames/JPL-Caltech

這項「十年調查」為何至關重要?

Astro2020 的全稱為「天文學和天體物理學十年調查 Decadal Survey on Astronomy and Astrophysics 2020」。正如其名,這是美國國家學院大約每十年會召開一次的超大型會議。會中將蒐集來自各方天文學家的觀點,回顧過去十年間天文物理的重大突破,鎖定未來十年美國最應該優先投資的研究領域,並且研擬達成這些科學目標所需要的方法與技術,最終將這一連串的構想整理後,向政府機構(如 NASA、NSF)提出建議,成為它們規劃預算的重要參考。換言之,這場會議將會左右未來十年數十億甚至上百億美金的預算分配,重要性可想而知。

Decadal Survey 的歷史相當悠久,第一屆舉辦於 1964 年,之後大約每隔十年開一次,一路進行到今天。歷史上多個重要的天文計畫,比如:

  • 甚大天線陣列 VLA(1960s / 1970s):著名的美國無線電陣列望遠鏡。
  • 哈伯太空望遠鏡 HST(1970s):NASA 的大型軌道天文台(Great Observatories)之一,無人不知的光學太空望遠鏡。
  • 錢卓 X 射線太空望遠鏡 Chandra(1980s):大型軌道天文台之一,軌道上最頂級的 X 射線天文台之一。
  • 史匹哲太空望遠鏡 Spitzer(1990s):大型軌道天文台之一,觀測中紅外線波段的太空望遠鏡。
  • ALMA(2000s):當代最頂尖的次毫米波陣列望遠鏡。
  • 韋伯太空望遠鏡 JWST(2000s):即將於今年底升空,新一代的旗艦級紅外線望遠鏡。
  • 羅曼太空望遠鏡 Roman(2010s):下一代近紅外太空望遠鏡,在不犧牲解析度的前提下,擁有比哈伯大 100 倍的視野。
  • 薇拉.魯賓天文台 Rubin(2010s):預計兩年內落成的革命性巡天望遠鏡。

它們都曾是 Decadal Survey 推薦優先執行的重要計畫。

-----廣告,請繼續往下閱讀-----
JWST(左)與 Roman(右)太空望遠鏡分別是 2000 年與 2010 年 Decadal Survey 推薦優先執行的太空望遠鏡任務,它們預計將在 2020 年代的天文觀測中扮演重要的角色。由此也可以看到,Decadal Survey 所推薦的大型旗艦計畫,往往需要十多年甚至二十年以上的時間才能發展成熟。圖/NASA GSFC/CIL/Adriana Manrique Gutierrez|GSFC/SVS

天文學未來 10 年的 3 大目標

Astro2020 提出,2020 年代天文物理的三個優先領域分別是:

  1. 通往適居世界之路 Pathways to Habitable Worlds
    以高對比度(high contrast)的探索系外行星與其中可能存在的生命跡象。
  2. 動態宇宙的新窗口 New Windows on the Dynamic Universe
    以重力波、微中子等多個資訊信使研究超新星爆炸、中子星合併等劇烈事件。
  3. 揭密星系演化推手 Unveiling the Drivers of Galaxy Growth
    研究宇宙一百多億年來的星系演化。

綜合上述三個領域的需求之後,Astro2020 提出未來美國應該優先投資的幾項重大計畫分別如下。

首先,Astro2020 對太空望遠鏡計畫的建議可能是最令人驚喜的。報告建議,美國應該啟動一系列「大型軌道天文台技術成熟計畫 Great Observatories Mission and Technology Maturation Program」,為 20 至 30 年後天文物理需要的天文台計畫鋪路。

其中最高優先度的計畫,是建造一座六米級的光學(從紫外線到近紅外線)望遠鏡,預計成本 110 億美元。從觀測的波段來看,它可以看成是現役哈伯太空望遠鏡的超級強化版;又或者,從 NASA 在 2019 年提供的四座「The New Great Observatories」概念研究來看,可以看成是縮小版的 LUVOIR-B,或是增強版的 HabEx。

-----廣告,請繼續往下閱讀-----

Astro2020 認為,這樣的規格才有機會同時讓望遠鏡有辦法達成前述三大優先領域的需求(尤其是直接拍攝類似太陽-地球系統的系外行星大氣光譜),且有希望在 2040 年代前期升空。另外兩個應當在 2020 年代後半開始發展的計畫,分別是下一代 X 射線與遠紅外線的任務(分別可以看成 Lynx 和 Origin 的縮小版)。

LUVOIR-B 概念圖。Astro2020 推薦優先發展的下一代旗艦太空望遠鏡可能與此相似。圖/NASA GSFC

在地面望遠鏡方面,當務之急是繼續興建美國的兩座下一代巨型望遠鏡:三十米望遠鏡(TMT)與巨型麥哲倫望遠鏡(GMT)。在使用自適應光學的情況下,這個等級的望遠鏡將能達到 0.01 – 0.02 角秒等級的超高解析度,龐大的集光面積也將使它們能夠擁有非常高的靈敏度(sensitivity)。這樣的能力幾乎對天文物理的所有領域都能有革命性的幫助,比如它將能夠偵測、拍攝、甚至取得類地行星的大氣光譜。

但是,相比起另一個類似定位的歐洲計畫「歐洲極大望遠鏡 EELT」,GMT 與 TMT 的進度目前都嚴重落後。尤其原定要建造在夏威夷的 TMT,因為與當地原住民的衝突,自 2015 年開始就難以施工。Astro2020 建議,政府應該提供更多援助,幫忙解決兩個計畫預算不足的情況。但如果兩個計畫進度持續落後,Astro2020 也提供一套標準讓政府決定是否要放棄其中之一。

TMT 與 GMT。圖/USELTP/NOIRLab/TMT/GMT/NSF/AURA

除了光學之外,報告也建議在智利與南極建立下一代的微波望遠鏡,在宇宙微波背景(CMB)中尋找暴漲等宇宙學事件的證據,並且能夠提供前所未有的大面積、高靈敏度次毫米波天圖。下一代的甚大陣列望遠鏡(ngVLA)的先期研究也是重點之一,為其在 2030 年代的建造鋪路。此外下一代微中子探測器(IceCube-2)、重力波探測器(LIGO)等中等大小的計畫也要持續推進。

-----廣告,請繼續往下閱讀-----
位於南極的 IceCube 微中子偵測器,是了解宇宙中高能事件的重要窗口之一。圖/Felipe Pedreros, IceCube/NSF

讓天文研究者更平等,也是重要議題

除了上述科學/科技相關的主題之外,Astro2020 也是 Decadal Survey 首次提到天文物理領域中存在的性別/種族等社會與倫理問題,以及許多對於「人」相關的建議。

報告中強調了美國天文學界的性別/種族倫理問題依舊嚴重,並且建議應將多元性納入獎項的評審機制,增加對學生、新進研究人員的資源投注,以及強化對各種不平等現象的資料收集,以更準確的將資源提供給需要的人。最後,報告也指出 Starlink、5G 等人類活動對天文研究產生的干擾。

Starlink 衛星群通過望遠鏡的視野中。這對天文觀測,尤其是對大面積的光譜巡天(Spectral Survey)會產生巨大的干擾。圖/ CTIO, NOIRLab, NSF, AURA and DECam DELVE Survey

結語

Decadal Survey 是美國天文物理界十年一遇的盛事。它回顧過去十年的天文物理成果,並為未來十年的發展劃下藍圖。Astro2020 建議,美國應該繼續建造兩座三十米級的地面光學望遠鏡(TMT、GMT),讓它們能在 2030 年代投入觀測。並且為 2040 年代的六米級大型光學太空望遠鏡的開發鋪路。除了科學與科技上的規劃,報告也指出天文物理界仍存在許多性別、種族等與「人」相關的問題有待改善。

整體來說,Astro2020 為 2020 年代的天文物理描述了令人興奮的未來。接下來,就讓我們一同期待,這些斑斕的夢是否能夠成為現實吧!

-----廣告,請繼續往下閱讀-----

參考資料

  1. Interactive Overview: Pathways to Discovery in Astronomy and Astrophysics for the 2020s
  2. Astro2020 Science White Papers · Bulletin of the AAS
  3. The New Great Observatories
  4. US astronomy’s 10-year plan is super-ambitious
  5. Influential U.S. astronomy wish list calls for giant space telescope to spot an Earth analog

延伸閱讀

  1. 出事了哈伯!細數哈伯太空望遠鏡31 年來的維修升級史- PanSci 泛科學
  2. 百倍於哈伯觀測能力,大小尺度通通包辦!——NASA 的下一個旗艦級「羅曼太空望遠鏡」 – PanSci 泛科學
  3. 為何NASA 不惜大撒幣也要把它送上太空?——認識韋伯太空望遠鏡(一) – PanSci 泛科學
  4. 史上最大口徑的JWST 要如何塞進火箭?——認識韋伯太空望遠鏡(二) – PanSci 泛科學
  5. 太空巨獸JWST 升空後的150 萬里長征—— 認識韋伯太空望遠鏡(三) – PanSci 泛科學
  6. 淺談JWST 的科學意義:探索宇宙深處與塵埃後的外星世界!——認識韋伯太空望遠鏡(四) – PanSci 泛科學
  7. 放眼系外行星的新一代望遠鏡:HabEx太空望遠鏡
  8. 天文學家的野望LYNX X射線太空望遠鏡
  9. 一閃一閃亮晶晶,滿天都是人造衛星- PanSci 泛科學
EASY天文地科小站_96
23 篇文章 ・ 1430 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

0
0

文字

分享

0
0
0
ALMA在年輕恆星旁偵測到與生命相關的有機分子
臺北天文館_96
・2012/09/04 ・1320字 ・閱讀時間約 2 分鐘 ・SR值 520 ・七年級

-----廣告,請繼續往下閱讀-----

丹麥波爾研究所(Niels Bohr Institute)天文學家Jes Jørgensen等人,利用位在智利的阿卡塔瑪大型毫米/次毫米電波陣列(Atacama Large Millimeter/submillimeter Array,ALMA),在一顆類太陽的年輕恆星周圍氣體中發現糖分子。這是首度在這類恆星周圍發現糖分子的蹤跡,顯示在年輕恆星周圍行星盤尚處在行星正在形成階段時,就已經存有這些與生命相關的基礎化合物。

天文學家發現糖分子的地點是編號為IRAS 16293-2422的一對雙星,雙星裡的兩顆子星質量都與太陽差不多,兩星相距約相當於太陽到天王星的距離(~19AU)。IRAS 16293-2422距離地約400光年,以天文尺度而言算是相當接近地球的了,因此天文學家得以詳細研究這些年輕恆星周圍的分子與化學性質。而他們所發現的這種糖分子是型態很簡單的乙醇醛(glycolaldehyde,C2H4O2,或稱為羥乙醛),是形成RNA很重要的組成之一;而RNA與DNA一樣,都是生命基石之一。

IRAS 16293-2422位在蛇夫座Rho星雲(Rho Ophiuchi)這個著名的的恆星形成區附近。右上圖為WISE衛星拍攝的蛇夫座Rho紅外影像,IRAS 16293-2422就是影像左側白框中間的紅色星點。除了乙醇醛之外,IRAS 16293-2422已知還含有許多其他複雜的有機分子,包括:乙二醇(ethylene glycol)、甲酸甲酯(methyl formate)和乙醇(ethanol,即酒精)等。

本文中所稱之「糖」,僅為一小部分碳水化合物的統稱,由名稱可知,這類碳水化合物含有碳、氫和氧;典型的這類分子,氫原子和氧原子的比例為2:1,一如水分子一般。這類分子應用在食物和飲料中最常見的就是蔗糖,其次就是本文中所提到的乙醇醛;蔗糖分子比本文中所提的乙醇醛分子還大。

-----廣告,請繼續往下閱讀-----

到目前為止,僅曾在太空兩處發現過乙醇醛,第一個是朝向銀河中心的人馬座B2星雲(Galactic Centre cloud Sgr B2),為2000年時利用美國基特峰天文臺(Kitt Peak)12米望遠鏡(12 Meter Telescope)和2004年時利用美國綠灣望遠鏡(Robert C. Byrd Green Bank Telescope)發現的,另一個就是2008年利用位在法國的IRAM干涉儀(IRAM Plateau de Bure Interferometer)於高質量高溫分子雲核G31.41+0.31中發現的。而本文中所提,則是首度在年輕恆星旁正在形成行星的地方發現乙醇醛。

ALMA是目前全球靈敏度最高的電波望遠鏡,而它現在甚至還沒有全部竣工,就已可達到這種精密程度,讓天文學家們喜出望外。讓Jørgensen等人最感訝異與驚喜的是他們從ALMA觀測資料發現這些糖分子正落向其中一顆子星,而且在發現這些糖分子之處不僅是行星正在形成之地,而且它們所落下的是「正確的」方向。

向內聚集塌縮以形成新恆星的氣體和塵埃,溫度都相當低,約絕對溫度10K(相當於攝氏零下263度),許多氣體都在塵粒表面凝華成固態的冰,因而這些氣體因而互相鍵結,形成更複雜的分子。但一旦恆星形成,會釋放熱量,讓殘餘在新恆星周圍、尚在環繞新恆星公轉的氣體和塵埃的溫度升高到接近室溫,使塵粒表面的複合分子被蒸發,再度變回氣態,因而能在電波波段發出具有此分子特徵的輻射,ALMA就是偵測到這些輻射而確認它們的存在。

不過,新發現解決某些問題之後,往往會引起更多的新問題。譬如,現在已知在行星形成階段,就已經會產生與生命相關的有機分子;但是,在這些分子在匯入變成新行星的一部份之前,到底可以變得多複雜?如果可以得到答案,那麼或許就可藉此得知生命將會如何在地球以外的其他地方崛起。這部分的答案,或許未來也可經由ALMA觀測來解決。

-----廣告,請繼續往下閱讀-----

資料來源:Building blocks of life found around young star. ESO [29 August 2012]

轉載自 網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!