0

1
0

文字

分享

0
1
0

美國發射輻射帶風暴探測器

臺北天文館_96
・2012/09/04 ・1311字 ・閱讀時間約 2 分鐘 ・SR值 569 ・九年級

自1960年代進入太空時代至今,太空任務絕大多數都會避開范艾倫輻射帶(van Allen Belts)。范艾倫輻射帶是地球周圍兩個甜甜圈狀的區域,其中充滿了「殺手電子(killer electrons)」、電漿波(plasma wave)和電流等,對人類或太空船都有一定的危險性,逗留在此絕對沒好事。

不過,人們總要勇於嘗試,不能一直被老觀念給限制住。RBSP任務科學家David Sibeck表示:雖然科學家知到范艾倫帶的存在已數十年了,但這個危險區域還是持續發生意料之外的殺手電子風暴和其他現象。因此美國航太總署(NASA)在2012年8月30日發射了2艘輻射帶風暴探測器(Radiation Belt Storm Probes,RBSP),直接進入並待在輻射帶中進行探測,每艘RBSP都攜有眾多感應器,得以偵測並計算高能粒子數量,測量電漿波,偵測電磁輻射強度等。任務時間預定為2年,希望試圖瞭解輻射帶的危險主要來源,以及為何無法預測何時會發生危險。

范艾倫輻射帶發現於1958年,當時造成許多科學家困惑不已。絕大部分的人認為地球周圍應該是空無一物的;美國的第一架衛星Explorer 1卻證明並非如此。Explorer 1上設有蓋格計數器(Geiger)可偵測並計算高能質子和電子的數量。當Explorer 1環繞地球時,發現地球周圍居然有大量帶電粒子,使得蓋格計數器絕大部分時間都處在超標狀態。

1950年代那時,輻射帶對一般人的影響非常小;但時至今日,輻射帶對高科技社會卻至關重要。現有數百架從氣象衛星、GPS到電視轉播等不同用途的人造衛星,常常得掠過輻射帶,使它們處在輻射帶中高能粒子衝擊的狀態下,有可能讓衛星的太陽能板損壞,或讓敏感度高的電子零件短路。尤其是在太陽活動比較活躍時,當發生電磁暴,輻射帶範圍往往會隨之擴張,更多衛星淪陷險境,衝擊地球人們依靠科技產品的日常生活。

-----廣告,請繼續往下閱讀-----

關於輻射帶最大的謎題之一就是它們對太陽風暴的瘋狂反應—幾乎任何事都有可能在此發生。當來自太陽風暴的電漿雲衝擊到輻射帶食,輻射帶的反應往往超乎科學家的預期。一個可能的後果就是輻射待充滿了高能粒子,例如:讓太空任務規劃者最畏懼的殺手電子。然而,同樣是太陽風暴襲擊之下,卻也可能讓輻射帶中的殺手電子驟減,使得輻射帶反而變成安全地帶。事情只有二選一嗎?並不是,還有第三種情況就是:同樣在太陽風暴襲擊之下,有時可能什麼事都沒發生!完全無法預測何時會發生哪種情形,讓科學家為之氣結。

更麻煩的是,科學家對於什麼是輻射帶中最重要的現象,意見不一;如果有100個科學家參與討論,每個問題都將會得出100種不同的答案。例如:殺手電子的能量為何這麼高?有的科學家認為是電漿波造成的,有的認為是太陽風衝擊所致,有的則認為是物質擴散(diffusion)的結果,還有其他一長串的理由呢。

不過,RBSP任務的主要目的就是要縮減各個問題可能性的範圍。在太陽風暴期間,RBSP會取得輻射帶中的電磁場狀況,計算高能粒子數量,偵測各種頻率的電漿波,至少要掀開范艾倫帶神秘之書的封皮,取得可以讓各種理論模型利用的資料。如此一來,未來才能預測何時進入輻射帶是安全的,何時能履行太空漫步,或何時適合操作靈敏的電子儀器等。

資料來源:The Radiation Belt Storm Probes. NASA [August 30, 2012]

-----廣告,請繼續往下閱讀-----

轉載自 網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
范艾倫誕辰 │ 科學史上的今天:09/07
張瑞棋_96
・2015/09/07 ・1149字 ・閱讀時間約 2 分鐘 ・SR值 532 ・七年級

1932 年的夏天,美國愛荷華衛斯理安學院(Iowa Wesleyan College)的學生莫不趁著暑假呼朋引伴大肆玩樂,唯獨大一新生范艾倫(James Van Allen, 1914-2006)帶著借來的磁力儀,跑遍所住的亨利郡,繪製各處的地磁圖。沉醉其中的范艾倫當然料想不到有一天,他將發現包圍整個地球的「范艾倫輻射帶」。

發現范艾倫輻射帶是個意外,而這個意外又源自許多意外。例如他高中畢業後即報考海軍學院,筆試成績名列前茅,原本志在必得,卻意外因扁平足而被刷下來,所以才念大學。又例如他原本專攻低能核子物理,但取得博士學位後,卻意外爆發二次世界大戰,他因此加入海軍,轉而研究利用雷達技術的飛彈雷管。戰後,他領導小組,利用德國的 V2 火箭研究高空大氣,等於繞了一圈又回到他原本的最愛──地球科學。

1950 年,幾位物理學家在范艾倫的家中聚會,大夥兒決定應該比照「國際極地年」(International Polar Year)的模式,也辦個「國際地理物理年」(International Geophysical Year),屏除國家利益與政治立場,各國科學家攜手合作,利用雷達、火箭、計算機等新技術觀測各種與我們息息相關的自然現象。活動日期就訂在 1957 年七月到 1958 年底,預估此時正是太陽黑子最活躍的時候。

美國政府於 1955 年宣布將在國際地理物理年期間發射衛星,作為美國的支持與貢獻。就在大家引頸期盼之際,沒想到一直默不吭聲的蘇俄竟然在 1957 年 10 月 4 日搶先發射了世上第一顆人造衛星「史普尼克一號」(Sputnik 1)。這可真是個大意外,美國無論是為了面子或裡子,都得趕緊追上,終於在 1958 年 1 月 31 日成功發射「探索者一號」(Explorer 1),裡頭放了范艾倫改良的蓋格計數器,用以偵測宇宙射線。

-----廣告,請繼續往下閱讀-----

沒想到傳回來的資料顯示,蓋格計數器的讀數隨著高度增加而迅速提高,但後來竟降為零;兩個月後發射的探索者三號上的蓋格計數器也一樣。范艾倫猜測是因為宇宙射線過強導致儀器過載而失靈所致,於是他在探索者四號上的蓋格計數器前方多加一層鉛片,果然就得到完整的紀錄,證實范艾倫輻射帶的存在。

范艾倫輻射帶是來自太陽的帶電粒子被地球的磁場捕獲而形成,外層主要是高能電子,位於地球上方一萬三千公里至六萬公里處;內層則是高能質子,在一千公里至六千公里處。兩者都以南北極為軸,形成輪胎狀將地球圍在中間,像是防護罩擋住宇宙射線,使其無法到達地面,避免生物受到輻射傷害。

范艾倫輻射帶的發現對於往後的太空探索非常重要,無論是載人的太空任務或是衛星佈署才能採取必要的防護措施以避免傷害。此一發現不但出自范艾倫的儀器在 1958 年的偵測;也可說是始自他於 1950 年發起的國際地理物理年;又或是更早,源自 1932 年那位在烈日下努力繪製地磁圖的少年。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1030 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
抗輻射奈米碳管電晶體現身
NanoScience
・2012/10/21 ・834字 ・閱讀時間約 1 分鐘 ・SR值 555 ・八年級

-----廣告,請繼續往下閱讀-----

美國研究人員發現,採用氮氧化矽(SiON)閘極介電層的單壁式奈米碳管(single-walled carbon nanotube, SWCNT)電晶體可以抵抗劑量高達2 Mrad的伽瑪射線(gamma radiation),因此可能適合在惡劣的太空游離環境中使用。

一般的SWCNT薄膜電晶體和矽基場效電晶體都容易受到游離輻射(ionizing radiation)的影響,原因是元件中的二氧化矽閘極介電層會捕捉電洞。為克服這個問題,美國海軍研究實驗室(Naval Research Laboratory)的Cory Cress等人研發出抗輻射(radiation-hardened)SWCNT薄膜電晶體,他們採用氮氧化矽做為閘極介電層,該材料一來捕獲的載子較少,二來傾向捕捉等量的電子與電洞,由於無淨電荷累積,因此比較不受輻射影響。

地球磁場將高能帶電粒子侷限在兩道環形輻射帶中,稱為范艾倫輻射帶(Van Allen belt)。太空船繞行地球時,會重複經過這些輻射帶並且暴露於高劑量的高能電子與質子游離輻射中。Cress表示,這些輻射的能譜與入射角度相當均勻,因此可以藉由鈷六十(Co-60)在實驗室中模擬此劑量。

伽瑪射線會迅速激發碳管的電子,然後快速鬆弛,因此不至損傷碳管。不過當受激電子的能量超過碳管的位移閥值(displacement threshold, 約為90-120 keV)時,碳原子便可能脫離晶格,造成碳管的晶格結構受損。然而實驗結果顯示,他們的元件在2 Mrad的輻射劑量下發生這些情形的機率極為微小。

-----廣告,請繼續往下閱讀-----

大部分的多數載子電子元件暴露於輻射環境時,閘極介電層及絕緣層會捕捉電荷載子,造成元件效能下降。而他們研發的抗輻射SWCNT薄膜電晶體卻不受影響,原因是該元件是以擴散傳輸方式運作,電荷載子會因鄰近缺陷而成倍數散射,這些缺陷包含碳管晶格缺陷、碳管邊界及聲子等,都會影響電荷傳輸以及奈米碳管元件對輻射的反應。

未來SWCNT場效電晶體將具有短通道,載子在元件內將呈彈道式傳輸,因此碳管-金屬接觸間的性質在元件效能上將扮演著更重要的角色,值得更進一步的研究。該團隊未來的研究重點將放在操作於彈道傳輸區域的電晶體元件。詳見Electronics |doi:10.3390/electronics1010023。

資料來源:Lift off for nanotube transistors. NanoTechWeb [Sep 28, 2012]

譯者:莫偉呈(茂迪太陽能)
責任編輯:蔡雅芝

-----廣告,請繼續往下閱讀-----

轉載自 奈米科學網

-----廣告,請繼續往下閱讀-----
NanoScience
68 篇文章 ・ 4 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。