網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

物理學家創造出首個測量單一分子質量的機械裝置

only-perception
・2012/08/28 ・1907字 ・閱讀時間約 3 分鐘 ・SR值 572 ・九年級

一個由加州理工學院(Caltech)的科學家所領導的團隊,打造出有史以來第一個能每次測量一個分子質量的機械裝置。

研究者表示,這項新技術最終將能幫助醫師診斷疾病,讓生物學家研究病毒與探測細胞的分子機械,甚至賦予科學家更好的奈米粒子與空氣污染測量結果。

該團隊包括來自加州理工 Kavli 奈米科學研究所,以及位於法國 Grenoble 的 CEA-Leti 的研究者。一篇描述這項技術(那包括一個在 CEA-LETI 設施完成的原型奈米裝置)的論文,8/26 出現在 Nature Nanotechnology 期刊線上版。

這個裝置 — 大小只有幾百萬分之一公尺 — 由微小、會振動的橋狀結構所組成。當一個粒子或分子落在橋上,其質量會以一種揭露粒子有多重的方式改變其振盪頻率。

“當每一個粒子到來時,我們能測量其質量,” Michael Roukes 表示,加州理工 Robert M. Abbey 物理學、應用物理學與生物工程教授。”之前沒人能做到這件事。”

這款新設備是基於 Roukes 等人在過去 12 年來所開發的技術。在 2009 年發表的研究中,他們證明,一種橋狀裝置 — 稱為奈米電機系統(NEMS)共振器 — 確實能測量個別粒子(那被噴灑到儀器上)的質量。然而,困難之處在於,所測得的頻率偏移並非只有粒子的真正質量,還包括粒子「著陸」之處。若無法得知粒子的著陸位置,研究者得要分析約 500 個相同粒子的測量結果,才能精確確定其質量。

但隨著技術的更新與改良,科學家只要一個粒子就能夠完成測量。”關鍵進展是,在目前的研究中,我們已做到:當分子進入時,我們能一個接著一個為分子稱重,” Roukes 表示。

為了辦到這件事,研究者分析一個粒子如何使「橋」的振動頻率偏移。所有的振盪運動是所謂「振動模式」的組合。如果橋只是在第一模態(first mode)中搖動(shake),它會從某一端擺盪到另一端,結構的中心移動範圍最大。第二振動模態(second vibrational mode)處於更高的頻率,其中,橋的一半朝某個方向側移,而另一半則朝相反的方向,形成一振盪的 S 形波,跨距為橋的長度。這裡還有第三模態、第四模態等等。不管橋怎麼振盪,其運動都能以這些振動模式的某種混合來描述。(譯註:振動模式可參考下列網站 http://www.sound-physics.com/Drum-Vibrational-Modes/ 

該團隊發現,當一粒子著陸時,藉由觀察前二種模態的頻率如何改變,他們就能夠決定粒子的質量與位置,Mehmet Selim Hanay 解釋,Roukes 實驗室的博士後研究者,以及論文的第一作者。”透過每一次的測量,我們能決定粒子的質量,以前,這在機械結構中是不可能的事。”

傳統上,是使用一種稱為質譜術的方法來為分子稱重,其中,有十萬分之一的分子被離子化 — 所以它們獲得電荷 — 接著與一電磁場進行交互作用。在分析這種交互作用後,科學家就能夠推斷出分子的質量。

問題在於,這種方法對那些更重的粒子不怎麼管用 — 例如蛋白質或病毒 — 要讓它們獲得電荷並不簡單。結果,它們與電磁場的交互作用太弱,以至於儀器無法進行足夠精確的測量。

在另一方面,這種新裝置則善於對付大型粒子。事實上,研究者表示,那能與現有的商業儀器整合,以擴展它們的能力,讓它們能測量範圍更廣的質量。

研究者稱出免疫球蛋白 M(IgM,一種由血液中的免疫細胞所產生的抗體)的重量,藉此示範他們的新工具如何運作。藉由稱出每個分子的重量 — 那在體內可能有不同的結構與不同的質量 — 研究者能夠計算並確認各種類型的 IgM。這不僅是第一次利用奈米機械裝置為生物分子稱重,還證明亦是向生醫應用跨出直接的一步。未來的儀器可能被用來監測某病患的免疫系統或甚至診斷出免疫性疾病。例如,某一定比例的 IgM 分子是某一種癌症,叫做 Waldenstrom 氏巨球蛋白血症,的特徵。

在更遙遠的未來,新儀器能使生物學家深究細胞的分子機械。蛋白質驅動近乎所有的細胞功能,而它們的特定任務端看,在一種稱為「轉譯後蛋白質修飾(posttranslational modification)」的過程期間,是哪一種分子結構附著其上 — 因而有更多重量增加到蛋白質上。在不同時間測量細胞內每個蛋白質的重量,生物學家現在能獲得某一特定時刻中「每個蛋白質正在做什麼事」的詳細快照。

這種新裝置的另一種優勢是,它利用標準半導體製造技術製成,使得它容易大量生產。這相當關鍵,因為儀器要能為醫師或生物學家所用,將需要成千上萬個像這樣的「橋」平行運作。”在這種裝置 — 那由大型積體電路(large-scale integration)的技術製成 — 的協助下,我們將能順利創造出像這樣的儀器,” Roukes 說。這種新技術,研究者表示,將使得新一代質譜儀的開發成為可能。

“這項結果證明 2006 年開始的「The Alliance for Nanosystems VLSI」如何創造出一種適合的環境,以這些先進、大量製造的裝置完成創新實驗,” Laurent Malier ,CEA-LETI 主管。 The Alliance for Nanosystems VLSI 是加州裡公的 Kavli 奈米科學研究所與 CEA-LETI 之間的合作名稱。”這些裝置,” 他說,”由於成本優勢與過程的可重複性,將使得商業化應用成為可能。”

原始文獻:

M. S. Hanay, S. Kelber, A. K. Naik, D. Chi, S. Hentz,
E. C. Bullard, E. Colinet, L. Duraffourg, M. L. Roukes
Nature Nanotechnology (2012)
doi: 10.1038/nnano.2012.119

資料來源:PHYSORG:Physicists create first-ever mechanical device that measures the mass of a single molecule[August 26, 2012]

轉載自only-perception

相關標籤: 分子 測量
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D


0

9
0

文字

分享

0
9
0

火箭阿伯的「臺灣太空港」願景——專訪國家太空中心主任吳宗信

科技大觀園_96
・2022/01/16 ・4906字 ・閱讀時間約 10 分鐘

臺灣的「國家太空中心」於 1991 年成立至今屆滿 30 年。恰好在而立之年,行政院 11 月 25 日拍板「國家太空中心設置條例」,若立法院審查順利,太空中心將於 2022 年升格為直屬科技部的行政法人,大力推動我國太空科技及產業發展!

談到臺灣的太空發展,你可能會先想到 2019 年發射的「福衛七號」;但若談到火箭,你可能會先想起一個身著橘色連身衣的阿伯,操著臺語在 TED 講台上侃侃而談的身影,也就是現任國家太空中心主任吳宗信。

「火箭阿伯」吳宗信在今年 8 月接任國家太空中心主任,在「產官學」三界都走了一遭。圖/呂元弘攝

放眼宇宙卻心懷鄉土的「火箭阿伯」,是很多人對吳宗信主任的印象。吳宗信在 2012 年在陽明交通大學創立了前瞻火箭研究中心(ARRC),同時也有創立太空科技公司的經驗。如今他在今年 8 月接任國家太空中心主任,在「產官學」三界都走了一遭。

談到何為「太空產業」的基礎問題?吳宗信解釋,火箭與衛星的發展,需要很多不同專長的人才,仰賴跨領域合作,「是一門精密且嚴謹的系統工程。」

火箭產值雖然不大,卻對太空產業至關重要

談到臺灣的太空產業該如如何發展?吳宗信指出,要發展太空產業,除了過去國家太空中心專注於的衛星發展,擁有自主發射火箭的能力也很關鍵。以馬斯克的 SpaceX 為例, SpaceX 是先將火箭發展起來,接著才有如星鏈(Starlink)的衛星服務,透過這樣的過程來達成太空產業一條龍。

然而有趣的是,火箭其實只佔太空產業總產值的大約 2-3%,因此光靠火箭賺大錢其實很困難。既然產值很少,那大費周章的研發火箭到底有什麼好處呢?

對此吳宗信解釋,一個用在衛星上的設備和地面設備最大的差別,就是前者必須能在真空、高輻射、高溫差的太空環境運作,也要能承受震動、噪音等火箭發射過程帶來的考驗。

因此,雖然地面上也能模擬出類似太空中的環境,但要驗證一個設備是否符合「太空等級」,還是要直接送上太空長時間運作,經過真實的極端環境考驗才能見真章。如果有能力自己發射衛星,那對於太空相關設備的驗證頻率就能得到顯著提升,整條產業鏈的進步的速度才會快。

「遙測」及「通訊」雙軌進行,強化自主衛星發展能力

火箭研發是臺灣太空產業未來發展的關鍵,但同時衛星發展的腳步也並未因此停下來!國家太空中心目前正在執行自 2019 年起為期 10 年的「第三期太空計畫」,該計畫以開發「遙測衛星」為主。

吳宗信提到,在遙測衛星部分,目前有六枚解析度1米,經地面影像處理後解析度可達 0.7 米的「光學遙測衛星」(也就是福衛八號計畫)。福衛八號衛星第一枚(FS-8A)科學酬載的研製由成功大學負責,主要發展雙波段大氣瞬變影像儀與電子溫度密度儀,目前規劃於 2023 年發射;同時,太空中心未來也將再發展兩枚「超高解析度遙測衛星」。

福衛八號衛星示意圖。圖/國家太空中心提供

吳宗信指出,第三期太空計畫還有兩枚合成孔徑雷達(SAR)遙測衛星的計畫,不同於福衛二、五、八以「可見光」遙測,合成孔徑雷達因為觀測波段可以穿透雲層,全天候皆可使用是其優勢之一。

除了遙測衛星以外,發展「通訊衛星」也是國家太空中心的重要計畫。目前正在執行兩枚 B5G(Beyond 5G)衛星計畫,目前規劃 2025 可以發射第一枚;在研發上,衛星可以分成本體(Bus)與酬載(Payload)兩部分,對於臺灣首次自主發展通訊衛星,吳宗信表示,在衛星本體上,國家太空中心已經有一定的自製能力,「臺灣幾乎能百分之百自主研發了。」

至於 B5G 衛星的酬載部分,例如通訊模組等等,則正與工研院資通所合作,並與產業界一同發展相關技術,也希望未來能達到高度自主的研發能力。

臺灣太空產業要升級,得先著手打造「環境」

為了國產衛星載具的目標,吳宗信在 2012 年於交大成立了前瞻火箭研究中心,但這些年來前瞻火箭其實經營的非常辛苦。過去幾年,前瞻火箭大約募得一億六千萬新臺幣,製造火箭的技術也達到能讓火箭在空中懸浮的水準,但這似乎已經達到學校單位能做的極限,若要繼續發展下去,在人、時、地、物的支援都需要有更大的規模,然而學校不是企業或是國家單位,學生有自己的前途,因此難以留住人才。

另一方面,很多大學研究室在做的東西,由於相對單純,需要控制的變因很少,可以相對簡單的透過改變某一個部分就能夠看到效果,同時也可能只需要幾個學生合作就能夠完成。但火箭與衛星可不是這樣,它需要數百人的團隊合作,而一個系統可能有一萬個零件,只要一個螺絲做得不對,整個系統就會失效。這樣的工作,沒有一個由全職工作者組成的團隊,是很難完成的。

也因為火箭研發在學界內缺乏資源及環境,今年 8 月甫接任國家太空中心主任的吳宗信,在「換了位置卻沒換腦袋」的情況下,轉換跑道繼續推動臺灣的太空產業發展,捲起袖子,誓言把臺灣的太空產業環境建立起來!

吳宗信(左)8 月接任國家太空中心主任;中為國研院吳光鐘院長、右為前代理主任余憲政。圖/國家太空中心提供

建立產業基石,是國家機關的重責

吳宗信表示,過去開發火箭跟很多廠商合作的過程中,他也將臺灣的產業掃過一遍,發現臺灣的太空相關產業鏈其實深度及廣度兼具,甚至有許多廠商原本就有接到歐美國家訂單生產太空相關零組件,只是基於保密協議廠商不能宣傳。

那既然臺灣並非沒有發展太空產業的能力,以前為什麼不做呢?吳宗信說,就像是廣告中的一段經典台詞:「阿伯,失火了你怎麼不跑?」「啊腳麻是要怎麼跑?」由於沒有適當的發展環境與法規,很多事情就無法順利進行,像是不久前晉陞公司的飛鼠一號火箭在國內無法順利發射,就是實際的例子。

因此吳宗信認為,雖然國家單位的效率一定不比有生存壓力的私人公司,但國家卻能夠改善整體產業的發展環境,「就如同廚師要煮出好菜,也要先有廚房和爐具。」而在未來的太空產業中,廚師是民間廠商,那麼國家的角色就是幫忙把廚房準備好。像是目前完成立法的《太空發展法》、以及未來國家火箭發射場的設立等,就是建立太空產業發展基石的重要工作。

同時,與民眾、民代的溝通,也是發展太空產業非常重要的一環,吳宗信也提到,讓事情清楚透明,是讓大眾與民意代表從懷疑到支持的關鍵。

打造臺灣太空港:實現「南火箭北衛星」願景

隨著全世界太空產業的發展,未來也充滿不同的可能性,像是 SpaceX 有提出利用星艦(Starship)火箭系統,進行長程國際航班的構想,如同現代的港口與機場,未來臺灣可能會需要「太空港」來滿足各種火箭發射的需求。而太空港也會需要對應的後勤設施,並且可以結合太空產業科學園區,讓國內外的太空公司設廠製造火箭與衛星。

另一方面,這樣的太空港也可以結合地方特色發展觀光,「說不定以後每個臺灣的年輕人成年禮,都可以去參觀火箭發射和國家太空博物館」吳宗信說道。

吳宗信也提出了「南火箭、北衛星」的構想,期許未來臺灣南部能成為火箭研發、生產與發射的重要基地,而北部則可以延續過去國家太空中心發展衛星的基礎,成為衛星發展重鎮。 

吳宗信指出,未來臺灣可能會需要「太空港」來滿足火箭發射的需求;圖為美國的甘迺迪太空中心,為 NASA 發射火箭的重要太空港。圖/Pixabay

投資太空不是豪賭,科研走的每一步都算數!

吳宗信表示,在太空產業發展上若政府願意帶頭出來衝,民間會有更多企業投入太空產業。

吳宗信說,過去臺灣在不同產業的嘗試,有半導體業的成功案例,但也有許多投入資源卻沒發展起來的產業。但投資本來就不可能穩賺不賠,也不能永遠固守既有的優勢產業。現在太空產業出現了機會,並不代表做了一定會成功,「但不做就完全沒有機會了。」

另外,太空產業的發展最終不論是否能開花結果,投入資源訓練出來的人才、發展出的技術其實都能應用在不同領域。像是 1960 年代的美國,就因為阿波羅登月計畫所需,大力推動如 IBM 等民間電腦公司的快速發展,「科技就是這樣一步一腳印創造出來的。」

如果想要進入太空產業,可以怎麼準備?

跨領域合作在太空產業非常重要。吳宗信說明,在衛星方面,大約有三分之二與電機和資訊工程相關,而火箭方面,則是有三分之二與機械、材料與結構等等相關。因此對於有志在未來投入太空產業的學生,航太系會是很好的選擇,但很多理工科系也都與太空產業有關,職涯發展上不會因「非航太系」而受限。

吳宗信也鼓勵對於太空產業有興趣的大學生在本科系繼續學習的同時,可以在大三大四去修一些與衛星、推進等等課程,接著研究所再到國內外相關系所深造。

而職場的選擇,則要取決於自己想要「怎麼參與太空產業」,像是進入一家太空產業鏈上製造特定零組件的公司,也是參與太空產業的一種方式,而若是想接觸更完整的太空產業,則可以選擇到做系統整合的公司或是太空中心就職。

火箭與衛星都是複雜的「系統工程」

火箭與衛星的研發製造,都必須整合很多不同次系統,是一門非常精密且嚴謹的系統工程。以火箭系統為例,推進、結構、航電、軟體、硬體和通訊等系統缺一不可,這些系統各自都是不同的專業,但系統間又要能完美的配合,若火箭上任何系統無法順利運作或配合,這支火箭就跟「沖天炮」差不多了。

而臺灣的大學科系目前在授課上較少有「系統工程」的規劃,每個不同專業的領域各做各的就像是一個樹林裡,「有些人種芒果,有些人種龍眼,每一群人都很擅長照顧自己的作物,但卻不知道樹林裡還有哪些水果。因此就需要有人開直升機從上往下看,看看到底有哪些資源,並且對其他領域稍微多懂一些,才能有效的整合。」

吳宗信強調,系統工程就是「不能見樹不見林,更要『見樹又見林』」。也因此,吳宗信也期待未來臺灣能有「太空系統工程」碩博班的設立,以培育更多產業所需的太空人才。

從打橄欖球到做火箭,那些同樣重要的事

訪談中吳宗信也分享自己在臺大時期是橄欖球隊一員,主打九號傳鋒[註]位置的吳宗信笑著說:「那時候我這個體格,在全臺灣高中以上的橄欖球員中應該就是我最輕,不到 50 公斤,但憑著快速靈活的身手,也能成為球隊中重要的一員。橄欖球很好玩,在倒地之前只能將球往後傳,一定要球傳下去,任何位置都很重要,我也在那邊學到很多團隊合作精神。」

吳宗信表示過去做火箭時,有好幾次測試中火箭摔在地上,甚至斷成兩截,面對不斷失敗產生的壓力,其實對身體及精神都是折磨,這些挫折也曾讓團隊懷疑過,自己到底要不要繼續做火箭?但就如同橄欖球場上的磨難,但當很多人一起做事時,就可以分工合作,克服很多困難與阻礙。

而不論是打橄欖球或是做火箭,吳宗信說,他很喜歡扮演「箍桶」(臺語:khoo-tháng)的角色,也就是木桶上的鐵環。因為有了箍桶將木片整合在一起,木桶才不會散掉,就像是系統工程中,要將不同次系統整合串聯一樣。

註解

  • 註 1:「傳鋒」是橄欖球隊型的九號位,在多數的比賽中,Scrum-half 擔任從前鋒群中接過球並傳給後衛的角色。他們善於團隊溝通,特別擅長指揮前鋒,主要目的是提供後衛群穩定俐落的傳球。

科技大觀園_96
84 篇文章 ・ 331 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。