Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

hTC上太空

陸子鈞
・2012/08/28 ・604字 ・閱讀時間約 1 分鐘 ・SR值 515 ・六年級
相關標籤: 微衛星 (2)

-----廣告,請繼續往下閱讀-----

你手上的智慧型手機比起阿波羅計畫時候的電腦強大許多,美國航太總署(NASA)現在計畫要發展以智慧型手機為核心的太空船。這項稱為「手機座」(PhoneSat,還不確定是否為官方名稱)的計畫,已經開發出以hTC為核心的微衛星原型機(protype)。

這項計畫主要是將相對便宜又隨手可得的零件,組裝進通常由NASA拼裝成的太空研究儀器中,能大幅降低小型太空研究計畫的成本。目前三顆「手機座」計畫中的衛星,分別只花費3500美金,這也讓NASA得以享受到矽谷(Silicon Valley)在電子硬體及軟體日益月新進步,並進入消費市場的優勢。

兩個「手機座 1.0」的模組以hTC 的 Nexus One為核心,另一個「手機座 2.0」模組,則搭載SAMSUNG的Nexus S。這三顆微衛星重量不超過1.8公斤,外觀大約是10公分長寬的立方體。目前這三顆衛星還沒有排定發射時程,不過應該會是在今年離開地球表面,由「手機座 1.0」先行,確定能在太空中運作之後「手機座 2.0」再出發。

智慧型手機算是理想的科學研究套件,它有開放的作業系統、能感測方向的陀螺儀、全球定位系統(GPS)、還有高解析度攝影機;從工廠量產使得它的價格又相對NASA的自製儀器便宜。未來「手機座」會應用在觀測地球動態、探索月球,或者測試太空飛行技術

-----廣告,請繼續往下閱讀-----

資料來源:NASA’s Next Nanosatellites Will Carry HTC Smartphones. Pop Science. [08.27.2012]

相關資料:PhoneSat Flight Demonstrations. NASA

-----廣告,請繼續往下閱讀-----
文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
它們和福衛五號搭同一班火箭 任務卻大大不同!
活躍星系核_96
・2016/04/11 ・3617字 ・閱讀時間約 7 分鐘 ・SR值 519 ・六年級

文/黃正中|國家太空中心研究員

福爾摩沙五號衛星在新竹科學園區的整合測試,已經接近尾聲,預定在今年五月運往美國加州,太平洋海岸邊的范登堡火箭發射場,進行發射前的健康檢查,然後搭乘由美國 Space X 公司所建造的獵鷹九號(Falcon 9)火箭升空。

福衛五號是我國自製的遙測衛星,搭載高解析度的彩色相機以外,以及中央大學研製的先進電離層探測儀(AIP)。國內已經有許多福衛五號的相關文章與報導,所以這一次我們把焦點放在即將與福衛五號搭乘同一班火箭升空的小夥伴們。

火箭也可以變成「公車」 衛星們在不同地方下站

此行升空的火箭搭載包括福衛五號在內,總計有88顆衛星一齊升空,可能創人類有史以來,最多衛星搭乘同一個火箭升空的紀錄。除此之外,還有許多創新技術,包括製造廠商 Space X 公司預計在火箭發射過程中,第一、二節火箭分離之後,回收第一節火箭;第一節火箭重新整理後可望再次使用,並降低商用火箭發射費用。

-----廣告,請繼續往下閱讀-----

這一次獵鷹九號的整流罩裡面,有兩個主要的火箭酬載銜接環,樓上搭乘的是「福衛五號衛星」,樓下搭乘的是夏爾巴(SHERPA)銜接環。這是美國一間名為太空飛行公司(Spaceflight Inc.)發明衛星的衛星彈射設施,這種銜接環能提供大量奈米、微衛星安全的空間,以及抵達軌道以後將衛星彈射釋出到太空的「微衛星搭乘艙」。銜接環能提供火箭與衛星的電機控制介面,並且能監控衛星的健康狀態,回報控制中心,這種創新、低價格的發射服務,在市場上相當有競爭力。

abc
獵鷹九號整流罩內的福衛五號衛星(藍色)與SHERPA銜接環配置(黃色)。圖/作者提供。

SHERPA(夏爾巴)或稱為雪巴人,是一支散居在喜瑪拉雅山脈兩側的民族,堅忍耐勞,為挑戰喜瑪拉雅山的登山客提供登山嚮導、背負重物、紮營等服務。太空飛行公司在 2012 年以此命名運載衛星送上太空的酬載設施,它提供標準空間尺寸,給需要搭乘火箭到太空的衛星,或其他任務所使用。

640px-Sherpa_Hikes_from_Dughla_Towards_Lobuche
SHERPA(夏爾巴)或雪巴人背負重物登山。圖/wikipedia, By Niklassletteland – Own work, CC BY-SA 3.0

-----廣告,請繼續往下閱讀-----

5、4、3、2、1 發射!

伴隨著轟隆隆的聲音,福衛五號和其他衛星,以拋物線軌跡從美國西岸的范登堡升空,面對太平洋,朝著南半球飛行。火箭發射後 11.3 分鐘,距離發射場約 1100 海里,就抵達 723 公里高的太空任務軌道,這時福衛五號衛星與火箭分離,開始進行早期軌道操作。

  • 編按:范登堡原誤植為東岸,經讀者提醒修改。2018/7/10

其餘搭乘同一火箭的 87 顆衛星,將隨著火箭上夏爾巴酬載設施持續飛行。大約在發射後 60 分鐘抵達地球另一邊,非洲蘇丹的上空,此時夏爾巴與火箭分離,逐漸釋出衛星,各自執行太空任務。預估將花 45 分鐘的時間,釋放出所酬載的剩下 87 顆微衛星和奈米衛星。

87 顆衛星們要去哪裡?要做什麼?

這次火箭發射引發的關注,不只是我們心心念念福衛五號衛星能否順利發射,其他搭乘的87顆微衛星、奈米衛星來自全球各地,也陪著我們緊張、焦慮和興奮。87 顆衛星中有 3 顆微衛星以及 84 顆奈米衛星,它們所要執行的任務也相當有趣,以下介紹其中幾個它們的「超級任務」:

1. 生醫衛星—大腸桿菌上太空

ecamsat1_0
EcAMSat衛星。圖/NASA

-----廣告,請繼續往下閱讀-----

首先介紹「大腸桿菌抗菌衛星任務(E. coli AntiMicrobial Satellite (EcAMSat) mission)」,這是生醫奈米衛星的太空實驗,也是本次發射任務的亮點之一。本計畫是由美國太空總署與史丹佛大學醫學院共同合作,調查大腸桿菌在太空微重力下,會如何影響它對抗生素產生的抗藥性。

大腸桿菌是人類腸道中最著名的細菌,主要生存於大腸內,一般不會致病,而且還能合成對人體有益的維生素 B 和 K。然而無害的大腸桿菌,在少數的情況下也會導致疾病,例如離開腸道進入泌尿道會導致感染,或者某些特殊的菌株具有毒性會導致痢疾等等。

面對這些疾病,需要使用抗生素對抗在身體中作亂的大腸桿菌,但在使用抗生素一段時間後大腸桿菌可能會產生抗藥性,影響藥效。大腸桿菌在微重力下,是否會使它的抗藥性改變,而成為太空人健康的隱憂,特別在長時間執行任務下,太空人的免疫系統可能逐漸減弱,更需特別注意這些潛在的健康問題。EcAMSat 實驗的結果將有助於在未來規劃太空任務中提出有效的對策,保障這些長時間、持續執行太空飛行任務的太空人健康回地球。

2. 太空資源衛星—尋找太空船的加油站

External-5j-680x452
Arkyd 6A奈米衛星。圖/planetaryresource

-----廣告,請繼續往下閱讀-----

成立於 2012 年的美國行星資源公司(Planetary Resources),是一個年輕又有野心的太空探險公司。他們提出一個相當有遠見、大膽的想法——「地球資源有限,太空資源無窮」。

在太陽系,天文學家已經發現了約 127 萬顆小行星,其中某些小行星是由氫氣和氧氣所組成,而這是火箭燃料的必要元素。以火星探險計畫為例,未來太空旅行時,這些小行星可以成為太空旅行中途的「加油站」,提供所需的燃料或能源。這家公司看到了商機,他們開始為太空船或衛星探勘,了解太空中哪些小行星有大量的燃料或能源,可以做為未來太空船中途加油的供應站,因而創造了這個價值數十億美元的行業。

另外,最近高科技的發展,使得傳統以及通訊產業,對於鉑金屬需求越來越大,從催化轉化器、珠寶首飾,到電子、醫療器材、玻璃和渦輪葉片等等都需要。鉑金屬的主要來源為南非和俄羅斯,但已越來越難開採。不過,未來太空中的小行星可能成為稀有金屬的來源,甚至,只要找到一個直徑為 500 公尺、富含鉑金屬的小行星,開採到的鉑金屬就可能超越人類歷史上所有已開採的數量。

瞄準太空中無限的商機,本次火箭發射,行星資源公司代號 Arkyd 6A 的奈米衛星將隨之升空。衛星搭載的酬載儀器是中波段的紅外成像系統(mid-wave infrared imaging system),可以用來偵測小行星的礦產以及水的含量,任務初期將先以瞄準地球特定區域探勘作為測試,這次任務若順利,未來才能實際運用在探勘小行星上。

-----廣告,請繼續往下閱讀-----

3. 太陽帆衛星—太空船也能靠「風」航行

cnusail-1__1
CNUSail奈米衛星張開太陽帆。圖/Chungnam National University @ http://space.skyrocket.de/

夜晚遙望蒼穹,激起人們挑戰太空,探索未知世界的雄心壯志,然而實際要探索太空需要攜帶大量的燃料,才能進行遠距離的太空旅行,所費不貲。科學家們為了解決這樣的困境,他們從風箏的飛行得到靈感,希望仿效「海上風帆」藉由風力這種外在動力,來達到在太空自由活動的想法。他們思考,若可以設計一個人造衛星,利用「太陽風」這種無窮盡的高速電粒子流來自由移動,降低對於燃料的依賴,是否可能成功呢?

這一次伴隨福衛五號升空的衛星中,有個名稱為「CNU 帆奈米衛星(CNUSail Cubesat)」的太空計畫。當火箭抵達太空以後,邊長約 13 公分的立方型奈米衛星,將在太空中展開約 300 公分長對角線的「太陽帆」,「太陽帆」是以超薄的薄膜材料所構成,利用控制衛星「太陽帆」與「太陽風」的夾角,進行變換衛星軌道高度的實驗。

傳統上,衛星所攜帶的燃料多寡,是衛星任務壽命的關鍵,假如「太陽帆」實驗成功,理論上除非衛星上的元件故障,衛星將可以長期運作不退休。

-----廣告,請繼續往下閱讀-----

4. 雙星計畫—兩個衛星,一台望遠鏡

helioalignment
CANYVAL-X奈米衛星光學的虛擬望遠鏡系統。圖/NASA/Brittany Klein

這次獵鷹九號火箭,搭載很特別的「雙星實驗」計畫,包含一大一小的兩顆名為 CANYVAL-X 奈米衛星,將發射到太空之中,研究靠近明亮的恆星系統旁邊的行星,或難以捉摸的日冕現象。

「雙星計畫」特別的點在於,這兩顆衛星——小的有反射光線的設施,大的帶有光學電子取向單元(Electric Unit)具有偵測的效果,當兩顆衛星進入太空以後,小顆的奈米衛星翻滾的過程,會使用偵測器找到並鎖定兩倍大體積的另一顆衛星,共同組成光學的虛擬望遠鏡。由於光學儀器無法直接觀察明亮的光源,因此這個計畫非常有創意的採用雙星位置的移動,達成「掩星」的條件,從而研究遠方行星的成分。另外也可以利用雙星相對運動,研究太陽的日冕大小。

5.鳳凰計畫—修復太空中壞掉的通訊衛星

即使再高價製作的人造衛星用久了、壞掉了,依然會變成太空垃圾,這時該怎麼辦呢?這一次,有一顆「喚醒微衛星(eXCITe microsatellite)」將伴隨福衛五號升空。這是「美國國防高等研究計劃署(Defense Advanced Research Projects Agency, DARPA)」推出的計畫,目標是將太空中壞掉的通訊衛星改造修復。這個活化衛星的「鳳凰計畫」具有劃時代的意義。

-----廣告,請繼續往下閱讀-----

這一次是鳳凰計劃的第一階段測試,主要的構想是使用太空機器手,組裝稱為「衛星模組(satlets)」的模組化零件。每個零件重約 6.8 公斤(15 磅),分別是主要的衛星次系統,例如電源,控制器和傳感器等等。一旦任務所需,能夠快速的反應,將所需要的次系統運送到太空軌道,快速提供零組件,用以佈署和維修損壞的衛星。

 

同一個火箭就有帶有這麼多不同任務的衛星,這代表太空還有許多新領域等著我們去探索!除了去了解和認識其他國家有什麼創意思考外,我們也可以想想台灣要如何在這場激烈的國際太空競賽中出奇致勝!

-----廣告,請繼續往下閱讀-----
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
hTC上太空
陸子鈞
・2012/08/28 ・604字 ・閱讀時間約 1 分鐘 ・SR值 515 ・六年級
相關標籤: 微衛星 (2)

你手上的智慧型手機比起阿波羅計畫時候的電腦強大許多,美國航太總署(NASA)現在計畫要發展以智慧型手機為核心的太空船。這項稱為「手機座」(PhoneSat,還不確定是否為官方名稱)的計畫,已經開發出以hTC為核心的微衛星原型機(protype)。

這項計畫主要是將相對便宜又隨手可得的零件,組裝進通常由NASA拼裝成的太空研究儀器中,能大幅降低小型太空研究計畫的成本。目前三顆「手機座」計畫中的衛星,分別只花費3500美金,這也讓NASA得以享受到矽谷(Silicon Valley)在電子硬體及軟體日益月新進步,並進入消費市場的優勢。

兩個「手機座 1.0」的模組以hTC 的 Nexus One為核心,另一個「手機座 2.0」模組,則搭載SAMSUNG的Nexus S。這三顆微衛星重量不超過1.8公斤,外觀大約是10公分長寬的立方體。目前這三顆衛星還沒有排定發射時程,不過應該會是在今年離開地球表面,由「手機座 1.0」先行,確定能在太空中運作之後「手機座 2.0」再出發。

智慧型手機算是理想的科學研究套件,它有開放的作業系統、能感測方向的陀螺儀、全球定位系統(GPS)、還有高解析度攝影機;從工廠量產使得它的價格又相對NASA的自製儀器便宜。未來「手機座」會應用在觀測地球動態、探索月球,或者測試太空飛行技術

-----廣告,請繼續往下閱讀-----

資料來源:NASA’s Next Nanosatellites Will Carry HTC Smartphones. Pop Science. [08.27.2012]

相關資料:PhoneSat Flight Demonstrations. NASA

-----廣告,請繼續往下閱讀-----
文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。