Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

健康與醫療資料的加值應用(七):實體論壇成果與結論

2012健康與醫療資料加值應用論壇_96
・2012/08/15 ・1351字 ・閱讀時間約 2 分鐘 ・SR值 569 ・九年級

我們每個人的醫療資訊、健保資料,都可能變成被研究的資料,甚至是非學術研究的使用。若,政府使用在健保或原先業務目的之外的目的,需要我們每位公民同意嗎?或是需要立法授權?健康資料庫加值應用的現況,是否侵犯或有未能保護個人資訊自主及隱私之疑慮?以及我們又該如何思考健康資料庫加值應用所衍生的利益歸屬問題呢?

有鑑於此,參與「健康與醫療資料的加值應用公民論壇」的 50 位公民,歷經四天論壇的討論,透過與不同立場偏好、不同專業的政府單位、民間企業、公民團體與專家學者對談後,分成五個公民小組針對以下三個議題進行討論,形成各組結論,並從五組結論報告彙整以下全體結論形成此份全體暨分組結論報告:

議題一、
政府現有健康相關資料庫之加值應用,是否須先經個人同意?或立法授權?

針對議題一,全體公民皆認為政府現有健康資料庫之加值應用,無論是依公共利益之目的供學術或國家政策使用,或供商業營利(包括但不限於保險、生技藥廠等)或是產學合作使用,都應透過立法授權有其法源依據,針對資料的取得、管理應用、利益歸屬、回饋機制、救濟程序及罰則等,有其原則和例外的明確立法規範。

關於規範內容,健康資料庫之加值應用若是依公共利益之目的供學術或國家政策使用,相關單位是否需要先徵得個人同意才能使用,各組公民意見不一。但若是供商業使用或是資料屬敏感性社群的個資,全體公民皆認為應徵得敏感性社群中個別者之同意,方可供商業的營利目的使用,至於其中對商業使用的限制,應從寬或從嚴為原則,或是敏感性個資包括哪些,各組公民意見也呈現不同的態度偏好。同時,全體公民也都主張健康資料庫資料的取得、管理及應用,應由公正第三方(例如公民團體)來處理。

-----廣告,請繼續往下閱讀-----

此外,各組公民也分別(或部分共同)提出目前健保資料庫的資料,已應用在原為核保目的外的使用,並未徵得我們全體公民的同意。那麼,我們公民應有相關機制可表示退出或拒絕個人資料提供或被釋出給任何單位加值使用。但因受限此次議題的討論時間等資源限制,僅能先提出問題或初步想法,有待後續更多的討論,匯集更多的意見後磨合大家的共識。

再者,部分公民也試著提出以下不同的發想,期望能在操作成本及權益保障間,創造經個人同意的健康相關資料庫加值應用機制:

一、 包括但不限於告知或取得個別者同意授權其個人健康及醫療資料加值應用的相關程序,除了書面通知外,應可透過電子簽章或自然人憑證等有法律效力且可回溯之方式進行。
二、 承一,個人資料應用的授權同意書,應有詳細的規定,例如說明其可選擇持續概括授權或分次、分項授權及其授權年限,以及授權範圍亦可選擇是全部或部分資訊。
三、 公民是否能在各大醫院都能隨時透過健保 IC 卡的機制設計,表示並註記是否同意授權其個人健康或醫療資料供(目的外)使用?
四、 倫理委員會在這個議題上,其組成應發揮更大的功能,但也不應將所有的權責都置於倫理委員會。

各組對於議題一的討論,都是在個人利益和公共利益間思考如何找到一個平衡點。然而,會出現支持不同利益偏好或立場的公民,關鍵的差別就是在於是否信任政府。因此,政府是否願意改變貪圖方便的心態,努力由下而上的開放溝通、了解,才能健全相關規範並有利於政策的推行與信任。

-----廣告,請繼續往下閱讀-----

【下一頁】

-----廣告,請繼續往下閱讀-----
文章難易度
2012健康與醫療資料加值應用論壇_96
15 篇文章 ・ 0 位粉絲
舉辦公眾論壇,促成社會公眾對「健康及醫療資料運用及加值」進行理性、知情的討論,形成公共意見以作為決策的參考。 一、提出公眾論壇的討論成果:結論報告。 二、統整各界對健康及醫療資料運用及加值」之爭議意見及政策建議。 三、建構論壇準備期間為促成對話的重要程序和原則。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
健康與醫療資料的加值應用(十一):線上論壇第四場重點回顧
2012健康與醫療資料加值應用論壇_96
・2012/08/27 ・1346字 ・閱讀時間約 2 分鐘 ・SR值 618 ・十年級

由於政府計劃推動醫療雲跟健康醫療資料庫開放,引發諸多疑慮,因此希望透過公民審議達成共識。由財團法人資訊工業策進會委託國立臺灣大學政治學系主辦,台灣青年公民論壇協會與 PanSci 協辦的「健康與醫療資料加值應用公民論壇」,繼第三場關於資料庫衍生利益歸屬的議題討論之後,緊接而來的第四場,則是針對前三場的議題進行總體討論,並邀請眾人研議若開放資料後,後續應當如何監督。

而監督的討論範疇,則事關整個制度的推行,例如有無違反法規、有無回饋公共領域、隱私資料是否持續被正確地排除並達到無法辨識個人的程度或造成群體歧視等問題。

首先,論壇的前半段主要係探討可行的監督方式。在上一場論壇中,有參與者提議成立「公共資訊財加值運用委員會」 ,根據不同使用案例來提出不同的回饋原則。對於像這樣的監督單位,其定位與運作,參與者們都有著許多不同的想像,可能是像國家通訊傳播委員會(NCC)的行政機關,也可能是民間自行成立的監督委員會。

在成員的組成結構、遴選方式上,礙於論壇的時間有限,並未有比較明確的討論結果出現。然而,從討論串中也不難發現,許多人對於在政府體制內成立監督單位的可行性與其執行力存疑,或抱持保留態度。

-----廣告,請繼續往下閱讀-----

另一種監督方式則是從技術層面發想。有參與者認為,可以採行目前大部分網路服務提供公開 API(Application Programming Interface)的作法,要求第三方使用者申請 API 存取金鑰(即存取資料庫的許可或權限),如此一來,便可以統計使用者什麼時候使用了資料、使用了哪些資料等,來達到監督的目的;而上述所提及的監督單位,則可公開這些存取 API 的相關資訊,透明化使用情況,並可要求使用者解釋其資料的使用目的。

亦有參與者藉由劃分資料庫屬性的方式,進一步提出監督規劃,將資料庫屬性分為自由取用與授權取用。前者又可細分為免費使用和付費使用,被監督的方式也有所不同。在免費使用的前提下,服務提供者必須讓使用方式透明化,並受到一般民眾與委員會監督;就付費使用而言, 服務提供者可隱藏使用方式,但仍須受委員會監督,同時須支付每年固定百分比收益。後者則與前述付費使用的要求相同,但差異在於,初次使用時須多繳交單筆授權金。

在第四場論壇的後半段討論中,也一併回顧了先前三場論壇所討論的議題,並邀請參與者提出延伸的建議。開放健保資料庫有諸多益處可以預期,但相應的風險應該如何管控,其益處可以如何幫助全民,是這系列論壇討論的核心。綜合四場線上論壇中的豐富討論來看,雖然因時間限制並未針對執行細節進行研議,許多問題也沒有出現較為明確的討論結果,仍有待未來進一步探討, 在此也歡迎對健康與醫療資料加值應用議題有興趣、或想了解未來相關政策制定的朋友持續關注 PanSci,也希望各位朋友不吝提出建議或意見。

健康與醫療資料加值應用線上論壇圓滿落幕,感謝大家熱情的參與!

-----廣告,請繼續往下閱讀-----

延伸閱讀:

1. [專題] 2012健康與醫療資料的加值應用
2. 重回現場:線上論壇第四場 | PanSci@Google+
3. 健康與醫療資料的加值應用(八):線上論壇第一場重點回顧
4. 健康與醫療資料的加值應用(九):線上論壇第二場重點回顧
5. 健康與醫療資料的加值應用(十):線上論壇第三場重點回顧

-----廣告,請繼續往下閱讀-----
2012健康與醫療資料加值應用論壇_96
15 篇文章 ・ 0 位粉絲
舉辦公眾論壇,促成社會公眾對「健康及醫療資料運用及加值」進行理性、知情的討論,形成公共意見以作為決策的參考。 一、提出公眾論壇的討論成果:結論報告。 二、統整各界對健康及醫療資料運用及加值」之爭議意見及政策建議。 三、建構論壇準備期間為促成對話的重要程序和原則。

0

0
0

文字

分享

0
0
0
健康與醫療資料的加值應用(十):線上論壇第三場重點回顧
2012健康與醫療資料加值應用論壇_96
・2012/08/27 ・1318字 ・閱讀時間約 2 分鐘 ・SR值 586 ・九年級

-----廣告,請繼續往下閱讀-----

由財團法人資訊工業策進會委託國立臺灣大學政治學系主辦,台灣青年公民論壇協會與 PanSci 協辦的「健康與醫療資料加值應用公民論壇」,第三場線上論壇於十八日晚上七點舉行。延續前一天在個人隱私、資料安全等議題的兩場意見交流,第三場討論主軸則推展至健康資料庫加值應用衍生的「利益」上。既然健康資料庫的資訊來自於全民,而開放之後又將可帶來龐大商機,那麼這些利益應該如何歸屬呢?

由於議題牽涉層面很廣,論壇討論方向首先從利益回饋的方式切入去看,譬如,如果是學術研究,研究者因為研究很成功而從副教授升為教授了,這種利益該怎麼回饋呢?如果是非學術研究或商業利用,該用什麼金額來算回饋?業者的獲利還是營業額?比例又該是多少,而不至於讓業者拒絕投入利用資料庫創新?這些問題都引發了熱烈的討論。

這些問題雖然沒有在這場線上論壇中取得比較明確的共識,但有不少朋友則對回饋方式提出了有趣的見解與想像。由於健保資料庫中的資料已經匿名處理,無法直接回饋給資料持有人或所屬群體(就算技術上可行,也會有逆推辨識出資料持有者的問題),除了日後在健保、醫療、保險費的補助及賠償上實質回饋,或是填補健保漏洞等方式之外,有幾位參與者另也提出了「使用者付費」的作法,即取得資料必須付出相應的成本,或政府以稅收方式回饋給社會大眾。

關於使用者付費方式,更有人進一步提出,考量仍與資料庫的定位與屬性相關,即必須先釐清資料提供者對資料庫的使用期許,如以公眾領域的方式讓所有人使用,或以有條件限制的方式提供資料等,再談後續應用的使用門檻才具意義。因此,獲利是否應該回饋、回饋方式應當如何設計,又該怎麼把關或監督,還是得看資料庫的使用規則如何訂定。

-----廣告,請繼續往下閱讀-----

整體討論方向隨後也延伸至資料庫衍生利益應屬「公有」、「共有」或「私有」的爭議上。參與者們的意見不一,有人認為利益應為私有,讓更多人可近用這些資料,並將之轉為有益的資訊讓更多人可以從中受惠,資料的取用成本甚至可以免費,鼓勵更多人投入開發、加速創新速度;但也有人強調資料庫既然取之於社會大眾,利益就應該公有,並將之列屬為公共財,據此擬定相關回饋方式,會比回饋個人更具實質意義。

鑒於每筆公共財應用的目的與程度都不相同,亦有參與者提出成立「公共資訊財加值運用委員會」的建議,希望藉由委員會審查標準的運作為資料庫的使用把關。除此之外,延續前面將全民健康醫療資料視為公共財的觀點,將資料釋出給廠商進行商業加值運用,有人認為尚有問題未解,即這樣開放資料的做法,應將其作為公眾對商業的投資,抑或將公共財當作「資訊製造業的原料」並採買斷制,即直接賣掉,風險由廠商自行承擔,這些都還需要進一步釐清。

在第三場針對「利益」歸屬與回饋方式的精彩討論結束之後,緊接而來的第四場,則是就議題進行綜合討論。

延伸閱讀:

-----廣告,請繼續往下閱讀-----

1. [專題] 2012健康與醫療資料的加值應用
2. 重回現場:線上論壇第三場 | PanSci@Google+
3. 健康與醫療資料的加值應用(八):線上論壇第一場重點回顧
4. 健康與醫療資料的加值應用(九):線上論壇第二場重點回顧

-----廣告,請繼續往下閱讀-----
2012健康與醫療資料加值應用論壇_96
15 篇文章 ・ 0 位粉絲
舉辦公眾論壇,促成社會公眾對「健康及醫療資料運用及加值」進行理性、知情的討論,形成公共意見以作為決策的參考。 一、提出公眾論壇的討論成果:結論報告。 二、統整各界對健康及醫療資料運用及加值」之爭議意見及政策建議。 三、建構論壇準備期間為促成對話的重要程序和原則。