0

0
0

文字

分享

0
0
0

一些可以應付高溫的鮭魚

陸子鈞
・2011/04/06 ・971字 ・閱讀時間約 2 分鐘 ・SR值 542 ・八年級

契爾柯紅鮭(Chilko sockeye)是鮭魚界的菲爾普斯(Michael Phelps,八面金牌的游泳健將)。每年,它們抵抗強勁的水流,在加拿大卑詩省的菲沙河,洄游650公里,到達適合產卵的地點。現在,科學家指出,契爾柯紅鮭可以進行長距離洄游的關鍵在於較大較健全的心臟,使它們可以比不洄游的鮭魚,更有效率的使用氧氣。除此之外,它們也可能因此比其他魚類,更能適應暖化的環境。

不是所有菲沙河的鮭魚都會像契爾柯紅鮭一樣游這麼遠,有些鮭魚留在相對靠近沿岸的地點;有些則會游到非常上游的地點產卵。不同的遷徙距離,使鮭魚分成100個截然不同的族群。而其中一個就是契爾柯,它們具有非常獨特的洄游行為及生理構造。

炙熱的夏天,對鮭魚遷徙是一大挑戰。舉例來說,2004年,有些鮭魚族群的80%個體,在抵達產卵地前就已經死於熱逆境。過去六十年來,菲沙河的溫度提高了2°C。加上全球暖化, 科學家預期,會有另一波更大的死亡潮出現。加拿大的一位研究生,Erika Eliason想要知道,菲沙河不同鮭魚族群間的差異,是否使它們更能抵抗高溫。

幾個夏天,她抓了97隻往上游遷徙的鮭魚,並利用架設在拖車上的「鮭魚跑步機」,進行逆境測試。實驗中,把魚放在一個水箱裡,增加流速及水溫,從8°C到26°C,以了解魚在不同水溫下游泳的能力。同時,Eiason也記錄水中的含氧量,得知魚利用氧氣的能力,就像測驗運動員的體力一樣。然後她也解剖了部分的個體,看看它們的心臟。

-----廣告,請繼續往下閱讀-----

結果發現,契爾柯紅鮭適應的水溫最廣。它們在17°C游最好,這是河流最中等的溫度;但它們也能應付試驗中最高的26°C。而產卵在整條河最大的急流帶下游的威化紅鮭(Weaver sockeye),會在水溫高於21 °C時昏去。和其他鮭魚相比,威化紅鮭有最小的心臟,最弱的血液補給。Eliason和她的同儕,將這項研究發表於<Science>。此外,契爾柯紅鮭的心臟,也對腎上腺素較敏感,使它們較易於在過熱時,仍保持運作。

魚業學家Brian Riddell提到,「這結果非常清楚,顯然紅鮭非常適應於這種高耗能的洄游」。緬因大學的演化生物學家Michael Kinnison則認為,這項研究使我們可以得知,哪個族群在面臨氣候變遷時最脆弱。契爾柯紅鮭也許在暖化的環境安然無恙,但威化紅鮭可能將遭遇極大的挑戰。另一方面,這些脆弱的族群,可能有其他像是高抗病性等特徵,得以面對不同的外在壓力,因此Riddell認為必須要保護菲沙河的所有鮭魚族群。

資料來源:ScienceNow: Some Salmon Can Take the Heat [31 March 2011]

文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
2

文字

分享

1
1
2
我們所追尋的「舒適圈」:一場生物與環境氣溫的耐力賽——《跳出溫度舒適圈》
商周出版_96
・2022/10/29 ・4205字 ・閱讀時間約 8 分鐘

  • 作者 / 林子平

幾年前,有一則蝴蝶遷徙的新聞,引起了我的興趣。澎湖有位民眾發現住家的花園內有隻蝴蝶,身上被標示了日期和日本地名,原來是一隻從日本富山縣標放的青斑蝶,歷經46天從日本飛行了2,277公里來到台灣。富山縣自然博物館負責人說:「這隻青斑蝶創下了富山縣蝴蝶的最長距離飛行紀錄,飛到翅膀已破裂,令人感到心碎。」

遠渡重洋的蝴蝶。圖/商周出版《跳出溫度舒適圈

創下地表上最長昆蟲遷徙紀錄的是帝王斑蝶。每年會有上億隻帝王斑蝶在接近冬天時,由北美寒冷的洛磯山往南遷徙至溫暖的墨西哥,並在春天來臨時往北飛回洛磯山,但因為不順風,長達4,800公里、歷時四個月的長途遷徙,讓生命週期僅有一個多月的蝴蝶沒辦法在有生之年飛抵目的地,中途還得暫停德州來繁衍下一代,一共要歷經三代接棒才能返回洛磯山。

在台灣新竹苗栗等地山區,多達五十萬隻的紫斑蝶,也會在秋末準備南飛度冬,常落腳在高雄茂林。「氣溫是蝴蝶長程遷徙的一個很重要的因素,溫暖的環境讓蝴蝶能夠生存並產卵,還能讓剛孵化的幼蟲找到豐富的食物。」嘉義大學生物資源學系黃啟鐘教授這麼告訴我,他對昆蟲生態及植物病蟲害都很有研究。

圓翅紫斑蝶(Euploea eunice hobsoni)。 圖/Flickr

「也許是遺傳基因,這裡的氣溫一直刻劃在牠們的記憶之中,驅動著牠們歷代返回。」黃教授說,「雖然蝴蝶一代只有一個多月的生命,但為了下一代,牠們長途遷徙到最適合幼蟲出生的氣溫及生態環境,等到春天清明節前,經數代後剛羽化之成蝶,就開始往北飛,回到牠們此生未曾到過的故鄉。」

紫蝶北返的飛行蝶道。 圖/交通部觀光局

生物為了生存而追尋溫度

昆蟲願意冒這樣的風險長途跋涉,那人類也有這種追求溫度的本能嗎?

我們得從現代人類的起源「智人」(Homo sapiens)的發展談起。科學家普遍認為,在二十萬年前智人起源於非洲。直到了四萬年前,智人已經遍布歐亞大陸。科學家一直在探索,究竟是什麼原因造成我們這個物種「遠離非洲」。

亞利桑那大學地球科學系Jessica Tierney教授透過氣候重建資料,並比對化石及石器的狀況,推論八萬年前非洲東北部溫暖且溼潤,適合居住。然而,在七萬年前,氣候開始變得寒冷而乾燥,艱難的氣候條件,使人類在六萬年前走出非洲進行大遷徙,這才讓歐亞大陸有人類出現。

智人(紅)與直立人(黃)遷徙路徑。圖/wikipedia

無獨有偶,德國科隆大學Frank Schäbitz教授等人則是透過衣索比亞湖岩芯來重建氣候,同樣也發現,在距今六萬到一萬四千年間非洲氣候的極度乾燥達到頂峰,使智人最終在距今五萬到四萬年間抵達歐洲。

除了因為溫度而遷徙之外,比智人更早,比「露西」(Lucy)[註1]更晚的「直立人」(Homo erectus),大概在一百萬年前開始會用火來獲取他們想要的溫度。除了用來烹煮食物,火還可以使身體溫暖來度過寒冬,得以生存。

今日,我們為了舒適追求溫度

以前的人類,就像會遷徙的蝴蝶及候鳥一樣,追求溫度是為了活命,是最基礎的生理需求 [註2] 。然而,時至今日,人們追求溫度的目的已經不同。

經濟學家西托夫斯基(Tibor Scitovsky)認為,近代人類的第一個需求,就是「舒適」[註3]

近代的人們會為了追求更舒適的氣溫而遷徙。對英國君主來說,白金漢宮是他們的冬季宮殿,溫莎城堡則是夏日宮殿,讓他們在不同的季節中得以維持長時間舒適的居住環境。另外則是觀光旅遊,近代西歐人(如德、法、荷)冬天移動至地中海旁溫暖的國家西班牙、希臘旅遊,或是更遠的東南亞國家,以求得數日的舒適氣溫。

然而,人們逐漸覺得為了追求舒適而頻繁地遷徙和移動有點麻煩,因此反過來想要讓日常生活居住的空間及場域能配合人的需要,常保舒適,於是開始思考如何打造一個四季都舒適的居住空間。在寒冷的國家,增加牆面的厚度,提高隔熱性,來達到保溫的效果,或在屋頂做一個閣樓,能阻擋大雪的低溫直接傳到室內。而在炎熱的國家,則利用室內通風、窗戶遮陽,來確保室內維持舒適,並透過選用適合的植栽、設置水域來調節戶外氣溫,讓人們在戶外行走或活動時都感到舒適。

對人來說,打造一個舒適的居住空間很重要。 圖/envato.elements

溫度控制全面強力介入

這些使居住環境舒適的方法,其實都不需要耗用能源及資源,我們稱為被動式設計(passive design,或稱誘導式設計)。它雖然能讓冬天暖一點,夏天涼一點,但是沒辦法維持在一個恆定的氣溫。

早期的人類為了生存而追尋溫度,現代的人類為了舒適而追求溫度。圖/商周出版《跳出溫度舒適圈

因此,人們又想更進一步控制生活及居住環境的溫度,我們開始利用能源及資源來介入控制。一開始是耗費較少電力及資源的手段,例如溫帶國家燒柴的暖爐,熱帶國家使用的電風扇,而後一些更耗能源的設備出現了,如冷氣或暖氣的設備及系統,這些都屬於主動式控制(active control)。以冷氣或暖氣來改變氣溫,讓我們不必大老遠遷徙及移動,可以四季都維持在恆溫舒適的狀況。

而在生活環境中,我們也開始控制各種溫度。例如控制液體的溫度,把冬天冰冷的水加熱,洗澡才舒服;或是使用電冰箱讓飲料涼一些,使用電熱水瓶來保持最適合入口的水溫。

人類當然不會滿足於基本的溫度,我們對於溫度的控制只會愈加精確及全面。我們希望冷暖氣控制的溫度是恆定的,最好一年四季,一天二十四小時,都能維持相同的溫度。我們還希望冬天冰冷的廁所能溫暖些,所以現在廁所的馬桶座不但可以加熱,甚至還可以整晚持續保溫,讓你隨時都能享受剛剛好的溫度。

人類除了舒適,還要刺激

然而,有時人對溫度需求的還不只是為了舒適。追求「刺激」,則是西托夫斯基提出的人類第二個需求—人們追求溫度,有時只是想要有不一樣的體驗。

就像長年低溫的寒帶國家中,一旦有個難得的溫暖晴天,人們就會傾巢而出到公園做日光浴。同樣的,像台灣一樣位處於熱溼氣候區的人們,偶有山區下雪的機會,許多人會不畏寒冷地上山賞雪,這就是本於氣候刺激造成的新鮮感。

不過,如果是為了刺激而想要控制環境,就可能造成不必要的能源浪費。冬天時,人們湧入滾燙的三溫暖或烤箱,這麼高的溫度絕對算不上是舒適吧,但人們希望透過這樣的生理刺激來滿足心理的需求。

又比如說在寒帶地區滑雪是常態,但位在熱帶國家興建一個室內滑雪場,甚至是單純造雪讓人們遊玩,就是要讓人們能感受到溫帶國家寒冷的天氣能帶來的體驗。

你追求的是什麼呢?

你或許有過這樣的經驗:當你滑著手機上的社群、新聞、影片,你點擊的每個按鈕,停留的每段時間,都在告訴媒體你喜歡的是什麼;不久之後,頁面上跳出的內容你都喜歡極了,不順眼的內容都消失了,這一切彷彿為你量身打造,你就這麼瀏覽下去。回過神才發現時間已過了大半,你接受了不重要(甚至錯誤)的資訊,買了你不需要的東西。

讓我們從虛擬環境切換到實體空間。當我們進入一個室內空間,你直覺地按下空調開關,它也許就記憶著你上次設定的溫度。先進的系統還能觀察現在室內有多少人、你是靜止或移動的、你以前喜歡什麼樣的溫度,就幫你調得好好的。太冷的時候,你也許會選擇穿上外套,而不是起身去調整溫度設定,或是反映給管理者知道。

這就是舒適圈,為你量身打造客製化的體驗。舒適的感受可能掠奪你的專注力,讓你忘了你真實的需求。

從智人遠離非洲到歐亞大陸,到近代人類移動到舒適的地點、建立舒適的住居,都是有意識地了解需求,因為,這都有風險,也需要付出代價。

然而,當空間內的氣溫控制變成輕鬆自在的生活常態,卻可能導致我們不認真去思考我們的需求。我們得自問:「為什麼要設定在這個溫度呢?」是為了舒適,還是為了刺激,還是只是習慣性地延續你昨天的設定,或是直接由人工智慧幫你決定?

現代人習慣活在舒適的溫度中。圖/envato.elements

一個根本的問題是,舒適究竟是怎麼一回事?是生理的需求,還是心理的滿足?每個人對舒適需求的差異,又是怎麼產生的?是體質的差異,過去的經驗,還是個人的喜好?

唯有理解舒適的起源,我們才能客觀地檢視我們的觀點及行為,並做出適當的調整與改變。下一節,就讓我們從一盤蛋炒飯,來談談什麼是舒適吧。

消暑涼方03:動物和原始人只為生存而追尋溫度,但現代人卻是為了舒適而改變溫度。嘿,享受舒適的同時,也為地球上其它生物想想吧!

註釋

  • 註1: 露西是在衣索比亞發現的南方古猿標本。也就是由盧貝松執導且在台北取景的《露西》片中,那位將人腦用到100%且具有超能力的主角,在片尾回到遠古時期時見到的人類祖先。
  • 註2: 馬斯洛需求理論(Maslow’s hierarchy of needs),是由亞伯拉罕.馬斯洛(Abraham Harold Maslow)於1943年提倡的理論,他劃分出五種等級的需求:自我實現、尊重、社會、安全、生理。生理屬於為基礎的需求,如食物、呼吸、基本維生環境等—溫度就是屬於最基礎的生理需求。
  • 註3: 西托夫斯基認為人有舒適和刺激兩種需求,舒適又分為個人舒適(personal comforts)及社會舒適(social comforts)兩種。

——本文摘自《跳出溫度舒適圈》,2022 年 9 月,商周出版,未經同意請勿轉載。

所有討論 1
商周出版_96
119 篇文章 ・ 362 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。