0

0
0

文字

分享

0
0
0

關於輻射的資訊圖解

鄭國威 Portnoy_96
・2011/04/04 ・513字 ・閱讀時間約 1 分鐘 ・SR值 550 ・八年級

-----廣告,請繼續往下閱讀-----

毫西弗、微西弗….在日本發生核能電場輻射危機之後,全球都受到影響,大多數人也被這些新學乍現的輻射劑量單位給搞得一頭霧水。在此推荐下面兩幅我覺得各有優點的輻射劑量資訊圖解(infographics)給各位。我想用看的來理解應該比較容易一點。

第1則來自xkcd.com,用得是矩陣圖解,清楚易懂。圖表設計者整理資訊,使格數對應不同的輻射劑量,並用實際案例比對,例如每一個綠色小格子代表20微西弗,相當於接受一次胸腔X光。所有藍色的格子加總僅等於三格綠色格子,而所有綠色格子有僅等於7.5個橘紅色格子,所有橘紅色格子相加就等於站在剛融毀的車諾比核能電廠反應爐核心旁十分鐘接受的輻射量,也就是五十個黃色格子。可至來源看原圖,或點擊下圖也可見清楚大圖。

另外一個要推荐給各位的是來自「Information is Beautiful」,是我很喜歡的資訊圖解設計師David McCandless的作品。他另闢途徑,用三角形面積跟光譜來呈現輻射劑量。我覺得很適合列印出來作為教材。點擊下圖同樣可以看見大圖,但如果有意想列印成海報的話,可以徑行跟作者購買更大的圖(非廣告)。

文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1186 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

2

9
0

文字

分享

2
9
0
時空長河畔的星狩者——《再.創世》專題
再・創世 Cybernetic_96
・2021/08/03 ・5193字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者 / 伍薰

我們都曾是獵人,以弓箭奴役百獸萬物。

儘管在空間上相距數萬光年、在時間上相距數億年,忽略指頭數量等細微差異的話,我們可說十分相像。因此,接下來我要說的事,會盡量以你們人類熟悉的詞彙來比喻。

孕育我們兩個物種的母星,都位於 G0 光譜恆星適居帶的行星,甚至就連星球地表的重力、大氣組成、海陸比例,與自轉軸偏角都差不多。我們的文明同樣經歷了從游獵進入農耕、最終走向工業革命的過程,甚至就連政治格局,也跟人類現在差不多——強權挾氫彈保持恐怖平衡、人口失控成長,百分之一的少數,則掌握著行星百分之九十九的資源。

作為那幸運的百分之一( 嚴格說來是百萬分之一),我的家族事業有一部份,是專門將古代浮游生物遺骸所轉化成的黏稠液體從地底下抽出,製作成器皿與燃料來驅動世界。當許多學者提出警告,說我們這行製造了太多溫室氣體,最終將導致嚴重的氣候變遷,本家族的反應是捐獻更多資金給遊說團體、媒體與政客,全盤否認暖化。

-----廣告,請繼續往下閱讀-----
圖 / Pixabay

反正,死於熱浪與極端氣候的,只會是那些卑賤的基層勞工,不會是我們這些真正掌握世界的權力者,當那百分之九十九為了支付冷氣錢死命工作,我們這百分之一則早已透過客製療程逐步調校自己的遺傳碼,將預期壽延長了一倍以上。

北極海冰不再結凍時,我的家族立刻進駐從事老本行,列強的重心也直接放在終年暢通的北方航線上,而未曾考量過後續的氣候危機。直到南極陸塊周遭的冰棚全數裂解,厚達數公里的冰川失去支撐而開始快速融化、崩解時,即使想力挽狂瀾,也已經來不及了——冰川在短期內全數落入海中,直接導致了全球海平面上升六十公尺。

生命以難以想像的速度消逝時,我們每個家族也總有些成員正在沿海都會進行視察而遭逢不幸。不過總體而言,我們對世界的掌控力並未受到實質影響,依舊貪婪地在背後操弄列強,搶先在露出土壤的南極大陸上插旗。

我們顯然過於自信,而忽略了事物之間的微妙關連——將近六百座的核能發電廠大部分都沿海而建,快速上升的海平面很快就淹沒整個廠區。核反應爐則在數天到數周內因為冷卻水的停止灌注而爐心熔毀。後續的氫爆,則將放射性物質源源不絕地排放到海水中。

-----廣告,請繼續往下閱讀-----
圖 / Pixabay

我們的母星,也在此刻正式迎來了永不可逆的改變。

很快地,所有海產均因輻射超標而無法食用,與海相關的休憩則永遠成為歷史名詞;跨海航運,則成為被汙名化而必須存在的行業。在各地輻射規範鬆緊不一的狀況下,輻射物質終究因極少數的便宜行事,而被挾帶上陸地。

α、β、γ——你們所孰悉的這三個希臘字母所代表的放射性衰變,從此與我的族類永存,伴隨輻射而來的不可逆疾病加劇了動盪,最終則導致了秩序的永久崩解。當局勢失控時,我們這百分之一遁入了先前秘密建造的永久避難所,虛度一段歲月後,決定分批進入冬眠設施,以圖在適當時機重返地表,憑藉著庫存的大批貴金屬,再度接掌世界。

我們在兩千年後首度甦醒,向外探勘的代表,卻絕望地發現,地表上已經沒有了我們同類的足跡。

-----廣告,請繼續往下閱讀-----

那些曾經生活著千萬人口的大都會,而今成為了滿布植披、地貌縱橫起伏的新棲地,曾被豢養、而今已經野性化的寵物與牲畜在其間安棲。欣欣向榮的景象背後,則是高度的幼體畸形率與夭折率,這起因於廣泛充斥於環境裡的輻射——在同類消失後,未被海水侵襲的其餘核能發電廠,也終因失去維護者,盡數熔毀的爐心,則導致放射性物質擴散到所有陸地。

自此,世間找不到一方淨土,世界被一分為二:其一,是核電廠反應爐的殘跡,這裡由於散發極端高量輻射,成為絕對無法接近的「禁區」;其二,則是其餘輻射污染相對輕微、生物還能苟延的「安區」。

圖 / Pixabay

即便是安區,輻射劑量仍然遠超健康生存的標準;此外,禁區不穩定狀態所造成的爆炸,仍不定期將高濃度的輻射塵向外擴散,侵蝕著安區。

某些意義上,我們確實毫不費力就再度掌控了全世界,與預期計畫不同之處則在於,世間再也沒有其他族群能供我們奴役使喚,深藏在避難處的貴金屬,此刻就僅不過是幾種重元素。

-----廣告,請繼續往下閱讀-----

我們這些財閥巨富,正式從天之驕子的百分之一,淪為僅存的百分之百。

失望之餘,我們經過激烈辯論,決定將自己關回冬眠艙,將時限調整至設施的極限。我們悲戚地共同約定:下次睜開眼,若汙染並未改善,那麼就用僅存的氣力,見證我族最後的存續時光……

當冬眠系統達到運作極限,我們再度甦醒,時間已經快轉了五十萬年。我們穿著厚重的動力機甲邁向戶外,當年還依稀可見的都會遺跡,現在已經完全融入了自然地貌之中,曠野上奔馳著陌生又熟悉的走獸,牠們很顯然源自當年的寵物與家畜,卻因應環境裡新騰出的棲位,而滿是輻射的世界裡輻射適應。

然而,相較於可預期的外貌變化,我們始料未及是整個生態體系的基礎內裡,已在肉眼看不見之處,發生了翻天覆地的革命性變革。

-----廣告,請繼續往下閱讀-----

——所有動物的代謝都緩慢得超乎預期,頂級階掠食者劍齒㹭的族群,兩次獵食至少間隔了十天以上。我們也觀察到:族群內越年幼、個體越小的個體,就花越多時間在進食上,也享有最高的進食順序,至於那些具備強大追捕能力的成年個體,則多半只是點綴性地咬上幾口,然後意興闌珊地在周遭找塊空間歇息,一面守望著大口進食的幼體。

圖 / Pixabay

「這樣難道不會餓死嗎?」——畢竟,分解獵物的體組織來取得化學能,是掠食動物維持代謝與生存的能量基礎,吃的東西數量不夠多、種類不對,唯一的下場就是死亡。

這並非唯一的不尋常之處。儘管由生產者、消費者、分解者構成的能量、元素循環仍然完善運作,但很顯然地,文明消失後五十萬年的這個生態系有點不太對勁。

若勉強要找出形容的詞彙,我會說整個生態系都有點「虛浮」——獵物與掠食者都散發出輕飄飄的慵懶感,與災變前野生動物紀錄片裡隨處所見的、那種生死相搏的激烈追逐戲碼比起來,現在的生態系感覺更像是動物們全體都嗑了迷幻藥,遺傳碼內建著愛與和平的溫馨方程式,不論呼吸或基礎代謝的速率,都遠比災變前大幅下降。

-----廣告,請繼續往下閱讀-----

另一項不尋常之處則在於突變:災變頭兩千年所觀察到的嚴重畸形率,在現生族群裡已觀察不到了。然而污染大地的放射性物質,例如錼-237、碘-129 等都具有百萬年以上的半衰期,整顆星球上的輻射實際上並沒有減弱的趨勢。

可以想見這五十萬年來,生態系統必定經歷過什麼事,讓生物在充斥輻射的環境下有效壓低突變率,維持代謝與發育的正常。

少數具有生物學背景的同伴首先對動物進行了調查,其後則是植物,最後則是培養皿裡的微生物。在肉眼不可及的微觀領域,我們訝異地發現——五十萬年這段相當於地質史的「眨眼瞬間」,已經足夠微生物針對輻射汙染演化出相對應的適應機制,一支對紫外線具備抗性的嗜極微生物,在這段期間內快速演化成多個物種,分別能適應α、β、γ,或多重輻射衰變的環境。

圖 / Pixabay

還有更甚者,不僅能抵禦輻射對遺傳物質與代謝的危害,還發展出了全新機制,能以特殊的多層膜結構包裹輻射物質,並透過內嵌重元素的特殊色素蛋白,將輻射衰變的能量透過電子傳遞鏈,轉化為生物體能使用的化學能,稱之為「輻合作用」(Radiation synthesis)。這意味著,五十萬年間,已經有一批生物適應了輻射環境,並且反過來依賴著輻射的能量作為營生基礎。

-----廣告,請繼續往下閱讀-----

不知從哪個時間點起,其中一種自由營生的特殊微生物,竟然廣泛地與所有動植物細胞建立關係,能同時被眾多物種的免疫系統忽視,而以內共生的形式,成為非固著性的胞器:同位素體(Isotoplast)。

雖然確切途徑尚不清楚,但同位素體最早似乎是透過與植物進行共同演化而成為植物細胞的胞器,再藉由草食動物的攝食,從消化系統開始發展與動物細胞的內共生關係。接著,再以相同模式,從食植動物的細胞水平移轉到掠食者體內。

每顆同位素體內部都含有放射源,輻合作用將能量源源不絕地供應給共生的生命體,伴隨著動物進食與發育,從食物裡獲得的同位素體越來越多,最終使其在達到成年體型後,就逐漸不需要來自食物的能源,而大幅降低代謝率與呼吸次數。攝食的主要目的,則轉變成補充氨基酸、核酸,與脂質等身體成分。

當代謝率下降,萬物繁殖的速度也隨之趨緩,整個新世界的節奏,已在無形中朝著「慢活」方向偏移。

圖 / Pixabay

我們徹查許多動物在這五十萬年內的遺傳碼變異,並憑藉著分子生物技術將這些適應機制移轉到自己的遺傳碼中,進而成功將同位素體引介到自己細胞內,自此獲得半永動的能量來源。

與此同時,我們則不斷測試細胞再分化的技術,終於能隨時憑藉外在調控重啟細胞分裂,誘導它們分化來補充那些因老化而死去的細胞。能無限復原的身體、加上同位素體所提供的無盡能量,讓我們得到了那柄開啟永生之門的鑰匙。

在災變以前,我們每個倖存者全都靠著剝削其他百分之九十九的勞動力、壓榨這顆行星的資源,來享受優渥生活;五十萬年後的現在,滿是輻射的母星理應是囚禁我們的煉獄,卻弔詭地在時光長河深邃的凝望中,在天擇鐵律的捶打下,被重鍛為新樂園。

所以我們放下了舊文明的種種,以「鉛民」(Leadian)作為自己族類的新名字,在風和詩歌的沐浴下,揭開樸素新頁。

圖/愛莫

當時間是永恆,很多事就不必急著辦,而能夠仔細咀嚼、好好品嚐。儘管恆星即將在三十億年後膨脹為紅巨星吞沒此地,我們也有二十九億九千萬年的時間來思考。

我們曾經是行星地表最殘暴的頂級掠食者,我們曾造就了最嚴重的大規模生物滅絕;而今,在這座永恆樂園中,我們卻選擇放下了獵人、農夫、鐵匠與士兵的身分,傾注心智在探索世間每一處細節。

數千萬年的歲月轉眼即逝,我們沉醉在安逸的如歌歲月中,卻忘了浩瀚星海裡,我們並不孤單。

工藝技術力只高我們一個層次的野蠻征服者並未放下他們的弓箭,在他們眼裡,我們這顆沐浴著輻射重生的行星,不僅是星間的特例,更是一頭彌足珍貴的「星際奇獸」。

被征服後,此地以放射性同位素體為基礎的生態系,被征服者系統化地歸檔,成為了他們推銷給星間各文明「輻射污染清淤工程」的標準授權商品內容。

永生的我們則淪為奴隸,被逼迫大量繁殖,幼童被大量灌食,直到體內的同位素體足以驅動他們進行十五萬年的勞動需求,才用星艦載運交付給遠方的買主。

十五萬年這個數字,是征服者開給的客戶的「保固期」。

我們被賣到星系各地的艱困環境去開採資源,我們曾經屬於自己族類裡的百分之一,而今卻淪為了宇宙經濟剝削體系下的那百分之九十九。

就這樣,漫長的兩億年間,我們鉛民「星際間最耐用奴隸」之名不脛而走,甚至數十億光年遠的纖維狀結構空洞彼端,都有慕名前來的買家。

天荒地老、海枯石爛,我的族人用字面上的意義,來償還我們所犯下的罪——不、你搞錯了,我指的並非讓星球滿布輻射污染這件事!而是——

獵人,從來就不該放下自己的弓箭。

我不知道其他同類的命運,自己卻很幸運地碰上好的奴隸主,而有幸撐過了遠遠長於「保固期」的年歲,最終被你們即將加入的公約組織營救,而恢復了智慧物種基本權,做為回報,我的第一個任務就是被派駐到地球來當說客。

組織交付給我的任務,是希望藉由我的親身經歷諄諄告誡,以期人類能盡快到達碳中和來避免氣候變遷,以免屆時公約組織需要耗費更多資源物力,從劫難中拯救這顆行星。

這是你們的百分之一與百分之九十九,必須要嚴肅思考、共同面對的問題。

不過如果我是你們,我就會評估:實踐碳中和的那個當下,這顆行星上是否還有足夠的能量,來對抗只略高你們一個層次的文明侵略?

雖然很動聽,但千萬別被那套愛與和平、進步與開化的謊言給騙了,誰說都一樣——即便是我的雇主、邀請你們加盟的公約組織。

畢竟,我們都曾是獵人,以弓箭奴役百獸萬物。

我們都看過,獵人放下弓箭的後果。

所有討論 2
再・創世 Cybernetic_96
11 篇文章 ・ 29 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。

0

0
0

文字

分享

0
0
0
史上最慘烈的核子事故車諾比,三十年後如何再現生機?──《知識大圖解》
知識大圖解_96
・2019/10/25 ・2284字 ・閱讀時間約 4 分鐘 ・SR值 570 ・九年級

-----廣告,請繼續往下閱讀-----

車諾比,史上最慘重核災的事發現場

時值 1986 年,車諾比的核反應爐發生爆炸,200 噸重的放射性爐心有 5% 因此進入大氣,反應爐周圍的輻射劑量從安全的平均背景值── 2 毫西弗(簡稱mSv)──飆升至 2 萬多毫西弗。車諾比核災為史上最慘烈的核子事故;然而,此地卻在 30 年後重拾生機,令專家大感意外。

核爆發生後,數以百計的核電廠員工和消防員旋即展開圍堵輻射落塵大作戰,以每小時達 300 噸的水量灌澆反應爐,甚至派機器人入內蒐集燃燒中的殘餘物。為了控制火勢和阻隔輻射,飛行員在爆炸後留下的大坑上方來回飛行,將可吸收輻射的物質投至曝露的放射性爐心。硼能吸收中子、白雲石可吸熱、鉛能阻絕輻射,沙子則得以掩蓋所有事物;總計飛行了約 1800 趟,投下 5000 噸左右的物料。

影集《車諾比》劇照。圖/IMDb

在圍堵作業進行的同時,核爆產生的塵埃和殘骸也升至空中一公里處,風則將落塵(放射塵和反應爐粒子)往西北方吹。其中最危險的粒子是銫和碘,兩者皆會進入食物鏈中,並對去氧核糖核酸(簡稱DNA)造成損害。粒子較大的銫–137 飄不遠,因此會撞上核電廠附近的樹木或建物,隨著降雨覆蓋地表,亦會附著在皮膚和衣物上,或進入河川、溪流,並透過土壤滲入地下水。這種汙染涵蓋了核電廠周遭 20 萬平方公里的範圍。

-----廣告,請繼續往下閱讀-----

碘–131 的粒子較小,移動範圍更遠,這些粒子可在高空中飄浮,並散布至歐洲各地,甚至有微量的粒子抵達美國和日本。

當然,輻射粒子才沒有麵粉這麼重,也不是拍拍掉、掃掃地就能解決的。圖/GIPHY

附近地區的人們則面臨了最緊迫的危機。在方圓 4300 平方公里內,人終生所接受的輻射曝露量可能大於 350 毫西弗。在擁有 4 萬 5000 位居民、離核電廠最近的普里彼特小鎮中,有些人已承受了 50 毫西弗的輻射。因此,普里彼特和鄰近區域的逾 15 萬名居民都被疏散。直到今天,反應爐周邊 30 公里的範圍仍屬禁區;各界認為至少在未來的 2 萬年內,重返這塊土地對人仍有危害。

在居民撤離的同時,則有眾多工作人員進駐。這些「清理者」用他們稱為「糖蜜」的稠狀液體沖洗街道的放射塵、推倒枯木、掩埋毀壞的設備,並夷平遭汙染的建物。

-----廣告,請繼續往下閱讀-----

這些人賭上健康,承受了介於 100 至 500 毫西弗的輻射劑量;在第一批工作人員中,便有 237 位罹患了急性輻射疾病。然而,多虧了他們的努力,核災禁區的輻射量開始下降。

在充滿放射性的環境裡,生命不息,恢復不止

隨著時間的流逝,禁區的危險性也因放射性衰變而下降。碘–131 的半衰期僅 8 天;銫–137 則是 30 年。年復一年,輻射帶來的危險亦穩定減少。

事故發生時,樹木遭到最嚴重的輻射落塵侵襲,吸收了 60% 至 90% 的放射性雲霧,接收的輻射劑量達每小時 5 毫西弗。400 公頃的松木林因此枯紅凋亡,蜂、蝶和蜘蛛等生物也隨之死去。雨水則將放射性粒子沖刷至黏質土中;隨著新樹木長出,放射性粒子便開始在生態系裡循環,進入林地的蕈菇、樹枝上的地衣之中,再進到鹿和駝鹿等食草動物體內。然而,在核災過去多年後,這片森林已開始重拾生機。

圖/GIPHY

松林毀損後,原地則長出了樺樹和白楊。雖然樹木仍會從土中吸收輻射,但動物已再現蹤跡。鼠類等的數量已恢復正常,較大型動物亦受惠於人類撤離後所留下的空間。如今走進林中,會發現野豬、棕熊、駝鹿、麆鹿、狼、山貓和野牛。不可思議的是,禁區內的黑鸛、白尾海鵰等瀕危鳥類數量更在烏克蘭境內居冠。

-----廣告,請繼續往下閱讀-----

然而,林中某些區域的輻射量仍居高不下,這些地區不見獸跡、不聞鳥啼,缺乏有機體來分解落葉,因此枯枝落葉層異常地厚。為了降低野火的風險,專家便在林地上放牧一批普氏野馬,儘管在輻射的威脅之下,但馬群似乎繁衍興旺。

隨著禁區內的動植物欣欣向榮,科學家也試圖讓土地恢復到可安全耕作的程度。生長在受汙染土壤中的植物會吸收銫粒子,無法讓人安全食用。但研究員發現,鉀肥能阻止植物吸收放射性粒子;在植物根部周圍鋪上麥桿則能防止輻射再度進入土壤;甚至僅是犁田也有助於分散放射性粒子、減少輻射熱點。雖然各作法的助益有限,但多管齊下卻有可能讓這片土地再度變得安全。

核災禁區雖然逐漸復甦,但仍有個大問題:

4 號反應爐和剩下的 95% 放射性燃料仍在原地,且反應爐周圍建於 1980 年代的混凝土石棺已開始碎裂,倘若真的崩塌,將有更多的放射塵進入空氣中。

至今仍留在原地的4號反應爐。(點圖放大)圖/知識大圖解

-----廣告,請繼續往下閱讀-----

為了避免惡夢成真,跨國團隊已於 2016 年建好「新安全防護罩」(New Safe Confinement),萬一石棺崩塌,新防護罩仍能圍堵輻射塵。起重機將小心地拆卸碎塊,以便開始清運輻射量極高的廢棄物,並將之安全掩埋。在新防護罩底下,輻射劑量仍高達每小時 500 毫西弗,但在防護罩之外,大自然已開始緩慢復甦。現在就算直接站在新的拱形防護罩上,危險性也只跟照牙科 X 光差不多。多虧了這 30 年來的密集努力,車諾比核災禁區已逐漸恢復生機。

——文章出自《知識大圖解國際中文版》2019 年 10 月號,由希伯崙股份有限公司 (LiveABC) 出版

——訂閱優惠與更多有趣的內容都在《知識大圖解國際中文版》

 

 

 

 

知識大圖解_96
76 篇文章 ・ 11 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

0
0

文字

分享

0
0
0
人手一支的輻射偵測器,是全民科學時代的濫觴,還是另一個奠基在偽科學之上的盲目潮流?
廖英凱
・2014/02/27 ・8363字 ・閱讀時間約 17 分鐘 ・SR值 576 ・九年級

2011年福島核災以來,許多人開始積極關注核能產業的利弊得失與風險評估,除了有關於核能電廠安全問題的討論以外,也有越來越多人注意到核廢料的處理及其他核能相關設施的核洩漏問題。近年來,民間團體開始自行量測與解讀環境中的輻射,在一些網路購物與集會現場也有相關設備與平台的推廣。如同官方所提出的量測數據應該被驗證而非單純取信,此種民間的量測器材與方法,其正確程度亦值得我們深入討論。本文企圖整理近期輻射量測的相關文獻並對部分爭議與謬誤之處加以釐清。

台灣的輻射監測平台

目前台灣具一定規模的輻射監測單位或團體,筆者整理如下:

行政院原子能委員會輻射監測中心的全國環境監測

原能會自1989年起建置全國性的即時輻射監測系統,全台共計45個測站,全天候採樣並即時更新在網路上,是目前國內規模最大器材最貴的輻射監測平台。

-----廣告,請繼續往下閱讀-----

台灣電力公司的核能設施環境輻射監測

此輻射監測網頁是台電公司在核電廠與蘭嶼儲存場,各選擇廠界上幾個點,架設測站量測輻射即時數值,選在廠界的意義,應該是因為這是一般民眾可接觸到核能設施的最近距離。

台灣環境輻射地圖

此地圖由紀錄片工作者林瑞珠女士及「台灣環境輻射走調團」維護,他們利用三種型號的儀器,總共測量1969個測點,累積大約25000個測值。這些數值可以簡單歸納出例如東北季風不影響監測數值、以及與核能設施較遠的南投雲林高雄反而是輻射強度前三高的區域,有興趣者可以自由下載原始數據並加以研究應用。你也可以在此影片中,看到林女士在2014/01/17輻射地圖APP開發研討會的簡報分享

-----廣告,請繼續往下閱讀-----

公民輻射量測地圖

此地圖由「主婦聯盟環境保護基金會」所規劃,接受所有人自行上傳量測數據、資料與照片截圖。有興趣加入行列上傳數據者,可以在這裡看到相關教學。

公民輻射偵測回報討論區

此相片集由Facebook社群「反核部隊」所收集,由網友自行投稿輻射偵測器與背景圖片,尚未形成地圖形式。

-----廣告,請繼續往下閱讀-----

監測的品質與可信度

進一步觀察上述五項輻射偵測地圖,會發現後三項民間版本的輻射監測,較前兩項原能會與台電的數值,高出一倍有餘。

在過去實際測量的爭議案例中,2012年9月份日本學者中生勝美與加藤洋教授發現蘭嶼數個輻射熱點劑量超過福島警戒區,與原能會和台電的監測數值相差千倍:

而另一方面的論述,財團法人核能資訊中心,也於2012年11月份邀請上述兩位日籍學者共同至蘭嶼勘查測量,並記錄始末。行政院原子能委員會爾後也於2013年7月邀請另外三位日籍學者(石黒秀治、渋谷進、森內茂)至蘭嶼測量,但查無異狀:

對於這樣的議題爭論,除了認為政府的數值是編出來的解釋以外,也有歸因為老朽核電廠或核廢料減容中心的輻射物質外洩與核廢料未妥善管理所致:

-----廣告,請繼續往下閱讀-----

但相關論述至今僅停留在「假設與實驗」階段,尚未有足夠強力的科學證據支持相關論述。在預設政府資訊必須被質疑與檢驗的前提下,以群眾為力量的「公民監測」模式,絕對是個驗證政府資訊正確性的良好方向,但監測方式與器材因攸關到測量數值是否具有可信度,是否能經得起科學方法的考驗更是主事者與「公民科學家」應優先面對的難題

儀器是準的嗎?

在國外的例子中,近年來經營日本各地輻射監測的民間網站「Safecast[1]」即發現,不同廠牌、型號之間的儀器量測數值會有明顯差異,下圖可看到他們在同一環境下,比較四台不同儀器的測量結果。

圖片來源:INFORMATION, MISINFORMATION, DISINFORMATION (OR, “THESE AREN’T THE DROIDS YOU’RE LOOKING FOR.”) PART 2 – SAFECAST (2012)

註:筆者曾有機會能見過幾款非官方組織及個人所擁有的輻射偵測設備,在同一環境中亦有數值相異甚大的狀況。以下列兩圖為例,左圖為日本暢銷品牌Air Counter,價格親民操作容易,當時在室內量測到0.12 μSv/hr。而右圖則為手持放射性同位素識別分析儀identiFINDER 2,據聞該款分析儀要價50萬元,量測範圍與誤差都遠優於前者,除可偵測輻射強度外,更可以分析辨別放射性核種;但同時同地所量測到的數值卻僅有0.066 μSv/hr。兩儀器測量結果仍有不可忽視的差距。

對於非官方版本的輻射監測平台來說,除了林瑞珠女士所維護的台灣環境輻射地圖有部分地圖是用同一型號之設備量測,其餘平台因開放民眾自行上傳測量結果,使數據多來自數款不同廠牌與型號的偵測器。考量到在上述國內外例子中,不同款式的偵測器測量結果差異甚大,若利用多種偵測器且又未能控管實驗步驟一致性的數據收集方法,其結果難以具有科學研究或科學普及的參考價值。

-----廣告,請繼續往下閱讀-----

而在同廠牌型號的偵測器中,以兩個非官方版地圖所使用的另一款儀器Inspector Alert為例,也曾發現在量測CRT螢幕時數值會飆高,由於該款偵測器被設計可測量α、β、γ和X射線,故量到高數值應該是因CRT螢幕內的陰極射線管在發射高速電子掃描螢幕時會產生X光的緣故[2][3],但該款儀器無法分辨所量測到的游離輻射種類為何,從而提高了環境中輻射值的判讀的難度。(不過,如果量到那麼高,就趕快逃走或是不要抱著螢幕就好XD)

註:有一台烏克蘭製「СИНТЭКС ДБГБ-01С Д03ИMETP БbITOBOИ」筆者因為連這是哪國文字都搞不清楚… 沒有辦法查到技術文件,若您知道非常歡迎補充給我…

再以日本熱門銷售的Air Counter_S為例,其測量範圍為0.05~9.99 μSv/hr,該廠牌與型號因為售價便宜且操作簡單、讀取容易,不乏公眾人物所使用(例:反核!蔡康永要求全面廢核 現量輻射值嚇壞人 – NOWNEWS),也在上述三個民間版本的輻射偵測地圖中都可見其身影。

但是,該款偵測器的技術規格載明其誤差為±20%(以單價來看這樣的誤差表現其實蠻不錯的),原理為利用矽半導體來量測輻射劑量。以半導體量測輻射劑量的優點是因為半導體要產生一個離子對所需的能量(W值)為3.6eV(Si),相較之下氣體中的相應數字約為30eV,因而有更好的能量解析度(energy resolution),也因半導體體積小,近年來開始被運用於個人用電子劑量計(silicon diode personal electronic)。但是,半導體敏感的優點也讓他特別容易受到微波、溫度等環境影響,反而不利於偵測環境中些微的輻射變化。

在實際量測的部分,林瑞珠女士也發現該款偵測器容易受到電磁波影響,測量時手機與電腦等電器需放置於兩公尺以外,且人潮聚集與廣播喇叭處均會受到干擾 [4]。在日本也有人針對該廠牌的輻射偵測器做電磁波與振動影響的實驗評比

-----廣告,請繼續往下閱讀-----

下圖為林瑞珠女士比較同一房間不同位置的測量結果,可看出三台儀器的量測數值有明顯差距。筆者推測造成這樣的差異,原因可能有房屋內建材成分、偵測器與建材距離、偵測器品質與誤差、電磁波干擾等眾多原因所致。因此該類儀器的適合使用時機,應較適用於輻射屋與輻射物質的初步確認或是有較大規模核洩漏時警告用,若利用該類型的「入門款」儀器的數值作為判讀環境輻射的工具,應優先考量此類儀器的誤差過大且在測量範圍下限區域時易受干擾之限制。

註:若要判斷核能設施是否有洩漏,除了以劑量來考慮以外,由於核電廠的核分裂產物以鈷-60、錳-54、碘-131、氙-133為主,和天然背景輻射的來源核種鉀-40、鈾-238、釷-232、銣-87及氡氣等截然不同,因此利用上述有提到的核種分析儀器會是恰當的作法。

圖片來源:2013台灣環境輻射地圖剪報 – 林瑞珠

每小時超過0.11μSv,就超標有危險嗎!?

進一步討論量測讀數的意義。近來開始聽到有人主張「根據國際輻射防護協會的標準,一般人每年累積輻射不能超過1毫西弗」 – 周振元或是「即使忍受容許基準的1毫西弗/年,台灣兩千萬人每年仍有1千人是因為擁有核電而致癌死亡。」- 劉黎兒

這樣的論點乍看之下是正確的,各國法規與許多研究指出致癌率與輻射劑量有正相關,且為簡化危險評估與防護判斷而採用無劑量低限值的假設模型(線性無閾值模型 LNT: linear non- threshold theory,關於進一步資訊,建議參考:輻射到底有多毒? – 三分鐘科學):以車諾比事件來說,白俄羅斯各地區居民在核災後的甲狀腺致癌比率有顯著提升 [5];一篇針對低劑量游離輻射與致癌風險的經典研究文獻指出,在日本原爆倖存者中,接受低劑量(5~125 mSv、平均34 mSv)輻射暴露者,會明顯增加癌症發生率(EER for group ≃ 0.025) [6];日本研究團隊也將小鼠長期(400天)曝露於低劑量(1.1 mGy/day)的γ射線,發現小鼠會因多種原發性腫瘤的產生而死亡 [7]。但是,相關研究所使用輻射劑量與所定義的「低劑量」輻射,仍至少數百倍於1 mSv/yr為標準的觀點。

-----廣告,請繼續往下閱讀-----

而從國內外的法規與建議來看,我國的法規「游離輻射防護安全標準」第12條即規定:「輻射作業造成一般人之年劑量限度,依下列規定:一、有效劑量不得超過一毫西弗。[8]」而美國環保署(USEPA)也規範了一般大眾每年可接受的人工輻射為100 mRem(100 mRem = 1 mSv) [9],國際輻射防護委員會(ICRP)同時建議一般大眾每人每年的額外接受輻射劑量為1 mSv [10]。美國國家輻射防護和度量委員會(NCRP)亦建議,在有連續或頻繁曝露輻射的狀況下,每人每年的額外劑量限度為1 mSv,背景輻射與放射線醫療則不在此限。但若並非連續或頻繁曝露,則劑量限度可提高為每年5 mSv [11]。(註:有說法指出,以上研究文獻與建議有可能因核能相關產業龐大而左右研究成果,讀者需自行斟酌判斷,亦可參見STS領域的討論。)

以1 mSv/yr的標準來看,即為平均0.114 μSv/hr。似乎略低於上列民間組織在各地的輻射量測數值。也是「每小時0.11微西弗累積1年,就超標」這樣論點的主要依據。但仔細留意這樣的規定和建議,會發現這是對於人工輻射的限制,自然背景輻射、放射醫療其實並不在此限。

先考慮自然背景輻射,由聯合國原子輻射效應科學委員會(UNSCEAR)與EPA的報告指出,全球天然輻射的有效劑量平均值為2.4 mSv/yr [12][13],換算為0.27 μSv/hr。而台灣地區的天然輻射值為1.62 mSv/yr [14],換算為平均0.18 μSv/hr。

圖表來源:台灣地區天然背景輻射介紹 – 陳清江「物理雙月刊」 (2001)

再進一步分析天然輻射的組成,亦有論點指出天然輻射應區分體內曝露與體外曝露,而在體外曝露的部分「超過0.07微西弗/時就是超標了」。分析天然輻射的組成,由下表可看出天然輻射劑量來自於宇宙射線、地表體外曝露、地表體內核種曝露、氡氣吸入與攝入的總和。若僅考量體外輻射曝露部分,則應採計前兩項的總和,因此可量測到的有效劑量應為 0.9 mSv/yr (全球平均0.85 mSv/yr),換算為平均0.103 μSv/hr (全球平均0.097 μSv/hr)。

但除了天然輻射以外,我們的環境中仍有人工造成的輻射物質(註:猜猜看人類引爆過多少顆核彈?),根據輻射偵測中心自民國81年至民國87年的報告指出,我國國民輻射劑量總值為平均2.44 mSv/yr [15] (全球平均 3.1 mSv/yr [16]、美國6.24 mSv/yr [17]、日本3.83 mSv/yr [18]),此數值為天然輻射與人造輻射的總和。而人造輻射又可細分為醫用輻射、放射性落塵、職業曝露、雜項射源及核子設施共五項。其中醫療用輻射比重最大,平均每人為0.81 mSv/yr,其餘四項總和則為0.01 mSv/yr [15],換算為0.001 μSv/hr,數值過小仍不足以影響結果。

圖片來源:輻射防護簡訊34 – 財團法人輻射防護協會 (1998)

因此,在忽略前文所提及之實驗儀器與測量方式的缺陷,而假設數據一定有效的前提下,以量測到「每小時0.11微西弗累積1年,就超標」這樣的論述做為輻射防護的安全標準,是對原始文獻有嚴重的錯誤解讀,更與大自然現狀相悖。

如果想進一步了解不同劑量的輻射的法規設定或是對於人體的影響等,筆者非常推薦由資料視覺化程式設計師李慕約所設計的「輻射劑量換算表」與癮科學所翻譯的「輻射劑量圖」。

 

為什麼官方數據還是低那麼多?

但是,若以前文所提到的台灣地區天然輻射體外曝露值(宇宙射線+地表體外曝露)為平均0.103 μSv/hr來看的話,原能會的全國環境監測所量到的各地數值卻在0.04~0.08 μSv/hr之間,這其中仍有相當大的落差值得進一步深究(謎之音:難道被產官學萬惡集合體給鬼隱了嗎?)

原能會的全國環境監測網站之數據來自於45個「環境加馬輻射偵測站」,設備組成為一個離地面一公尺左右的γ射線偵測器(主要使用型號為蓋革管 INER ERM-GB,亦有高壓游離腔 REUTER STOKE RSS131(User’s Manual)、比例計數器 IGS510A [19])以及資料收集模組和上網數據機。如果點進網頁看看這些環境監測站,均設置在戶外的露天金屬箱內。但地表體外曝露(地表加馬輻射)0.64 mSv/yr這項數值,其實是室內有效劑量0.57 mSv/yr與室外有效劑量 0.07 mSv/yr的加總 [14](註:室內較高的原因是因為天然建材中就會含有微量輻射)。因此,就過去的調查數據,戶外的的環境監測平均值應為0.33 mSv/yr,換算為0.038μSv/hr,以此數據來看,今日原能會在各地的實際環境監測數值則略高於此調查平均值。(註:今日環境監測的器材與過去調查用器材方法其實並不一樣,因此需再考量器材與方法所造成的差異,僅能作為一個初步的參考資料。)

另外,此處特別值得關注的是,本文所引用的台灣地區普查數據,多為1980~1995年間所量測完成,欠缺近20年來較新的研究報告。儘管是2012年的清大開放式課程教材仍採用1998年的調查結果。這可能是因為筆者資料搜尋能力不足,或是該調查數據確實沒有更新必要。筆者也訪談了幾位輻射防護領域的產學界工作者,得知其一原因是過去國內環境量測的主力之一陳清江教授,近年來已不再著力於全國性的輻射調查,導致相關資源與人力出現斷層。也因此,若想解釋上述實際環境監測數值高於過去調查平均值一事,除了歸因為尚無實證的核洩漏等疑慮以外,也須考量時隔20年後的全球環境改變及量測技術提升等諸多變因。

總結  (如果按了end懶得全部看完就直接看這一段吧…)

綜觀今日各官方與民間的輻射測量平台及近年能見度較高的相關論述。筆者認為:

  1. 參與輻射測量公民須優先面對不同型號儀器的設計規格與參數設定差異,並新增儀器校正步驟。需統一量測方式並多次測量以讓數據具有統計上的意義。且對於廉價儀器須留意誤差過高與在測量範圍下限區域時易受干擾之限制。
  2. 對於0.11 μSv/hr (1 mSv/yr)的超標論點,是對原始文獻及相關法規有嚴重的錯誤解讀,更與大自然現狀相悖,以此為論述者應盡速修正。
  3. 就現有各平台的輻射測量設備與已量測資料,無法看出與核能相關設施的地域相關性,所量測的數值也低於世界天然輻射背景值,因此仍不足以佐證「國內核能設施有洩漏」以及「台灣輻射劑量高而導致癌症」等類似論點。
  4. 對於原能會的全國環境監測,儘管有定期校正且量測即時,但測量數據因受儀器限制無法真實反映人體實際吸收數值,應該清楚說明量測數值(體外曝露)涵義,另建議可再加上宇宙射線、體內曝露、氡氣、人工輻射的參考值以方便民眾了解環境現狀。
  5. 台灣地區的自然及人工輻射普查報告均已歷時過久,且可能有學術研究的人力斷層。鑒於近年來興起的諸多環境輻射關注,筆者認為原能會或國內輻射防護相關科系可考慮更詳細說明研究成果或重新調查國內自然及人工的輻射現況。

後記

核能存廢議題在這幾年來有著相當激烈的討論與吵架,但是就算我國未來決定停止使用核能,我們仍須面對已經製造出來的核廢料、放射線應用的原料與副產物,以及周遭國家核子設施的洩漏風險。也因此,一個有效、易懂且可信的環境輻射監測平台,除有助於健康安全的把關,也可以避免不必要的憂慮而造成的資源浪費與心理壓力。希望本篇文章能有助於關心此議題的朋友釐清現狀,遏止錯誤的論述散布,並為推動各輻射監測平台改良盡棉薄之力。

我們處於令人傷心的年代,化解偏見比分解原子還難。   愛因斯坦
It is a sad age when it is more difficult to break a prejudice than an atom.  Albert Einstein

參考資料與推薦閱讀

  1. 關於Safecast,他們將政府、非政府與公民科學家的核輻射監測資料整合在網站上,以減少輻射監測的缺口,並以集資創業的方式在日本各地增設輻射測量裝置,想進一步了解,你可以參考「Safecast:改善日本的輻射監測 – 泛科學」這篇文章的介紹。
  2. 游離輻射的來源 – 張寶樹 (2013)
  3. Cathode ray tube「Wikipeida」
  4. 此計畫使用輻射偵測器介紹 – 台灣環境輻射地圖
  5. Howe, Geoffrey R. “Lung cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with lung cancer mortality in the atomic bomb survivors study.” Radiation research 142.3 (1995): 295-304.
  6. Brenner, David J., et al. “Cancer risks attributable to low doses of ionizing radiation: assessing what we really know.” Proceedings of the National Academy of Sciences 100.24 (2003): 13761-13766.
  7. Tanaka III, I. B., et al. “Cause of death and neoplasia in mice continuously exposed to very low dose rates of gamma rays.” Radiation research 167.4 (2007): 417-437.
  8. 游離輻射防護安全標準 – 行政院原子能委員會
  9. Radiation Protection / Health Effect – USEPA
  10. “The 2007 Recommendations of the International Commission on Radiological Protection”. Annals of the ICRP. ICRP publication 103 37 (2–4). 2007. (註:有中文版 part 1, part 2)
  11. Recent Applications of the NCRP Public Dose Limit Recommendation for Ionizing Radiation – NCRP (2004)
  12. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly – UNSCEAR
  13. Sources and Effects of Iopnizing Radiation Vol.2 – UNSCEAR (2008)
  14. 台灣地區天然背景輻射介紹 – 陳清江「物理雙月刊」 (2001)
  15. 輻射防護簡訊34 – 財團法人輻射防護協會 (1998)
  16. Sources and Effects of Ionizing Radiation Vol.1 – UNSCEAR (2008)
  17. Ionizing Radiation Exposure of the Population of the United States – NCRP (2012)
  18. “Radiation in environment” – Ministry of Education, Culture, Sports, Science, and Technology of Japan (1992)
  19. 台灣地區核能設施環境輻射監測年報 101年1月至12月 – 行政院原子能委員會輻射偵測中心
  20. 輻射其實離我們很近—輻射與生活 – 張仕康、門立中「科學月刊」 (2011)
  21. 日本輻射外洩,會影響我們嗎? – 李明揚「科學人雜誌」 (2011)
  22. 漫談生活中的輻射 – 中華民國核能學會 (2003)
  23. 火力發電比核電害死更多人? – 彭明輝 (2013)
  24. 核能發電已經拯救上百萬人的生命 – 張清浩「泛科學」 (2013)
  25. Radiobiology for the Radiologist 7th – Eric J. Hall (2012)
  26. 分子輻射生物學 – 黃正仲 (2011)
  27. Principles of Radiation Interactions – MIT Open Course Ware (2004)

關於輻射量測的原理,由於寫再多字也不會有稿費已經有許多成熟的教材與學術文獻,整理如下以供有興趣進一步了解的朋友使用:

廖英凱
30 篇文章 ・ 249 位粉絲
非典型的不務正業者,對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心靈史學。 https://www.ykliao.tw/