0

4
1

文字

分享

0
4
1

埃及莎草紙——紙的緣起與改良│環球科學札記(15)

張之傑_96
・2021/02/24 ・1585字 ・閱讀時間約 3 分鐘 ・SR值 511 ・六年級

  • 文/張之傑

和平號通過蘇伊士運河時,不知何時上來兩個埃及小販,在八樓巴伊雅廳門口賣些服飾和藝品。莎草紙畫每三張十塊美金,我已許久不買藝品,但有一張描繪用天平稱取亡魂的紙草畫吸引了我。西方的地獄有類似的天平,中國也有業秤。是心同此理還是互有淵源?這是個值得研究的課題。

五月十七日,上午參觀開羅埃及博物館,時間只有兩小時,導遊只能走馬觀花似的重點解說。在莎草紙畫廳,他介紹的正是那張以天平稱取亡魂善惡的莎草紙畫原件。我們約十一時二十分走出博物館,搭上遊覽車。車行五、六分鐘,來到尼羅河岸邊的一家船上餐廳午餐。吃過午餐,導遊帶我們到一家莎草紙畫店參觀,車程僅約五分鐘。

莎草紙的製作過程

解說員通華語,不停地說些肉麻當有趣的話。對我來說,最大的收穫是看到製作莎草紙的莎草,和看到莎草紙的製作過程。

莎草科和禾本科很像,其差異是:莎草科的莖桿呈三角形,實心;禾本科的莖桿呈圓形,中空。藺草就是常見的一種莎草科植物。然而,埃及紙莎草(Cyperus papyrus)的莖桿特別粗,從沒看過那麼粗大的莎草。

-----廣告,請繼續往下閱讀-----

莎草紙的製法是:將莎草的皮剝掉,取其髓部,剖為薄片,用木槌打薄,然後泡在水裡一週,取出編成蓆狀,再壓榨一週即成。我問解說員,浸泡的水裡要不要加膠水?他把我帶到櫃台,要我買一張,我說我已買了六張,只想長點知識。他才很不耐煩地說,沒加膠水,莎草天然就有黏性。

埃及紙莎草,取其髓部,剖為薄片,編為蓆狀,可製作莎草紙。作者攝

我們的這一車,沒人買那家紀念品店的紙草畫,導遊和解說員都很失望。我將小販昨天上船賣紙草畫的事告訴導遊和解說員。他說,一般小販賣的紙草畫是用香蕉葉做的,放置幾週就會變質。店裡賣的的確較為精緻,說小販賣的是用香蕉葉做的就言過其實了。

走出這家紙草畫店,有位船友問我:「埃及早就有紙了,怎麼說是中國發明的?」我對他說,紙有紙的定義。紙是用煮爛了的植物纖維(紙漿)做的。埃及的莎草紙只是將莎草的髓部壓扁,編成蓆狀,不能算是紙。

紙的緣起與改良

在紙沒發明前,古巴比倫人用泥板書寫,古埃及人用莎草紙書寫,古印度人用一種棕櫚科植物的葉子(貝葉)書寫,古歐洲人用羊皮書寫,古中國人用竹簡或木簡書寫。這些書寫材料不是使用不便,就是所費不貲。以西方人用的羊皮來說,抄寫一部《聖經》要用三百隻羊,一般人哪用得起啊!

-----廣告,請繼續往下閱讀-----
古埃及《亡靈書》以文字及圖像敘說亡靈之去處,以其中以作於公元前1275年的大英博物館中莎草紙藏本最為有名。圖為其插畫〈奧斯里斯對死者審判〉之摹本。作者攝

紙的發明起源很早,但早期的紙並不適於書寫。到了東漢,蔡倫綜合前人的經驗,用樹皮、麻頭、破布和破魚網做原料,將它們剪碎、蒸煮、搗爛,然後「抄」在蓆子上,晾乾就變成紙。用這種方法造的紙又薄又平,很適合寫字。東漢元興元年(105),蔡倫把這項成就報告漢和帝,從此全國各地都開始用這種方法造紙。

蔡倫改進造紙技術成功以後,造紙業迅速發展,所用的原料也愈來愈廣,從樹皮、竹子到麥桿、稻桿,凡是有纖維的東西幾乎都可以造紙。到了晉代,紙已取代了竹、木簡,成為人們最普遍使用的書寫材料。

八世紀時,中國人發明的造紙術開始西傳。唐玄宗天寶十年(751),中國和大食(阿拉伯帝國)在怛羅斯(今哈薩克、吉爾吉斯境內)打了一仗,中國戰敗,許多官兵被俘虜過去,這些被俘官兵中有不少造紙工人,於是造紙術就傳到大食。

公元一一五○年,阿拉伯人在西班牙設立紙廠(從八世紀初,西班牙就被阿拉伯人佔領),造紙術開始傳入歐洲。這時,距離蔡倫改進造紙術成功,已經有一千年了!

-----廣告,請繼續往下閱讀-----
文章難易度
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
0

文字

分享

0
2
0
【成語科學】洛陽紙貴:從絲綿到用樹皮,古代的造紙簡史
張之傑_96
・2023/06/21 ・1079字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

東漢以後就是三國和西晉。西晉文學家左思,親自走訪三國的國都——吳都建康(今南京)、魏都洛陽、蜀都成都,耗時 10 年,寫成 1 萬多字的《三都賦》。

這篇賦寫得好極了,大家紛紛買紙來抄,一時供不應求,把洛陽的紙價都哄抬貴了。

這就是成語「洛陽紙貴」的由來。讓我們試著造個句吧。

  • 張愛玲的第一本小說集《傳奇》推出後,同一個月就再版了,受歡迎的程度當真可以用洛陽紙貴來形容。
  • 英國推理小說作家克莉絲蒂,每部小說都洛陽紙貴,其著作已譯成 100 多種語文,總銷量超過 20 億冊。

西元 291 年,左思寫成《三都賦》。上推 186 年(西元 105 年),蔡倫改良造紙術成功。左思的《三都賦》造成洛陽紙貴,可見這時的上層社會,紙已取代了竹簡。

《天工開物》中記載古代造紙術的流程。圖/維基百科

紙是中國的四大發明之一。最早的紙是絲綿紙,是古人無意中發明的。原來我們的祖先早就會製造絲綿了,方法是將蠶繭煮過,攤在竹蓆上,浸在水中打爛。當製好的絲綿從竹蓆上取下來時,蓆子上往往還殘留著一層絲綿。等竹蓆乾了,這層絲綿就變成一張薄薄的絲綿片。

-----廣告,請繼續往下閱讀-----

這一無意中的發現,帶給人們莫大的啟發,於是有人從水中將一層薄薄的絲綿「抄」(撈出來)在竹蓆上,晾乾後就成為絲綿紙。

絲綿紙用蠶絲做原料,價格太高,不可能大量生產,但它的製法卻具有啟發作用:既然可以用蠶絲來製紙,那麼可不可以用廉價的植物纖維代替?到了西漢,人們開始用大麻和苧麻製紙,所用的方法和絲綿紙完全相同;但當時的麻紙又粗又厚,不適合寫字。到了東漢,經過蔡倫的改良,才算有了成效。

蔡倫從小就到皇宮當太監。他曾經管理過宮廷用品,發現當時的書寫材料都有缺點:竹簡過於笨重,帛(絲織的布)和絲綿紙又太貴;於是決心改進造紙方法,希望能找到一種又便宜又實用的書寫材料。

西元 105 年,蔡倫成功改良造紙術。圖/維基百科

蔡倫綜合前人造紙的經驗,用樹皮、麻頭、破布和破魚網做原料,將它們剪碎、蒸煮、搗爛,然後「抄」在蓆子上,晾乾就變成紙了。用這種方法造出來的紙,又薄又平,很適合寫字。蔡倫把這項成就報告漢和帝,從此全國各地都開始用這種方法造紙。

-----廣告,請繼續往下閱讀-----

8 世紀時,中國人發明的造紙術傳到阿拉伯。12 世紀傳入歐洲。距離蔡倫改良紙術成功,已經有一千年了!

張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

4
1

文字

分享

0
4
1
埃及莎草紙——紙的緣起與改良│環球科學札記(15)
張之傑_96
・2021/02/24 ・1585字 ・閱讀時間約 3 分鐘 ・SR值 511 ・六年級

-----廣告,請繼續往下閱讀-----

  • 文/張之傑

和平號通過蘇伊士運河時,不知何時上來兩個埃及小販,在八樓巴伊雅廳門口賣些服飾和藝品。莎草紙畫每三張十塊美金,我已許久不買藝品,但有一張描繪用天平稱取亡魂的紙草畫吸引了我。西方的地獄有類似的天平,中國也有業秤。是心同此理還是互有淵源?這是個值得研究的課題。

五月十七日,上午參觀開羅埃及博物館,時間只有兩小時,導遊只能走馬觀花似的重點解說。在莎草紙畫廳,他介紹的正是那張以天平稱取亡魂善惡的莎草紙畫原件。我們約十一時二十分走出博物館,搭上遊覽車。車行五、六分鐘,來到尼羅河岸邊的一家船上餐廳午餐。吃過午餐,導遊帶我們到一家莎草紙畫店參觀,車程僅約五分鐘。

莎草紙的製作過程

解說員通華語,不停地說些肉麻當有趣的話。對我來說,最大的收穫是看到製作莎草紙的莎草,和看到莎草紙的製作過程。

莎草科和禾本科很像,其差異是:莎草科的莖桿呈三角形,實心;禾本科的莖桿呈圓形,中空。藺草就是常見的一種莎草科植物。然而,埃及紙莎草(Cyperus papyrus)的莖桿特別粗,從沒看過那麼粗大的莎草。

-----廣告,請繼續往下閱讀-----

莎草紙的製法是:將莎草的皮剝掉,取其髓部,剖為薄片,用木槌打薄,然後泡在水裡一週,取出編成蓆狀,再壓榨一週即成。我問解說員,浸泡的水裡要不要加膠水?他把我帶到櫃台,要我買一張,我說我已買了六張,只想長點知識。他才很不耐煩地說,沒加膠水,莎草天然就有黏性。

埃及紙莎草,取其髓部,剖為薄片,編為蓆狀,可製作莎草紙。作者攝

我們的這一車,沒人買那家紀念品店的紙草畫,導遊和解說員都很失望。我將小販昨天上船賣紙草畫的事告訴導遊和解說員。他說,一般小販賣的紙草畫是用香蕉葉做的,放置幾週就會變質。店裡賣的的確較為精緻,說小販賣的是用香蕉葉做的就言過其實了。

走出這家紙草畫店,有位船友問我:「埃及早就有紙了,怎麼說是中國發明的?」我對他說,紙有紙的定義。紙是用煮爛了的植物纖維(紙漿)做的。埃及的莎草紙只是將莎草的髓部壓扁,編成蓆狀,不能算是紙。

紙的緣起與改良

在紙沒發明前,古巴比倫人用泥板書寫,古埃及人用莎草紙書寫,古印度人用一種棕櫚科植物的葉子(貝葉)書寫,古歐洲人用羊皮書寫,古中國人用竹簡或木簡書寫。這些書寫材料不是使用不便,就是所費不貲。以西方人用的羊皮來說,抄寫一部《聖經》要用三百隻羊,一般人哪用得起啊!

-----廣告,請繼續往下閱讀-----
古埃及《亡靈書》以文字及圖像敘說亡靈之去處,以其中以作於公元前1275年的大英博物館中莎草紙藏本最為有名。圖為其插畫〈奧斯里斯對死者審判〉之摹本。作者攝

紙的發明起源很早,但早期的紙並不適於書寫。到了東漢,蔡倫綜合前人的經驗,用樹皮、麻頭、破布和破魚網做原料,將它們剪碎、蒸煮、搗爛,然後「抄」在蓆子上,晾乾就變成紙。用這種方法造的紙又薄又平,很適合寫字。東漢元興元年(105),蔡倫把這項成就報告漢和帝,從此全國各地都開始用這種方法造紙。

蔡倫改進造紙技術成功以後,造紙業迅速發展,所用的原料也愈來愈廣,從樹皮、竹子到麥桿、稻桿,凡是有纖維的東西幾乎都可以造紙。到了晉代,紙已取代了竹、木簡,成為人們最普遍使用的書寫材料。

八世紀時,中國人發明的造紙術開始西傳。唐玄宗天寶十年(751),中國和大食(阿拉伯帝國)在怛羅斯(今哈薩克、吉爾吉斯境內)打了一仗,中國戰敗,許多官兵被俘虜過去,這些被俘官兵中有不少造紙工人,於是造紙術就傳到大食。

公元一一五○年,阿拉伯人在西班牙設立紙廠(從八世紀初,西班牙就被阿拉伯人佔領),造紙術開始傳入歐洲。這時,距離蔡倫改進造紙術成功,已經有一千年了!

-----廣告,請繼續往下閱讀-----
文章難易度
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

3

6
3

文字

分享

3
6
3
天有多大?古埃及人用「駱駝」推算地球周長——天文學中的距離(一)
ntucase_96
・2021/10/01 ・2946字 ・閱讀時間約 6 分鐘

  • 撰文|許世穎

本文轉載自 CASE 科學報天有多大?天文學中的距離(1)—從地球到太陽

天文學中要怎麼量測長度或距離呢?地球上常用的直尺、捲尺、雷射測距儀等恐怕不是那麼適合。比較近的天體還有辦法直接量測,遠距離的只好仰賴一些間接的推斷。我們先從古埃及利用井、尖塔、駱駝推算出地球的周長出發,進而介紹利用雷達天文學等方法量測太陽系中月球、行星距離的方法。

地球周長:井、尖塔、駱駝

平常我們怎麼量測長度或距離呢?如果是桌上的小東西,我們可以用直尺;如果稍微遠一些,可以利用捲尺;再更遠一點的話可以利用雷射測距儀。這些都是地球上常見、常使用的距離量測工具。那當距離更遠的時候要怎麼辦呢?我們該怎麼量測地球的周長呢?月球、太陽有多遠呢?更遙遠的天體該怎麼辦呢?

我們不能一步登天。要先從比較近的開始直接量測,接著再想辦法間接推敲出遙遠天體的距離。就讓我們先從最近的「地球周長」開始吧!其實早在古希臘,畢達哥拉斯就已經提出了地球是「球」的想法。埃及學者埃拉托斯特尼(Eratosthenes)在公元前 240 年,就估計出一個地球周長的數值。這個算法很有趣,讓我們搭配圖 1 一起來看看。

圖1:埃拉托斯特尼的地球周長量測方法。來源/Eratosthenes | Biography, Discoveries, Sieve, & Facts | Britannica [2]

首先,他知道在夏至那天,可以從埃及城市「賽伊尼(Syene,即現在的Aswan)」的一座井中,看到太陽從正上方來的倒影。也就是說,夏至這一天太陽光會剛好直曬賽伊尼。他進一步量測,在夏至這一天,亞歷山大城(Alexandria)方尖石塔的影子長度。從這個影子長度和方尖石塔的高度,可以計算出太陽的天頂角 α。而因為三角形相似形的關係,這個天頂角 α 同時也會是賽伊尼與亞歷山大城在地球上的夾角。這個天頂角 α  約為 7.2°,因為7.2°佔了整個圓 360° 的 50 分之 1,所以將距離乘以 50,就是地球的圓周長。

-----廣告,請繼續往下閱讀-----

也就是說,只要找到賽伊尼與亞歷山大城之間的距離,再乘上 50,就是地球的圓周長…但是兩座城市之間的距離要怎麼知道呢?他從商隊那裏問到,這兩座城市要讓駱駝走 50 天,在經過一些計算即換算後,他得到地球的圓周長大約是 252000「stadia」(當時埃及的距離單位)。雖然他所用的單位「stadia」與現代長度單位的換算已經無法考證,但現代科學家認為他所量測出的這個數字約為 39,690 公里到 46,620 公里之間,與現代的公認值差異只有 1%-15% 左右而已![3]

月球距離:月食、雷射、反射鏡

有了地球的大小以後,再來讓我們來量月球吧!先從量測月球地球距離開始,其中一個方法是利用「月食」。這個方法可以追溯至希臘天文學家阿里斯塔克斯(Aristarkhos,310-230 B.C.)。他其實是紀載中最早提出日心說的人,可惜並沒有受到非常廣泛的認可。月食就是月亮進入了地球的影子。將地球影子的大小除上月食發生的時間就是月球移動的速度。而將月球移動的速度乘上月球繞一圈的時間(28 天左右),就可以得到月球繞地球的圓周長、半徑。

較為現代、更為直接的方法就是「雷射測距」,原理就跟雷射測距儀差不多。從地球上發射雷射光到月球上,藉由量測反射光,可以知道光來回所需要的時間,再乘上光速,就可以得到月球的距離囉。這個時間約為 2.5 秒,換算後的月地距離約為 38 萬公里。

圖2:阿波羅 14 號所放置的反射鏡。來源/NASA [4]

為了擁有更好的雷射光反射效果,人類還在月球上擺放了 5 個反射器,分別在 5 次人類登陸月球的任務中放置(3 次美國、2 次蘇聯,見圖 2)。這些反射器讓月地距離的精密度提升到了毫米等級。美國著名生活喜劇影集《The Big Bang Theory》裡面就有進行這個實驗的片段,讀者不妨去看看:Learn English with The Big Bang Theory: Blowing up the Moon(有字幕、英文教學版本)。

-----廣告,請繼續往下閱讀-----

精確的月地距離量測也帶給我們有趣的發現。比方說發現或量測出:月球每年以 3.8 公分的速率離地球愈來愈遠;月球內部可能有著月球半徑 5 分之 1 大小的液態核心;月球除了原先的運動以外,還有著額外的晃動,稱為「天平動(libration)」…等 [5]

行星距離:雷達

量測行星距離的方法類似量測月球距離的方法,只是行星的距離通常太過遙遠,使用一般的雷射光的話效果不好,必須改使用微波的波段,這個學門稱為「雷達天文學(radar astronomy)」。雷達天文學所使用的設備必須要能夠向宇宙發射高功率的微波,過去常用的天文台包含「阿雷西博天文台」(Arecibo Observatory)與「戈德斯通天文台(Goldstone Observatory,見圖 3)」

(延伸閱讀:再見了:阿雷西博天文台!

圖 3:戈德斯通天文台(Goldstone Observatory)。來源/JPL [6]

雷達天文學被運用太陽系內天體的研究,畢竟再更遠的話反射的訊號會太弱。在過去,雷達天文學除了幫助我們量測行星的距離,還可以拿來觀測天體的表面狀況 [7]

-----廣告,請繼續往下閱讀-----

太陽的距離:金星凌日

地球與太陽的平均距離稱為 1 個「天文單位(Astronomical Unit,簡稱 AU 或 au)」。要量測日地距離的話,總沒辦法用雷射測距了,太陽自己的光線太強、也沒辦法反射雷射光或微波,更不可能讓人上去裝設反射鏡。那該怎麼辦呢?我們可以利用「金星凌日」來幫忙!

圖 4:金星凌日。後面的黃色大球是太陽,黑色的小球則是金星,每隔一段時間拍攝一張相片疊在一起的結果。來源/NASA/SDO, HMI [8]

金星凌日是指從地球上看出去,金星從太陽前面經過的現象(圖 4)」。而這也是太陽、金星、地球接近一直線的時候。就好像是我們用手遮住陽光時,太陽、手、我們的眼睛會排列成一直線一樣。

根據克卜勒定律,我們可以計算出金星的軌道半徑為 0.72 天文單位。地球軌道半徑則是 1 天文單位。當太陽、金星、地球排成一直線時,可以得到金星與地球的距離是 0.28 天文單位。這時候只要量測出金星的距離,就可以換算出 1 天文單位的大小!

然而這個狀態下,在金星後面的太陽會嚴重干擾訊號,因此無法使用雷達來量測金星的距離。得靠別的方法來找出距離,這個方法稱為「視差(parallax)」。至於視差要怎麼使用,又怎麼讓丹麥天文學家、第谷使用正確的數據、正確的儀器、正確的推論、得到完全錯誤的結果,則是另一段故事了。

-----廣告,請繼續往下閱讀-----

(待續)

參考資料

  1. Free Images / Bedouin watching a caravan passing by near the pyramids of Giza
  2. Eratosthenes | Biography, Discoveries, Sieve, & Facts | Britannica
  3. wiki / Eratosthenes
  4. The New York Times / How Do You Solve a Moon Mystery? Fire a Laser at It
  5. wiki / Lunar Laser Ranging experiment
  6. wiki / Goldstone Deep Space Communications Complex
  7. wiki / Radar astronomy
  8. SPACE / Venus Crosses the Sun for Last Time Until 2117, Skywatchers Rejoice


本系列其它文章
天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

所有討論 3
ntucase_96
30 篇文章 ・ 1443 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。