網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

3
2

文字

分享

0
3
2

從瘦肉精的前世今生談起(上):用與不用各有各的市場?

活躍星系核_96
・2020/11/20 ・6520字 ・閱讀時間約 13 分鐘 ・SR值 601 ・九年級
  • 作者/金山豆|中興大學動物科學系學士,英國諾丁漢大學動物科學博士

所謂的瘦肉精,也就是添加在肉用動物飼料中的藥理成分,功能在於抑制肥育期肉用動物如肉牛與肉豬的脂肪合成與堆積,將飼料中的營養成份轉而促成肌肉(瘦肉)的合成,以提高肉用動物屠體中市場價值較高的瘦肉產量,並最終提升整體產值。

然而作為一種藥理成份,適當的使用瘦肉精在一定條件下固然有其優點存在,但也意味著不適當的使用可能會帶來預期以外的風險。對直接接受藥物的動物本身、對肉品消費者、對整個肉品產業以及社會,因此也帶來許多需要深入探討與思考的問題。

瘦肉精的起點:從藥物到飼料添加劑

萊克多巴胺 (Ractopamine),是一種人工合成的藥物分子,用來模擬動物與人體內自然合成的腎上腺素類型之神經內分泌素,透過外源給予的方式,來達成加強腎上腺素的下游生理機制的目的。

動物與人體內的腎上腺素類神經內分泌素,是一種在緊急狀態下作用的生理因子,讓身體釋放更多能量、強化肌肉、提升心血管系統、呼吸效率的功能,來幫助動物應付大難當頭的緊急事件。因此,如果可以開發並人工合成具有類似腎上腺素功能之藥物分子,則可以在動物或人在某些危急狀態下,做為臨床藥物臨時性地加強心血管與呼吸功能,來渡過難關。

萊克多巴胺是一種模擬動物與人體神經內分泌素的人工合成藥物。圖/Pexels

基於這樣的需求,生藥產業自然產生動機研發相關藥物,在二十世紀中葉之後,同樣類型的藥物不斷推陳出新,從克倫特羅 (Clenbuterol) 到萊克多巴胺,都是這種臨床藥物需求下研發誕生的產物。

然而,對開發藥物的藥廠來說,歷經曠日廢時且耗資鉅大的基礎與臨床研究,往往僅有少數藥物最終有機會被證明藥效顯著而投入臨床使用,因此,除了人類臨床應用的方向之外,這些研發出來的人工合成藥物,也被寄望可以同時應用於動物用藥市場,以盡可能最大化最後可以回收的價值。

由於動物體自然分泌的腎上腺素類分子,可以透過不同的路徑啟動各種生理反應,包括與促進血管血壓與神經活性的 Alpha-adrenergic receptors 與具有強心效果、促進各種肌肉功能與生長、並抑制脂肪合成協助釋放能量的 Beta-adrenergic receptors,因此,除了在強心、促進呼吸道平滑肌舒張等人體與動物臨床醫療用途之外,這些人工合成的類腎上腺素藥物也具備了促進肌肉生長與抑制脂肪堆積的生理功能

動物體內自然分泌的腎上腺素分子,可透過不同路徑啟動下游生理反應。圖/Pixabay

特別是與這類藥物活化 Beta-adrenergic receptors 後所引起的肌肉細胞生長與抑制脂肪堆積這些功能,代表著它們在改善肉用動物屠體生長表現上,可以預期有相當正面的效益。克倫特羅、萊克多巴胺等藥物也因為這些藥理特性,被稱之為 Beta 活化物(Beta-agonist,即指其可以活化 Beta-adrenergic receptors 之意)。

藥廠在研發這些藥物作為臨床醫療用途之外,也因為其改善肉用動物屠體品質的潛力,而在二十世紀末期開始一系列研究,探討其作為藥理性飼料添加物的可能性,在控制它們副作用(對心血管與神經系統的過度刺激)的同時,發揮改善瘦肉生產與抑制脂肪生成的最大效益。

其中,萊克多巴胺就是這類人工合成藥物的佼佼者,因其較低的副作用與較理想的屠體改善效果,得以成為可以應用於促進肉用動物生產,特別是肉豬與肉牛產業的藥物。

美國食品藥品管理局 (Food and Drug Administration, FDA) 在 1999 年及 2000 年分別準許肉豬與肉牛產業可以在肥育期之固定時段中,使用法定允許劑量的萊克多巴胺作為飼料添加劑,但其它類型的同類藥物如克倫特羅,則因藥理副作用較大,則依然不被允許使用。

瘦肉精成為美國豬農海外市場競爭利器

儘管從藥理機制來看,萊克多巴胺這種人工合成的 Beta 活化物具有促進瘦肉成長與抑制脂肪累積這兩項肉用生產上的優點,但畢竟它也存在相當的副作用,會透過額外刺激動物的心血管作用與神經系統,對動物的健康與屠體品質帶來負面的影響。因此,美國農業部也對萊克多巴胺於肉用動物的施用做了嚴謹的法規規範,確保其生產效益與副作用之間達到一定程度平衡。

因此美國主管機關如食品藥物管理局與農業部皆訂定了嚴謹的規範。圖/pxfuel

二十世紀末至二十一世紀初,萊克多巴胺作為應用於肉用動物生產的新穎藥物,自然也引起相關研究團隊的注意,並探討與評估其促進生產效益的潛能。在較早的肉用動物研究中,就已經確認適當在肥育期使用萊克多巴胺,對肉牛與肉豬的瘦肉生長效率可提高 10~25%、脂肪減少 10~15%,並有效提升飼料效率約 10% 1。美國杜克大學 2005 年分析以美國肉豬養殖場為研究對象,分析合法條件下使用萊克多巴胺所能實際提升的肉豬場收益,發現確實可提高豬場整體淨收益達 20~25% 左右 2

美國做為牛肉與豬肉產品的主要輸出國,在國際肉品市場上的競爭者眾,歐盟的丹麥、西班牙、美洲的加拿大、巴西都是相當強勁的對手,特別是在國際貿易自由化的框架下,美國本身豬肉消費市場一樣要面對進口肉品的挑戰。那麼在技術面上盡一切可能提升飼養效率、降低生產成本、以及肉品品質上達到理想的平衡,是同時確保本國市場份額與擴展海外市場的決勝關鍵。

萊克多巴胺的研發與應用,對進入二十一世紀的美國肉豬與肉牛產業來說,無疑是一項強而有力的工具。在 1999~2000合法核準萊克多巴胺之後到 2012 年間,美國約有六到八成的肉豬牧場固定使用萊克多巴胺作為飼料添加劑做為進一步促進生產效益的重要策略3

使用萊克多巴胺的現代化肉豬養殖轉型,成為美國肉豬產業拓展海外市場的關鍵。圖/Pexels

以美國外銷豬肉產業來看,1990 到 2000 之間美國豬肉進出口量大致持平,但從 2001 年起開使迅速攀升,雖然進口量在過去三十年間穩定持續在每年50萬公噸左右,但出口量卻在 2001 到 2019 年間擴增了四倍以上,從 80 萬增加至 340 萬公噸4

扣除仍維持萊克多巴胺禁令的進口國(歐盟、俄羅斯、中國等),允許萊克多巴胺殘留的美國豬肉產品進口國仍佔了七成左右的輸出份額,如日本、南韓、墨西哥、加拿大等5。換言之,包含萊克多巴胺使用策略的現代化肉豬養殖轉型,確實對美國肉用動物產業成長帶來相當大的影響。

有多好用?懶得用瘦肉精的加拿大豬農

全球前三大肉豬輸出國分別是歐盟、美國、以及加拿大。其中除歐盟諸國禁用萊克多巴胺外,美國與加拿大都是可以合法使用於肉豬生產的國家,然而有趣的是相較於南方的鄰國,加拿大豬農對於萊克多巴胺這種可以有效促進屠體產值的藥理性飼料添加物,呈現相當冷漠無感的態度。

不同於美國豬農平均約七成上下的豬農使用萊克多巴胺,加拿大豬肉產業理事會 (Canadian Pork Council) 聲明本國幾乎不使用萊克多巴胺於肉豬生產上6,動科領域的學者如貴湖大學 (University of Guelph) 的波爾博士 (Dr. Bohrer),同時是加拿大肉品科學協會理事長,則估計可能有 5 到 10% 的加拿大豬農使用萊克多巴胺7

美國與加拿大互為比鄰,雙方的貿易往來十分頻繁,同為世界主要肉豬生產國,彼此也是互相穩定輸出入豬肉產品的重要貿易夥伴,通常加拿大輸美的豬肉產品數量與金額略大於美國。

有趣的是,雖然在肉豬生產法定規範上都允許萊克多巴胺的使用,美國肉豬產業也依賴萊克多巴胺作為提生肥育期肉豬產能與飼料效率的重要工具,加拿大豬農卻在多數不使用萊克多巴胺的情況下,在整體肉豬生產效率上取得與美國豬農同業相當的表現,包括屠體產量與品質、整體生產成本、以及飼料效率等方面8

相對美國,加拿大在肉豬飼養環境上或有氣候更溫和、相對疾病控制良好等利於肉豬生長發育的優勢,再者,萊克多巴胺使用上需注意劑量、動物健康狀況、以及施用期間相關增加的額外管理成本,讓加拿大豬農評估未必划算。

加拿大具飼養肉豬的環境優勢,使用萊克多巴胺對豬農而言反而是一筆額外成本。圖/Pexels

另方面加拿大因有超過半數肉豬生產為外銷用途,考量主要外銷國家如中國仍維持萊克多巴胺禁令,自主避開萊克多巴胺的使用對加拿大肉豬產業來說,反而是更能強化國際市場競爭力的選擇。

歐盟:農場到餐叉,沒有藥理性飼料添加物的空間

長期以來歐盟在糧食生產與社會安全政策上,建立自有的系統性規範來整合各會員國的農業生產系統,特別是所謂的由「農場到餐叉 (Farm to fork)」策略,要求農牧產品從生產、加工、至消費者完成使用的過程中,都能符合可永續運作的模式,包括家禽畜與動物的利用、與生態環境的平衡、以及消費者的健康需求9

因此,確保家禽畜生產過程中,讓動物維持良好的健康與福祉狀態,並盡可能排除與控制對整個生產與消費過程中各種風險因子,便成為歐盟各國建立飼養規範的重要決策依據。

歐洲採用「Farm to fork」策略,確保家禽畜生產過程中,維持動物的健康與福祉。圖/Pexels

這種農牧產業思惟的形成,一部份是因為歐盟國家開始警覺到人工合成藥物應用在農牧產業可能帶來的額外風險。1950 年代起始,生醫藥產業的發展讓更多人工合成藥物投入臨床與動物應用,包括各種內分泌藥物,試圖透過模擬雄性素 (Androgens)、雌性素 (Estrogens)、生長素 (Growth hormone) 等內泌素的功能,來促進動物的各種生產效能。

然而,隨著動物與環境毒理學研究的拓展與深入觀察,1980 年代末期開始發現這些人工合成藥物的廣泛使用,對動物本身的健康條件、對農牧產業週遭環境動植物生態系統、以及對消費者的健康都存在相當程度的風險與威脅,並曾經造成一系列的社會安全問題。

舉例來說,1950 年代美國開發的人工合成固醇類藥物如 stilbenes、dienoestrol 等,廣泛應用於來促進肉牛生殖與生長10,但是這類人工合成固醇類藥物,在 1980 年代陸續發現會有逸散到生態環境的情況,同時這類藥物對曝露的動物與人都存在致癌性,特別是當消費者攝取相關動物產品時所連帶吸收的殘留藥物成份 11

這一系列由人工合成內分泌素應用於動物生產目的,卻意外引起後續環境與健康風險時,歐盟成立委員會進行超過十年的研究與調查,最終引導出相關結論,認為人工合成內分泌素,除醫療用途所需,應完全排除在動物生產過程外,以杜絕可能的風險12

歐盟成立委員會進行研究後,結論為人工合成分泌素應完全排除在動物生產過程之外。圖/pxfuel

這些人工合成內分泌藥物,對促進動物生產效能雖有一定成效,但在廣泛使用後,後續影響的動物健康、環境生態、以及消費者食安風險問題既複雜又難以精確評估,因此利敝權衡之外,排除非必要的藥物使用對整個產業、環境與消費者來說,才是最能確保農牧產業永續安定的做法9

讓科學數據說話,全世界都買單嗎?

由於這類人工合成藥物的開發可以說是源自於北美主要藥廠,觀念上這些研發者仍然希望可以盡可能地將開發的藥物應用在實際市場上,因此促成了聯合國糧農組織與國際衛生組織共組的食品添加物聯合專家委員會 (Joint Expert Committee on Food Additives, JEFCA, FAO / WHO) 主導藥物風險評估機制,透過建立無可見效應劑量 (Non-Observed Effect Levels, NOAEL)、可接受每日攝取量 (Acceptable Daily Intake, ADI)、最大殘留限制 (Maximum Residues Limits, MRLs) 等科學數據來建立各種與食品相關的藥物安全使用條件,並判定是否得以應用於農牧食品生產13

JEFCA 的運作與推廣,受到北美國家如美國、加拿大的大力支持,但在歐盟與其它部份國家卻遭到程度不等的阻力。其中,歐盟政府本身的研究團隊的風險評估報告14,認為所有內分泌類藥物都必需排除在動物生產以外,並與美國加拿大及其主導的 JEFCA 在固醇類藥物是否可應用於動物生產,且其產品是否可自由貿易至歐盟市場的議題上多次正面衝突,戰火甚至延燒到二十一世紀的萊克多巴胺。

JEFCA 透過科學數據來建立食品相關藥物安全使用條件,在國際引起截然不同的反應。圖/pxfuel

如前所述,Beta 活化物包括許多不同分子型式存在,如克倫特羅、萊克多巴胺是其中的主要產品。在 1990 年代這些 Beta 活化物雖已知可促進肉用動物肌肉生長,但其風險認知卻仍有不足。

因此,歐盟境內西班牙便曾發生大規模克倫特羅殘留藥物中毒事件,113 人因食用殘留克倫特羅的肉品而發生急性中毒15。此一事件對歐盟政府來可是再一次的食安警報,即現有的食藥品安全風險評估機制,受限於科學研究技術與方法的限制,以及對動物、環境、人體曝露的複雜性認知不足,實難以完全界定並全盤控制這些藥物可能帶來的風險。

更遑論後續研究中,除了進一步發現萊克多巴胺的使用,對肉用動物的健康造成負面影響:即使是在理想控制劑量與處理時間的條件下,肉用動物的猝死率、急性心血管疾病、肉質劣化、過度興奮而暴躁失控等問題都會更加嚴重,而額外造成現場的管理成本增加16

後續發現萊克多巴胺的使用,對肉用動物健康造成影響,導致額外成本增加。圖/Pexels

因此,歐盟政府與專家團隊認為做為飼料添加物使用時,這些人工合成藥物帶來的利益實無法平衡難以確認與管理的風險成本,而最符合產業與消費市場安全需求的方式,就是排除它們在動物生長效率促進上的應用。

回歸到歐盟過去二十多年來所致力於建立的永續農牧產業與市場供應系統,反應在肉用動物生產模式上的確也因此造成直接生產成本相對居高不下。舉例來說,歐盟主要的肉豬生產國如丹麥、西班牙相對世界其它主要肉豬生產國美國、加拿大、巴西等,要高出近四成的生產成本,特別是飼料支出的部份。

當然,較高的經營成本換來的是歐盟相對較佳的豬肉產品品質與動物健康與福祉條件8,但也意味著為了保障這樣的永續農牧產業的運作,歐盟必需持續對抗北美低成本肉品輸入的自由貿易壓力,在藥理性飼料添加物這個戰場上更是沒有退讓的空間。

下篇:從瘦肉精的前世今生談起(下):台灣本土肉品該走向何方?

參考文獻

  1. Mersmann, H. Overview of the effects of β-adrenergic receptor agonists on animal growth including mechanisms of action. 1998, Journal of Animal Science, 76 (1), 160-172.
  2. Li N., Schinckel A., Preckel P., Foster K. and Richert B. Profitable use of ractopamine in hog production – economic evaluation using a pig growth model. 2002, Purdue University Swine Search Report 2002, 77-82.
  3. Bottemiller H., Dispute over drug in feed limits U.S. meat exports. 2012, Food & Environment Reporting Network.
  4. Mintert J., U.S. is a pork export powerhouse. 2020, Center for Commercial Agriculture, Purdue University. Data source: U.S. Department pf Agriculture
  5. National Pork Board, U.S. pork exports set records in 2019. 2020. Data source: U.S. Department pf Agriculture and U.S. Meat Export Federation.
  6. Ractopamine–Raising pigs. Canadian Pork Council. From homepage: www.CPC-CCP.com/ractopamine.
  7. Young L., What is ractopamine, the drug banned in China but permitted in Canadian pork? 2019, Global News.
  8. Agriculture and Horticulture Development Board (AHDB), 2018 pig cost of production in selected countries.2020. 
  9. European Union. 2020, Farm to Fork Strategy – For a fair, healthy and environmentally-friendly food system.
  10. Andrews F., Beeson W. and Johnson F. The Effects of Stilbestrol, Dienestrol, Testosterone and Progesterone on the Growth and Fattening of Beef Steers. 1954, Journal of Animal Science. 13 (1) 99-107.
  11. Rose J. Carcinogenicity studies in animals relevant to the use of anabolic agents in animal production/ 1976 (5) 227-237.
  12. European Union. 1988, Council Directive 88/299/EEC of 17 May 1988 on trade in animals treated with certain substances having a hormonal action and their meat, as referred to in Article 7 of Directive 88/146/EEC. Off. J. Eur. Union, L 128 of 21.5.1988, 36-38.
  13. Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2000, Procedures for recommending maximum residue limits-residues of veterinary drugs of veterinary drugs in food (1987-1999). Food and Agriculture Organization and World Health Organization.
  14. European Union. 1996, Council Directive 96/22/EC of 29 April 1996 concerning the prohibition on the use in stockfarming of certain substances having a hormonal or thyrostatic action and of -agonists, and repealing Directives 81/602/EEC, 88/146/EEC and 88/299/EEC. Off. J. Eur. Union,L 125 of 23.5.1996, 3-9.
  15. Salleras L., Dominguez A., Mata E., Taberner J., Moro I and Salva P. 1995, Epidemiologic study of an outbreak of clenbuterol poisoning in Catalonia, Spain. Public Health Rep. 110 (3) 338-342.
  16. Ritter M., Johnson A., Benjamin M., Carr S., Ellis M., Faucitano L., Grandin T., Salak-Johnson J., Thomson D., Goldhawk C. and Calvo-Lorenzo M. 2017, Review: Effects of Ractopamine Hydrochloride (Paylean) on welfare indicators for market weight pigs. Transl. Anim. Sci. 1, 533-558.
  17. ElancoTM, PayleanTM 45: Ractopamine hydrochloride Type A medicated article.
  18. Wu M., Deng J., Chen Y., Chu W., Hung D. and Yang C. 2013, Late diagnosis of an outbreak of leanness-enhancing agent-related food poisoning. Am. J. Emerg. Med. 10:1501-1503.

文章難易度
活躍星系核_96
756 篇文章 ・ 74 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia


0

13
5

文字

分享

0
13
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
115 篇文章 ・ 253 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》