Loading [MathJax]/extensions/tex2jax.js

0

0
4

文字

分享

0
0
4

放暑假了要做什麼?當然是看書啊:十五本寓教於樂的科普書

Gene Ng_96
・2019/08/16 ・6328字 ・閱讀時間約 13 分鐘 ・SR值 500 ・六年級

-----廣告,請繼續往下閱讀-----

編按:炎炎夏日何處去?在不適合室外活動的天氣下,一起來讀書吧!我們本次邀請博覽眾多科普書的 Gene 推薦一系列精采的近期書單,也歡迎你來跟我們分享你的推薦書單。

書本不是為了應付課程和考試而存在的,上課和考試之外的好書,帶來的樂趣並不會比玩遊戲和看電視電影少喔!就趁暑假,來讀讀老師課堂上可能不會讓你來讀的好書吧!

以下本本都是寓教於樂的好書,也能讓你的知識和認知同時升級,讀完一章就是打掛一隻小怪,讀完整本就是打趴一隻大BOSS!通關後的心智肯定會變得更強大!

菇的呼風喚雨史

讀了這本《菇的呼風喚雨史:從餐桌、工廠、實驗室、戰場到農田,那些人類迷戀、依賴或懼怕的真菌與它們的祕密生活》(Beckoning the Wind, Summoning the Rain: Stories of Mushroom),保證你會對真菌的印象從此改觀,而且還能充份認識到真菌的無所不在,甚至開始關注你平時忽視之處,讓生活增添不少趣味。

菇的呼風喚雨史》除了科普作家顧曉哲生動且深入淺出的文字故事,還配上生態畫家林哲緯手繪全彩精美插畫,值得好好珍藏。

-----廣告,請繼續往下閱讀-----

看不見的雨林

自稱從小患有「作文恐慌症」,十分懼怕作文課的胖胖樹王瑞閔,為了分享他心愛的植物,出版《看不見的雨林──福爾摩沙雨林植物誌:漂洋來台的雨林植物,如何扎根台灣,建構你我的歷史文明、生活日常》。

看不見的雨林──福爾摩沙雨林植物誌》這本圖文書,並非單純的圖鑑,也不僅是植物科普書,而是蒐集許許多多精彩絕倫故事──包括植物本身的故事,還有經濟貿易和文化交流的故事。無論是門外漢又或是植物愛好者都能讀得津津有味,是本文理共賞的好書!

獸醫超日常

當我讀到這本令人捧腹大笑的《獸醫超日常》(The Travelling Vet: From Pets to pandas, My Life in Animals),立馬重拾童年曾想要當獸醫的幻想──原來自己的工作和生活精不精彩,是自己的心態決定的!

在《獸醫超日常》中,強納森精挑細選與二十種動物的有趣經驗和讀者分享。雖然他不是在大型動物醫院、大型動物園或者國際動物保育組織中任職的名醫,而是英國小地方小型動物醫院的「普通」獸醫師;雖然有幾次到南非去捕捉、移地安置、臨床治療大型野生動物的經驗,不過他職業生涯的大部分時間也都是看看貓貓狗狗,有時候出勤到鄉間牧場中為牲畜解決疑難雜症,但在《獸醫超日常》書中能見識強納森十一年極為精彩的行醫生活。

-----廣告,請繼續往下閱讀-----

他了不起之處,就是能把這些日常生活寫成「超日常」。《獸醫超日常》書中每一章末都附有該動物的相關知識和資訊,也有保育團體的網站或活動網址,讓有心讀者可以更加認識這些動物,甚至親身參與相關活動。

上帝的手術刀

生命科學家究竟是如何修改基因的呢?基因改造會製造出怪物嗎?我們將能隨心所欲地訂製小孩嗎?

如果對這些問題好奇,這本《上帝的手術刀:基因編輯懸疑簡史》會提供很好的思考材料。本書只有個五章,用了很多實例和故事講述基因編輯的歷史,也深入淺出地解釋了箇中的原理。

和許多相關科普書籍不同的,這本《上帝的手術刀》是本入門門檻足夠低的好書,但又不會淺顯到讓生命科學相關科系出身的朋友感到無趣,入門、進階兩相宜,非常適合非生命科學出身的朋友來讀,也很適合當作大學分子生物學、遺傳學等課程的推薦書單。

-----廣告,請繼續往下閱讀-----

人類這個不良品

不管怎麼看,我們人類都很像是設計不良、毛病多如牛毛的產品啊!

想要知道我們人類設計不良到什麼荒唐的地步嗎?《人類這個不良品:從沒用的骨頭到脆弱的基因》(Human Errors:A Panorama of Our Glitches, from Pointless Bones to Broken Genes)可以給你更多案例,讓你發現,如果人類是被某種超自然力量設計出來的,那麼鐵定稱不上是智慧設計,而是智障設計!讀了《人類這個不良品》,會發現人類設計不良到一個人神共憤的地步!

口感科學

美食滿足人的食慾,並不僅僅在於五味俱全而已,同樣令人食指大動的還有千變萬化的口感,這也是為何美食節目愛用酥脆爽口、爆漿彈牙、入口即化、香Q軟嫩、油而不膩、鮮美多汁等等來形容美食。

這本《口感科學: 由食物質地解讀大腦到舌尖的風味之源》(Mouthfeel: How Texture Makes Taste)就是要教我們更科學地認識及製作出令人回味無窮的口感,讓口齒留香的珍饈美食更加令人垂涎欲滴!

-----廣告,請繼續往下閱讀-----

口感科學》很科學地解說了味道與風味的複雜世界,從神經科學的角度探討口與鼻和食物的互動,解說了口感這個整體風味經驗的中心要素有何功能。

真確

真確:扭轉十大直覺偏誤,發現事情比你想的美好》(FACTFULNESS:Ten Reasons We’re Wrong About the World–and Why Things Are Better Than You Think)做為一本談論世界真實狀況的好書,可讀性高到違反直覺!這是本不僅真確,還很真誠的好書!

如何對抗媒體和網紅帶給我們的資訊偏見和直覺偏誤?除了用數字判讀外,就是了解以上提到的各種直覺偏誤。要理性地討論真實世界的資料並不容易,就像要選擇吃真正健康養生的粗茶淡飯不會比吃大魚大肉容易,可是因為漢斯.羅斯林是個溝通能力很強的高手,他把《真確》這本書寫得不僅不枯燥乏味,而且還趣味橫生,把青菜豆腐做成美味的佳餚。

狼的智慧

狼,在人類的文化中,背負著許多醜惡的象徵,也帶著詭異的神秘感。許多和狼有關的中文成語也大多沒好話,像是豺狼當道、狼心狗肺、狼狽為奸、狼子野心、狼貪鼠窃等等;童話故事如《小紅帽》、《三隻小豬》中,狼也是標準的反派。

-----廣告,請繼續往下閱讀-----

即使是愛狗人士,對狼多半不具好感。可是我們絕大多數人,其實並不懂得狼,我也不例外,直到讀了這本好書《狼的智慧:黃石公園的野狼觀察手記》(Die Weisheit der Wölfe)。

狼的智慧》作者愛莉•瑞丁格(Elli H. Radinger)是來自德國的野狼觀察員,她原本是學法律的,儘管媒體有時會用狼來比喻一些律師的貪婪和凶狠,但是瑞丁格寧可和野狼相處也不願意在辦公室裡和同行為伍,於是遠赴美國的田野去當志工觀察野狼。在十幾年在田野長期保持距離觀察狼的生活中,她一點也不覺得辛苦和乏味,甚至還從狼身上體悟到不少待人接物的道理。

什麼時候是好時候

《孫子.軍爭》曰:「故三軍可奪氣,將軍可奪心。是故朝氣銳,晝氣惰,暮氣歸;故善用兵者,避其銳氣,擊其惰歸,此治氣者也。」,所以俗話說「朝氣蓬勃」,而且「一年之計在於春,一日之計在於晨」。

到底是早上工作效率好,還是晚上呢?讀了這本暢銷書作家丹尼爾.品克(Daniel H. Pink)的好書《什麼時候是好時候:掌握完美時機的科學祕密》(When: The Scientific Secrets of Perfect Timing),搞不好就能夠更加見機行事!

-----廣告,請繼續往下閱讀-----

什麼時候是好時候》用心理學、生物學、神經科學和經濟學等等領域對見機行事的研究,每一章提供時間駭客指南,讓我們能夠直接駭進我們的時機系統中,給我們極為實用的建議。

自然的奇妙網路

渥雷本是位堅守理念的森林看守人、明察秋毫的觀察家、情感豐沛的文學家、知識淵博的科學家、文筆優美的自然作家,他為我們翻譯出大自然深藏不露的各種有趣互動關係。

德國森林看守人彼得•渥雷本在這本《自然的奇妙網路》(Das geheime Netzwerk der Natur)中,用他長達幾十年的學養和觀察,帶我們見識到狼幫了黃石公園的樹一把、森林甚至幫助了海中的鮭魚、蚯蚓能操作野豬、樹木之間以化學物質溝通、灰鶴傷及西班牙的火腿產業,甚至連落葉樹木都影響了地球的自轉,還有針葉林能夠製造雨水等等。

科學大歷史

科普作家雷納.曼羅迪諾(Leonard Mlodinow)在新書《科學大歷史:人類從走出叢林到探索宇宙, 從學會問「為什麼」到破解自然定律的心智大躍進》(The Upright Thinkers: The Human Journey from Living in Trees to Understanding the Cosmos)就幫我們探索:千年來人類的好奇心和求知慾,把我們帶到哪裡去探索詩和遠方?這值得所有理工科學生和對科學好奇的朋友一讀。

-----廣告,請繼續往下閱讀-----

曼羅迪諾在《科學大歷史》帶我們鳥瞰完整的科學演進,深入探索影響科學思維的種種文化條件。

刻意練習

「一萬小時法則」是麥爾坎.葛拉威爾(Malcolm Gladwell)在暢銷書《異數:超凡與平凡的界線在哪裡?》(Outliers: The Story of Success)一書中指出,要成為某個領域的專家,需要至少一萬小時的練習。

然而,《刻意練習:原創者全面解析,比天賦更關鍵的學習法》(Peak: Secrets from the New Science of Expertise)卻告訴我們,光有練習的「量」是不夠的,還必須兼具練習的「質」,亦即必須「刻意練習」,才是決定個人成就高低的關鍵所在。

刻意練習》提出「心智表徵」的概念,刻意練習就是要練出高效率的心智表徵,那是一種對應某物品、某概念、一系列資訊的心智結構,讓高手的心智能如直覺般地快速運算。對一位有心向學的好青年來說,沒讀過《刻意練習》,別說你想成為頂尖高手。

毒特物種

要談這些毒液的優異毒家報導,非這本《毒特物種:從致命武器到救命解藥,看有毒生物如何成為地球上最出色的生化魔術師》(Venomous: How Earth’s Deadliest Creatures Mastered Biochemistry)莫屬!

作者克莉絲蒂.威爾科克斯(Christie Wilcox)特立毒行地談了好多種毒液的毒具匠心,各種毒特物種在她的生花妙筆下毒來毒往,真的是毒開生面。

攀樹人

很多城市人一輩子都沒有爬上樹的經驗,這甚至是多數時候連想都不會想到的活動吧。

讀了這本《攀樹人:從剛果到祕魯,一個BBC生態攝影師在樹梢上的探險筆記》(The Man Who Climbs Trees),得知作者艾爾德里德(James Aldred)小時候對樹產生特別的興趣,原先讓我感覺是個好陌生、好罕見的愛好,可是讀完後卻有種不攀樹才是不正常的錯覺。

艾爾德里德開頭就描寫了在好幾十公尺上空的吊床過夜,一直讀到後頭的章節,一再體驗高潮迭起的劇情,彷彿和作者一樣在樹上經歷各種出生入死的奇遇後,我甚至感覺在地上的生活好空虛、虛幻,而在樹上的生活可能才是踏實、真實的。

亂,但是更好

  • 編按:亂,但是更好》此書於 7 月份重新出版並更名,原書名為《不整理的人生魔法:亂有道理的!》。

這本《亂,但是更好:亂中取勝、即興發揮、攻其不備、創造機會》(Messy: The Power of Disorder to Transform Our Lives)讀起來趣味橫生,用許多的故事鋪陳讓人見識一個跟過去認知很不一樣的世界。

家長老師循循善誘地教導我們,要好好用心地打理居所和辦公環境,才能提高生活品質和工作效率。《亂,但是更好》卻用一個又一個實際又重大的案例,告訴我們不需太過擔心混亂的狀況,因為雜亂無章自有其內在的力量,能提升我們的創造力和韌性,而且效果還超乎想像。

書籍的推薦就到這裡,你也想建立自己的讀書品味嗎?先想一想自己讀什麼主題的書籍或文章可以廢寢忘食吧!把喜歡的作者的作品都收集來讀,也把相關主題的書籍系統地閱讀,你也能夠成為小達人。如果不知從何開始,各大書店的選書也是很好的參考,或者引起熱門話題的書籍,能夠提供我們更廣寬的視角,跳脫舒適圈開闊視野。書海廣闊趣味無窮,多多接觸你也會在書海中樂在其中無法自拔的!

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
2

文字

分享

0
1
2
從昏迷到死亡錯覺:摩托車事故後的科塔爾症候群——《大腦獵奇偵探社》
行路出版_96
・2024/08/24 ・3933字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

摩托車事故後的幻覺

一九八九年十月,二十八歲的股票經紀人,姑且稱之為威爾(Will),發生了嚴重的摩托車意外。他腦部受到重創,陷入昏迷,雖然幾天後恢復意識,但他在醫院裡住了好幾個月,治療腦傷以及其他損傷引起的感染。

到了隔年一月,威爾的復原情況非常良好,已經可準備出院。他的身上有些問題永遠好不了,例如右腿行動困難以及喪失部分視覺。但是最困擾他的問題發生在他的腦袋裡:他相當確定自己已經死了。威爾的母親為了幫助兒子早日康復,帶他去南非度假。但南非的炎熱讓威爾相信這個地方就是(真正的)地獄,因此更加確定自己必定是個死人。母親難以置信地問他是怎麼死的,他說了幾個可能的死因。有可能是血液感染(這是治療初期的風險),也有可能是他之前打黃熱病疫苗之後的併發症。此外他也提出自己可能死於愛滋病,雖然他沒有感染 HIV 病毒或愛滋病的任何跡象。

威爾康復出院,但堅信自己已經死亡。連他母親帶他去南非度假,都被他認為自己身在地獄。 圖/envato

有一種強烈的感覺纏上威爾,揮之不去─他覺得身旁所有東西都……這麼說好了……不是真的。車禍前熟悉的人和地方,他現在都不太認得,所以他愈發覺得自己住在一個奇怪又陌生的世界。連母親都不像真的母親。其實在南非度假的時候,威爾就曾這麼說過。他認為真正的母親在家裡睡覺,是她的靈魂陪伴他遊歷陰間。

喪失現實感:大腦如何捏造非理性的死亡解釋

四十六歲的茱莉亞(Julia)有嚴重的雙相情緒障礙症(bipolar disorder),入院時她相信自己的大腦和內臟都已消失。她覺得她早已不存在,只剩下一副空殼般的軀體。她的「自我」消失了,所以她(無論從哪個意義上看來都)是個死人。她不敢泡澡也不敢淋浴,因為怕自己空空如也的身體會滑進排水孔流走。

-----廣告,請繼續往下閱讀-----

三十五歲的凱文(Kevin)憂鬱的情況愈來愈嚴重,幾個月之後,腦海中的念頭漸漸演變成妄想。一開始,他懷疑家人正在密謀要對付他。接著,他認為自己已經死了,也已經下地獄,只是身體仍在人間。現在這副身體是空殼,裡面一滴血液也沒有。為了證明自己的想法沒錯,他從岳母家的廚房裡拿了一把刀,反覆戳刺手臂。他的家人明智地叫了救護車,將他送進醫院。

科塔爾症候群患者的大腦顯然有問題。發病之前,通常發生過嚴重的神經系統事故(中風、腫瘤、腦傷等等),或出現精神疾病(憂鬱症、雙相情緒障礙症、思覺失調症等等)。不過這些情況導致科塔爾症候群仍屬少見,神經科學家尚未找到明確原因,可以解釋科塔爾症候群患者的大腦為何如此與眾不同。再加上每個患者的症狀都不太一樣,判斷起來更加困難。話雖如此,有些共同症狀或許能提供蛛絲馬跡,幫助我們了解這種症候群。

科塔爾症候群的患者經常說,他們身處的世界莫名其妙變得很陌生。多數人看到自己曾邂逅多次的人事物時,大腦都能點燃辨認的火花,但這件事不會發生在科塔爾症候群的患者身上。舉例來說,患者可能認得母親的臉,但就是莫名的感到陌生。她似乎缺乏某種無形──但重要的─個人特質,所以患者即使看到這個生命中最重要的人,卻無法產生預期中的的情感反應。

患者也可能會有疏離感,彷彿自己是這世界的旁觀者,而不是參與者。術語叫做人格解離(depersonalization)。此外,周遭的一切都散發超現實的氣氛,讓患者相信自己生活在擬真的夢境裡─這是一種叫做喪失現實感(derealization,亦稱失實症)的症狀。科塔爾症候群患者體驗到的陌生感、人格解離、喪失現實感,都會嚴重扭曲他們眼中的現實世界。不難想像這會讓大腦難以負荷。

-----廣告,請繼續往下閱讀-----

大腦碰到如此矛盾的情況會拚命尋找原因。對大腦來說,能夠合理解釋各種生活事件是非常重要的。若找不到合理的解釋,世界很快就會變成無法預測、無法理解,最終變得無法忍受。因此為了清楚解釋所經歷的事情,大腦會無所不用其極。如果在經驗裡出現大腦難以合理解釋的元素,它會退而求其次:自己捏造合理的答案。

每個人的大腦都會這麼做,而且隨時隨地都在做,只是我們察覺不到。例如有研究發現,我們每天做的決定不計其數─從什麼時間吃點心,到要跟誰出去約會──但我們做這些決定時總是不假思索。我們好像大部分的時間都處於自動駕駛模式。可是每當有人問我們為什麼做這樣的決定時,大腦幾乎總能想出好答案來合理化我們的選擇。但有時候,它想出來的答案完全不合理。

有一項研究讓男女受試者看兩名女性的照片,請他們選出比較好看的那位。受試者做出決定之後,研究人員隨即將照片放在他們面前,要他們解釋為什麼選這個人。但受試者不知道的是,研究人員會偷偷調換照片(占比約二十%),要受試者解釋自己為什麼挑中這個(他們明明沒挑中的)人。大多數受試者都沒有識破研究人員的詭計。他們通常不會質疑照片上的人不是自己選的那個,而是當場想出合理的答案,說明為什麼覺得眼前照片上的人比較好看,例如「她看起來很辣」,或是「我覺得她比較有個性」(兩張照片差異甚大,所以受試者不是單純的認錯人)。

這種非刻意的捏造叫做虛談(confabulation),大腦做這件事的頻率比你以為的更高。虛談的原因可能有百百種,但這似乎是大腦遇到自己無法明確解釋的事件時,會使用的策略。神經科學家相信,科塔爾症候群患者的大腦也做了類似的事情。從這個角度來說,科塔爾症候群的起點,是前面提過的幾種狀況(例如創傷、腫瘤等等)導致大腦功能異常。

-----廣告,請繼續往下閱讀-----

大腦合理性檢查機制失靈

大腦功能異常導致現實感喪失與人格解離,進而使患者覺得周遭的一切很陌生,欠缺他們預期中的「真實感」。於是患者的大腦努力理解這樣的經驗,瘋狂尋找合理的解釋。基於不明原因,科塔爾症候群患者容易把注意力轉向內在,認為如果外在經驗不對勁,毛病可能出在自己身上。

結果基於某些更加不明的原因,大腦找到的解釋是他們已經死了、正在腐爛、被邪靈附體,或其他稀奇古怪的、與存在有關的原因。這一連串環環相扣的假設聽起來有點誇張。畢竟,喪失現實感這樣的症狀沒那麼少見;很多人(某些估計高達七十五%)會有類似的─但非常短暫的─喪失現實感的經驗。但有這種經驗的人,幾乎都不會認為自己已經死了。

顯然,科塔爾症候群患者的大腦裡還發生了別的事情。神經科學家相信,或許是重要的合理性檢查機制(plausibility-checking mechanism)沒有發揮作用。大腦偶爾會錯誤解讀生活裡發生的事,但我們通常不會想出一個明顯不合理的解釋。

或許是因為大腦錯誤解讀現實,讓科塔爾症患者對現實理解出現錯覺。 圖/envato

大腦似乎有一套用來評估邏輯的機制,確保我們的邏輯可以通過合理性的檢驗。在多數有過喪失現實感或人格解離等症狀的人身上,這套合理性檢查機制能使他們立刻否決「我感覺到自己脫離現實,是因為我已經死了」的想法;大腦認為這個提議很荒唐,很可能再也不會想起它。但是在科塔爾症候群的患者身上,這套合理性檢查機制顯然壞掉了。大腦將脫離現實的感覺歸因於他們已經死了,這個想法不知為何保留了下來,而大腦也認為這個解釋站得住腳。於是在其他人眼中絕對是妄想的念頭,成了他們深信不移的答案。

-----廣告,請繼續往下閱讀-----

醫生在為科塔爾症候群患者(以及後面會介紹的另外幾種行為古怪的精神障礙患者)尋找腦部損傷時,經常發現腦傷位於右腦。神經科學家因此假設合理性檢查機制位於右腦。大腦分為兩半,叫做大腦半球(cerebral hemispheres)。左腦半球和右腦半球的劃分簡單有力,因為有一道裂縫將大腦一分為二。乍看之下,左右兩邊一模一樣,但受過訓練的神經科學家用肉眼就能看出兩者並非完全對稱。透過顯微鏡觀察,差異更加顯著。因此左腦與右腦的功能有差異或許不足為奇。

長期以來,一直有人拿這些差異做文章,用錯誤的方式來解讀左腦和右腦的不同,以偏概全又過於誇大。例如斬釘截鐵地說,有些人較常使用右腦,也就是「右腦人」,所以擅長創意思考,「左腦人」則比較有邏輯。這是大家耳熟能詳的觀念,但神經科學家認為這只是迷思。實際上,我們使用大腦時不會特別偏左或偏右,而是完整使用兩個半腦。不過有些功能(例如語言的某些能力)會比較依賴某一個大腦半球。所以科塔爾症候群與右腦損傷有關的假設,並非全然不可能。

但科塔爾症候群(可能也包括合理性檢查機制)與右腦的關聯性依然只是假設,只不過許多(但不是所有)神經科學家深入研究過的科塔爾症候群案例,都支持這項觀察結果。無論合理性檢查機制確切位於何處,但在推演患者如何發展出科塔爾症候群的通用模型中,這個假設的機制扮演著重要角色。首先,大腦功能異常造成疏離症狀,例如喪失現實感與人格解離。大腦出於習慣,會先試著為眼前的情況找答案。問題是,仔細檢查並淘汰不合理答案的能力也受損了,於是大腦只好捏造稀奇古怪的答案,告訴自己身體已經死了(或是邪靈附體、正在腐爛等等),而且不會因為這個答案不合理而淘汰它。

有人認為,這種階段性的妄想形成過程也適用於另一些妄想症。這些妄想症的症狀也很古怪,不亞於科塔爾症候群。

-----廣告,請繼續往下閱讀-----

——本文摘自《大腦獵奇偵探社:狼人、截肢癖、多重人格到集體中邪,100個讓你洞察人性的不思議腦科學案例》,2024 年 7 月,行路出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

0

2
1

文字

分享

0
2
1
她堅信自己已死:中風婦人的幻覺揭開科塔爾症候群的面紗——《大腦獵奇偵探社》
行路出版_96
・2024/08/22 ・2792字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

海爾妲的中風與奇異妄想

十八世紀末,七十歲的丹麥婦人海爾妲(Hilde)正在家中煮飯時,大腦突然缺血,情況不妙。海爾妲運氣很差,因為人類的腦細胞對缺血的耐受度近乎於零。少了血液,神經元(大腦裡的主要細胞)很快就會缺少氧與葡萄糖等必需物質;神經元會在短短幾分鐘內開始死去。若持續缺血,神經元會以驚人的速度消亡──每分鐘死掉將近兩百萬個。這一分鐘內消亡的神經纖維長度可達約十二公里(神經纖維是神經元向外延伸的軸突,負責在細胞之間傳遞訊號)。 簡言之,缺血會摧毀大腦。這種可怕的情況叫做中風,海爾妲中風了,她因此陷入昏迷。

海爾妲的案例細節來自一篇發表於一七八八年的科學論文。這篇論文沒有提到海爾妲的家人對她昏迷四天後醒來做何反應,但可以想見他們應該如釋重負。不過聽到海爾妲堅稱自己是死人,剛剛放下心中大石他們大概再次遭受暴擊。請注意,海爾妲說的不是她有瀕死經驗──看見隧道盡頭的那道光,最後一刻又被拉回人間──不是,她在與家人交談的時候說自己不是活人。

海爾妲並非是因為經歷過頻死經驗,才認定自己已死,而是談話時說自己不是活人。 圖/envato

我們是透過十八世紀瑞士科學家查爾斯.邦納(Charles Bonnet)的文章認識海爾妲的。 邦納是專業律師,但如同那個年代大部分的天才人物,他涉獵多個不同領域,決定投入科學研究就像我們現在決定追新劇一樣輕鬆隨意。令人驚訝的是,儘管態度輕鬆隨意,他的研究可是成果豐碩。

例如,邦納記錄了蚜蟲的無性繁殖過程,率先證實性別不是繁殖的先決條件(園丁都很熟悉也很討厭這種惱人的小蟲子)。他的其他昆蟲學研究,也為發現昆蟲如何呼吸提供重要助力。後來他的興趣轉向植物學,他的研究為後來發現二氧化碳與氧經由葉子進出植物奠定了基礎。以一個沒受過正式科學訓練、研究科學僅是嗜好的人來說,他還算厲害。

-----廣告,請繼續往下閱讀-----

我們運氣不錯,因為邦納也對異常的人類行為有興趣,例如海爾妲。老實說,海爾妲不是她的真名。也有可能是。邦納在描述她的情況時從未提到她的名字。如同科學文獻裡的許多醫學案例,邦納沒有寫下海爾妲的真名大概是為了保護她的隱私。我在此用這個常見的丹麥名字,方便我們討論她。

海爾妲中風之前,心理健康不曾出過大問題,所以她的奇特行為更加令人費解。家人想說服她相信自己並不是死人,畢竟她正好好坐在那兒跟大家講話。她康復了,這應該是對生命心懷感恩的時刻。但海爾妲一點也不開心。她變得暴躁易怒,責怪家人沒有為她舉辦告別式,實在太不像話。她要求家人幫她換裝,把她放進棺材裡,舉辦一場配合她身分地位的葬禮。

大家都希望海爾妲的幻覺會漸漸消失,但她的堅持有增無減,還開始口出威脅。似乎只有順從她的意願才能真正安撫她。她的家人半推半就地同意了。他們用裹屍布包裹她(十八世紀的丹麥顯然流行使用裹屍布),假裝正在為她安排葬禮。海爾妲對裹屍布的包法百般挑剔,用老師的嚴格口吻抱怨裹屍布不夠潔白,最後她終於安穩躺下、漸漸入睡。

家人為她脫掉裹屍布,把她挪到床上,希望這場鬧劇可以到此為止。沒想到海爾妲醒來之後依然故我,立刻堅持自己必須下葬。家人不願意真的把海爾妲埋進土裡(即使只是為了安撫這位吵鬧不休的病人,他們也不肯假裝將她下葬),所以他們只剩一條路可走:等待這奇怪的幻覺自動消失。

-----廣告,請繼續往下閱讀-----

後來幻覺真的消失了──可惜只是暫時的。每隔幾個月,幻覺就會從頭再來一遍,海爾妲深信她已經死了,不明白為什麼只有她看清這個事實。

海爾妲在認知現狀時,對於自己是「已死」的狀態深信不疑。 圖/envato

科塔爾症候群:明明活著,卻堅稱自己死了?

在邦納記錄這個事件之前,科學文獻裡沒有出現過海爾妲這樣的案例。但在那之後,科學文獻收錄了許多類似案例。由於類似案例夠多,我們可以相信海爾妲不是神經學上的偶發特例,這是一種症狀明確的神經疾病,而且症狀或可預測。這種疾病非常罕見,很難預估可靠的發生頻率,但沒有罕見到無人知曉,它的名字是:科塔爾症候群(Cotard’s syndrome)

病名源自法國神經學家朱爾斯.科塔爾(Jules Cotard),他生活於十九世紀下半葉。一八七四年,科塔爾在巴黎近郊的一個小鎮工作,碰到一名患者說自己沒有腦、神經和腸子。她宣稱自己不需要吃東西也能活著,而且感覺不到疼痛。關於疼痛的部分似乎可信:科塔爾的文字紀錄說他「把大頭針深深刺進」她的皮膚裡,她卻毫無反應(和現在相比,十九世紀的醫生不用太擔心醫療糾紛)。

科塔爾稱這位病患為 X 小姐,她的情況不是相信自己是死人,而是認為自己處於某種中間狀態──既非生,亦非死。她擔心自己會永遠困在這種不明不白的狀態裡,所以渴望真的死去。她認為只有活活燒死──雖然缺少有力的證據──才能讓她得到真正的死亡。她試著自己動手證明這個想法,所幸沒有成功。科塔爾對 X 小姐的情況很感興趣,他查找過去有沒有類似案例,沒想到居然找到好幾個。有人說自己正在慢慢腐爛,有人說自己沒有血液或是沒有身體,還有人被拋進永恆的虛無裡,或是處於某種存在的分歧狀態。

-----廣告,請繼續往下閱讀-----

科塔爾認為,他們的症狀屬於同一類疾病。他稱之為否認妄想(délire de negations)。妄想指的當然是患者對明顯虛假的事情深信不疑,科塔爾用否認一詞來形容這些病患最顯著的特徵:他們否認自己擁有(對多數人來說)生存不可或缺的東西。

科塔爾過世幾年後,另一位科學家在寫到否認妄想時,稱這種疾病為科塔爾症候群。從那之後,這種疾病曾被稱為科塔爾症候群、科塔爾妄想症,有時也叫做活死人症候群。科學家大多避免使用「活死人」這個詞,因為自稱死亡只是科塔爾症候群的諸多表現方式之一(而且這種不科學的誇飾用語,大部分科學家一聽就尷尬),前面介紹過的幾種存在狀態反而比較常見。

科塔爾症候群還有許多其他症狀,例如冷漠、感覺變敏感或變遲鈍、感覺不到飢餓或口渴(並因此絕食或脫水)、出現幻覺、焦慮、嚴重憂鬱、自戕、有自殺傾向等,這裡列出的僅是一小部分。患者否認自身存在,這讓他們的病情聽起來像小說情節。

——本文摘自《大腦獵奇偵探社:狼人、截肢癖、多重人格到集體中邪,100個讓你洞察人性的不思議腦科學案例》,2024 年 7 月,行路出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing