Loading [MathJax]/extensions/tex2jax.js

2

6
2

文字

分享

2
6
2

拿到嫌犯的手機了,然後呢?想抓到罪證可沒那麼簡單!初探數位鑑識的奧祕

活躍星系核_96
・2020/11/08 ・3242字 ・閱讀時間約 6 分鐘 ・SR值 518 ・六年級

  • 作者 / 慕容峰 │ 從事數位鑑識工作多年,在分析證物的過程中,彷彿側耳傾聽證物娓娓道來一般,同時審慎客觀地仔細分析察看,即便是旁枝末節也不輕易放過,浸淫其中而樂此不疲。

智慧型手機已然成為人們生活中不可或缺的一部份,舉凡記事、行程提醒、影音娛樂、購物消費、社群聊天、導航等等,皆可一機搞定滿足食衣住行育樂各種需求。

正因為如此,我們使用智慧型手機過程中所留存的各種資訊,其實就約等於使用者日常生活的紀錄。

智慧型手機成為現今提取犯罪證據的重點物品。圖/pexels

試想看看,倘若鑑識人員可以拿到嫌疑犯的智慧型手機(以下簡稱為手機),是不是就可以知道找出嫌疑犯的各種生活小細節呢?由此可知,手機的取證,已經逐漸成了犯罪調查的重中之重。

只要能有效提取手機裡的各項跡證,便有助於釐清有無與案情相關之處!

犯罪調查中的重點:智慧型手機!

對鑑識人員而言,雖然手機與電腦同樣都可以當作證物,卻有著很大的差異。

-----廣告,請繼續往下閱讀-----

桌機、筆電的硬碟是可以拆卸的,然而手機是使用快閃記憶體(Flash)來儲存資料,而且直接焊在電路板上,再加上手機只有一個 USB 埠可資利用的情況之下,如何自手機中提取跡證,便成了鑑識人員的一大挑戰。

手機只有一個 USB 埠,增加鑑識人員提取跡證的難度。圖/作者提供。

首先,打開手機與工作站的 USB 通道!

為了保護手機的資料安全,手機廠商通常會限制 USB 連線後的權限,也就是說,當我們將手機用 USB 連上工作站(電腦)時,工作站無法馬上直接識別手機,也無法讀取手機裡面的資料。

因此當鑑識人員使用 USB 將手機連上準備好的工作站後,第一要務便是要讓手機可被工作站順利識別,建立手機與工作站之間的基礎信任關係,不然就什麼也做不了,更別說提取資料了。

  • 為了方便說明,在此我們先將情況簡化,假設鑑識人員非常幸運,拿到的手機沒有被鎖定。

這個時候,鑑識人員可以視情況在工作站安裝手機的驅動程式,接下來,讓手機透過 USB 連上工作站,並在手機中的「設定」中找到「開發人員選項」,開啟「USB 偵錯」功能,打開手機與工作站之間的 USB 通道。

-----廣告,請繼續往下閱讀-----

拿來控制手機的「遙控器」:ADB

打開通道然後呢?鑑識人員究竟要怎麼做,才能提取手機內的資料?在此,我們就不得不先談談所謂的 ADB 啦! ADB 是 Android Debug Bridge 的縮寫,它就像是工作站拿來掌控手機的遙控器,當我們透過 USB 把手機連接到電腦後,就可以利用 ADB 的指令來控制、調教這一支手機。

完成這些步驟後,鑑識人員可以在工作站執行 ADB 的指令「lsusb」,來測試看看工作站有沒有辦法辨識 USB 裝置,如果執行獲得如下圖結果,就表示有順利辨識出連接的 USB 裝置。

順利辨識出所連接的 USB 裝置為行動裝置的結果圖。圖/作者提供。

接著,我們執行指令 adb devices 以查看手機目前的狀態。

建立手機跟工作站之間的基礎信任關係!

執行結果如下圖所示,圖中「BXXXXXDR」這個值,就像是手機在電腦中的裝置名字(識別值),手機的狀態為後面的「offline」 ,意即「離線」的意思。

-----廣告,請繼續往下閱讀-----
進行取證時,需同時留意工作站及手機的狀態。圖/作者提供。

咦?剛剛不是已經接好了 USB 了嗎?為什麼手機的狀態還是離線呢?這時候我們必須將視線移開工作站的螢幕畫面,回頭看看手機螢幕上的動靜。

此時,我們可以發現手機螢幕上彈出了如下圖的警示訊息,為了能於此工作站上以 ADB 指令控制這支手機,並把資料提取出來,務必要勾選「一律允許透過這台電腦進行」並點擊「確定」,這樣才能讓手機跟電腦之間建立永久、有效的信任關係。

手機跳出的警示訊息。圖/作者提供。

一旦完成之後,就可以再次執行指令 adb devices。所得到的執行結果如下圖所示,狀態值由「offline」變成了「device」,即代表電腦成功辨識手機,並處於正常開機模式。

狀態值由「offline」變成了「device」。表示工作站及手機已建立信任關係,且下次連接無須再行確認。圖/作者提供。

由於信任關係已建立完成,在未撤銷的情況下,後續當這支手機再次接入此工作站時,便不會再次要求手機「允許 USB 偵錯」了。

-----廣告,請繼續往下閱讀-----

你從來都不是手機心中「最重要」的人

接下來,鑑識人員要想辦法獲得手機的系統最高權限,讓工作站有權利提取手機的一切。

在這裡,要跟各位說明一件事,那就是「你未曾真正擁有過你的手機」。

連上廁所,我都不會讓手機離開我耶!為什麼它仍然不屬於我?圖/Giphy

各位想必不以為然,「手機的主人明明就是我,每天陪我吃喝拉撒睡,睡前、睡醒第一個看到的人都是它,它怎麼不是我的?」

但實情是,當各廠牌的手機一出廠,手機的預設環境都只是一般使用者環境,也就是說,你,只是這支手機的一般使用者,不是手機系統中的最高權限者。

為什麼廠商要這麼做?原因很單純,為了避免高昂的維修成本。

試想看看,如果每個使用者都擁有手機的最高權限,相對就有較高的機會將手機玩殘,一旦手機變磚(手機弄壞以至於完全沒反應),使用者就只能帶著它去找廠商幫自己擦屁股。廠商自然不樂見如此,因此,廠商在手機出廠時就會預設:僅讓使用者以一般權限帳號運行。

-----廣告,請繼續往下閱讀-----

普通消費者在一般使用過程中,不太容易察覺到這件事情,只有某些非常規操作,像是「刷機」或「root」的玩家,才會用到比較高的系統權限。

提升你的地位,才能帶走手機的全身心

「提權」,意即將自己的操作權限由一般使用者提升至「系統最高權限」,造訪手機內部的任何路徑、存取手機的所有檔案。

對於鑑識人員來說,提權就是取得重要跡證的關鍵,一旦擁有裝置的至高無上權後,就可以從手機中獲得嫌疑犯的詳細資料、相關罪證。例如,當鑑識人員來到 Android 手機的 App 所在路徑 /data/data/ ,執行「ls –al」指令,就可以順利列出了該路徑下的資料夾及檔案。

執行「ls –al」後。圖/作者提供。

嫌疑犯與他人的通訊紀錄,時常也會成為重要的犯罪證據之一,倘若鑑識人員需要針對 Line 進行取證,便可在/data/data/路徑下查找是否有與 Line 相關的 「package name」,例如負責儲存 Line 相關資料的「jp.naver.line.android」資料夾。

-----廣告,請繼續往下閱讀-----

當我們需要調閱 Line 裡面的聊天訊息時,鑑識人員會切換至「jp.naver.line.android」中的「databases」,裡頭便有著存放聊天訊息的關鍵檔案!

讀取 Line 的 databases資料夾後,可以找到內部的檔案列表。圖/作者提供。

鑑識的奧義:永不言棄,突破手機的「心防」!

透過鑑識人員與手機之間的「攻心大戰」中,想必讀者們對於智慧型手機的取證有了初步的了解,一窺鑑識人員不斷攻略手機的生活。

儘管面臨著重重難關及挑戰,鑑識人員從不輕言放棄,在巴掌大小的手機之間攻城掠地,力求掌握提取跡證的關鍵契機,為還原真相及打擊犯罪貢獻一己之力。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
用顯微鏡查「秋毫」 找出破案關鍵
顯微觀點_96
・2024/10/08 ・1865字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

圖/顯微觀點

用於鑑識科學的比較顯微鏡受到 1929 年的情人節黑幫大屠殺事件影響,有了進一步的發展。但是,除了比較顯微鏡外,還有哪些顯微鏡應用在鑑識科學呢?這篇文章帶你來一探究竟。

通常物證有許多種類和樣式,因此調查中會使用多種類型的顯微鏡和鑑識工具。現場通常使用的簡單放大鏡或低倍率(7-50X)立體顯微鏡,可幫助檢測和收集微量證據。另外,也會針對犯罪現場進行拍照,建立和犯罪行為之間的關聯。

彈道、毛髮、纖維和工具痕跡比較

還記得當時卡爾文‧戈達德(Calvin Goddard)協助調查情人節黑幫大屠殺案件,為了釐清涉案槍枝來源,而開發了識別子彈和彈殼的比較顯微鏡,最後確認槍枝並非來自警方。

-----廣告,請繼續往下閱讀-----

比較顯微鏡是一種可並排分析樣本的設備,由透過光橋連接的兩個顯微鏡組成。樣本被放置在兩個載物台上,並使用連接兩個觀察頭光橋中的內置分割畫面同時觀察、比較可疑和已知的樣本。

用於比較彈道的比較顯微鏡具有長工作距離光學元件,還包括子彈座、鹵素或 LED 照明選項、偏光濾光片、放大倍率轉換器以及用於調整放大倍率和工作距離的輔助鏡頭。由於每支槍管內表面的製造痕跡都不相同,留在彈頭的細微特徵也不會一致。

加上射擊時,從裝填子彈到退出彈殼,彈殼在各步驟因為和槍枝組件的相互作用而留下獨特的痕跡,例如:撞針撞擊底火的撞針痕、火藥爆炸,彈殼向後撞擊槍機面所形成的彈底紋、只有具抓子鈎槍枝才會留下的抓子痕等。因此透過比較顯微鏡的比對鑑定可以用來確認涉案槍枝。

除了彈道比對外,比較顯微鏡還可以透過並排比較來確認簽名真偽,或是在確定歷史日期時使用。

-----廣告,請繼續往下閱讀-----

凡「做過」必留下痕跡

根據法國法醫學家羅卡(Edmond Locard)提出的羅卡定律(Locard exchange principle, 又稱羅卡交換定律):「凡兩個物體接觸,必會產生轉移現象」,也就是犯罪(嫌疑)者必然會帶走一些東西、也會留下一些東西,現場必會留下微量跡證。

因此,犯罪現場除了槍枝、子彈、彈頭和彈殼等物證外,槍擊殘留物(gunshot residues,GSR)或微量跡證(trace evidence)也是破解案件的關鍵。GSR是由槍擊後槍口排出的所有顆粒組成,主要包括炸藥底火、推進劑(火藥)、穩定劑和其他添加劑的燃燒或未燃燒完的顆粒。

GSR 顆粒最常見的特徵是其形狀和化學成分,華萊士(J.S. Wallace)和麥奎蘭(J. McQuillan)發現,所有檢測到的顆粒尺寸均在1微米到12微米之間,呈球形和不規則狀,主要成分為鉛、銻和鋇,可用掃描電子顯微鏡(SEM)配備能量色散X射線光譜偵測器加以檢測鑑定。

GSR通常是從嫌疑槍手的手上或其他物體上收集到,如果嫌疑者手上存在特徵性 GSR,通常會推測此人可能是開槍射擊者、開槍時靠近槍支,或處理被殘留物污染的槍枝或其他物體。

-----廣告,請繼續往下閱讀-----
J.S. Wallace和J. McQuillan使用SEM搭配能量色散X射線光譜偵測器比較K58和Gevelot手槍的GSR。
J.S. Wallace 和 J. McQuillan 使用 SEM 搭配能量色散 X 射線光譜偵測器比較 K58 和 Gevelot 手槍的 GSR。圖/顯微觀點

而在暴力犯罪中,體液是常見的證據。雖然現今常用 DNA分析,但顯微鏡仍發揮其作用。尤其位相差顯微鏡,可將樣品所造成的細微光程差轉變成明顯的光強度對比,能清楚觀察到在明野下透明的樣品,因此常用於自強姦受害者收集的陰道拭子中尋找精子。

另外,土壤也是調查犯罪的重要關鍵。偏光顯微鏡可對土壤顆粒的顏色、形狀和大小,以及當中的礦物質進行分類和分析。因此嫌疑犯鞋子上、屍體運送到埋葬地點的車輛外側或內部的土壤證據,都可能對調查起很大的作用。

土壤鑑測也很重要
土壤鑑測也很重要。圖/Adobe Stock
  • Bullets for my Valentine
  • Lee, H. C. (1998). Applying Microscopy in Forensic Science. Microscopy and Microanalysis4(S2), 490–491
  • Wallace, J.S., & McQuillan, J. (1984). Discharge Residues from Cartridge-operated Industrial Tools. Journal of The Forensic Science Society, 24, 495-508.
  • 孟憲輝(2015)。物證鑑識在槍擊現場偵查上的應用。刑事政策與犯罪研究論文集,18,313-340。
  • Gunshot Residue (GSR)

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從 3G 到 6G:行動通信的進化之路
數感實驗室_96
・2024/06/20 ・825字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

摩斯發明電報和貝爾發明電話,這些似乎是上古時代的科技,其實都發生在過去兩百年內。而手機,作為近五十年來的產物,又經歷了怎樣的演變呢?

讓我們來探討行動通信是如何從 3G 發展到 6G 的。

1989 年,一張名為《The Great Radio Controversy》的搖滾專輯發布,迅速走紅,登上告示牌熱門榜。雖然專輯的歌詞與通信無關,但它的名字「偉大的無線電爭議」確實讓人聯想到無線通信的歷史。而這張專輯的樂團名為 Tesla,沒錯,這正是向那位傳奇的天才科學家特斯拉致敬。特斯拉對無線通信的貢獻可謂奠基石般的重要,而從 3G 到 6G,行動通信技術又經歷了哪些突破和變革呢?讓我們一起深入了解。

-----廣告,請繼續往下閱讀-----

行動通信的歷史雖然只有短短幾十年,但其中包含的豐富內容實在說不完。從精彩的發明故事到商業競爭,再到行動通信所帶來的社會變革,每一個環節都值得深入探討。而在這集影片中,我們僅僅觸及了冰山一角。

下一集將深入探討 WiMAX 那成功的哥哥——Wi-Fi,也就是大家熟悉的無線區域網路技術。讓我們繼續探索這些改變世界的科技!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/