Loading [MathJax]/extensions/tex2jax.js

2

6
2

文字

分享

2
6
2

拿到嫌犯的手機了,然後呢?想抓到罪證可沒那麼簡單!初探數位鑑識的奧祕

活躍星系核_96
・2020/11/08 ・3242字 ・閱讀時間約 6 分鐘 ・SR值 518 ・六年級

-----廣告,請繼續往下閱讀-----

  • 作者 / 慕容峰 │ 從事數位鑑識工作多年,在分析證物的過程中,彷彿側耳傾聽證物娓娓道來一般,同時審慎客觀地仔細分析察看,即便是旁枝末節也不輕易放過,浸淫其中而樂此不疲。

智慧型手機已然成為人們生活中不可或缺的一部份,舉凡記事、行程提醒、影音娛樂、購物消費、社群聊天、導航等等,皆可一機搞定滿足食衣住行育樂各種需求。

正因為如此,我們使用智慧型手機過程中所留存的各種資訊,其實就約等於使用者日常生活的紀錄。

智慧型手機成為現今提取犯罪證據的重點物品。圖/pexels

試想看看,倘若鑑識人員可以拿到嫌疑犯的智慧型手機(以下簡稱為手機),是不是就可以知道找出嫌疑犯的各種生活小細節呢?由此可知,手機的取證,已經逐漸成了犯罪調查的重中之重。

只要能有效提取手機裡的各項跡證,便有助於釐清有無與案情相關之處!

犯罪調查中的重點:智慧型手機!

對鑑識人員而言,雖然手機與電腦同樣都可以當作證物,卻有著很大的差異。

-----廣告,請繼續往下閱讀-----

桌機、筆電的硬碟是可以拆卸的,然而手機是使用快閃記憶體(Flash)來儲存資料,而且直接焊在電路板上,再加上手機只有一個 USB 埠可資利用的情況之下,如何自手機中提取跡證,便成了鑑識人員的一大挑戰。

手機只有一個 USB 埠,增加鑑識人員提取跡證的難度。圖/作者提供。

首先,打開手機與工作站的 USB 通道!

為了保護手機的資料安全,手機廠商通常會限制 USB 連線後的權限,也就是說,當我們將手機用 USB 連上工作站(電腦)時,工作站無法馬上直接識別手機,也無法讀取手機裡面的資料。

因此當鑑識人員使用 USB 將手機連上準備好的工作站後,第一要務便是要讓手機可被工作站順利識別,建立手機與工作站之間的基礎信任關係,不然就什麼也做不了,更別說提取資料了。

  • 為了方便說明,在此我們先將情況簡化,假設鑑識人員非常幸運,拿到的手機沒有被鎖定。

這個時候,鑑識人員可以視情況在工作站安裝手機的驅動程式,接下來,讓手機透過 USB 連上工作站,並在手機中的「設定」中找到「開發人員選項」,開啟「USB 偵錯」功能,打開手機與工作站之間的 USB 通道。

-----廣告,請繼續往下閱讀-----

拿來控制手機的「遙控器」:ADB

打開通道然後呢?鑑識人員究竟要怎麼做,才能提取手機內的資料?在此,我們就不得不先談談所謂的 ADB 啦! ADB 是 Android Debug Bridge 的縮寫,它就像是工作站拿來掌控手機的遙控器,當我們透過 USB 把手機連接到電腦後,就可以利用 ADB 的指令來控制、調教這一支手機。

完成這些步驟後,鑑識人員可以在工作站執行 ADB 的指令「lsusb」,來測試看看工作站有沒有辦法辨識 USB 裝置,如果執行獲得如下圖結果,就表示有順利辨識出連接的 USB 裝置。

順利辨識出所連接的 USB 裝置為行動裝置的結果圖。圖/作者提供。

接著,我們執行指令 adb devices 以查看手機目前的狀態。

建立手機跟工作站之間的基礎信任關係!

執行結果如下圖所示,圖中「BXXXXXDR」這個值,就像是手機在電腦中的裝置名字(識別值),手機的狀態為後面的「offline」 ,意即「離線」的意思。

-----廣告,請繼續往下閱讀-----
進行取證時,需同時留意工作站及手機的狀態。圖/作者提供。

咦?剛剛不是已經接好了 USB 了嗎?為什麼手機的狀態還是離線呢?這時候我們必須將視線移開工作站的螢幕畫面,回頭看看手機螢幕上的動靜。

此時,我們可以發現手機螢幕上彈出了如下圖的警示訊息,為了能於此工作站上以 ADB 指令控制這支手機,並把資料提取出來,務必要勾選「一律允許透過這台電腦進行」並點擊「確定」,這樣才能讓手機跟電腦之間建立永久、有效的信任關係。

手機跳出的警示訊息。圖/作者提供。

一旦完成之後,就可以再次執行指令 adb devices。所得到的執行結果如下圖所示,狀態值由「offline」變成了「device」,即代表電腦成功辨識手機,並處於正常開機模式。

狀態值由「offline」變成了「device」。表示工作站及手機已建立信任關係,且下次連接無須再行確認。圖/作者提供。

由於信任關係已建立完成,在未撤銷的情況下,後續當這支手機再次接入此工作站時,便不會再次要求手機「允許 USB 偵錯」了。

-----廣告,請繼續往下閱讀-----

你從來都不是手機心中「最重要」的人

接下來,鑑識人員要想辦法獲得手機的系統最高權限,讓工作站有權利提取手機的一切。

在這裡,要跟各位說明一件事,那就是「你未曾真正擁有過你的手機」。

連上廁所,我都不會讓手機離開我耶!為什麼它仍然不屬於我?圖/Giphy

各位想必不以為然,「手機的主人明明就是我,每天陪我吃喝拉撒睡,睡前、睡醒第一個看到的人都是它,它怎麼不是我的?」

但實情是,當各廠牌的手機一出廠,手機的預設環境都只是一般使用者環境,也就是說,你,只是這支手機的一般使用者,不是手機系統中的最高權限者。

為什麼廠商要這麼做?原因很單純,為了避免高昂的維修成本。

試想看看,如果每個使用者都擁有手機的最高權限,相對就有較高的機會將手機玩殘,一旦手機變磚(手機弄壞以至於完全沒反應),使用者就只能帶著它去找廠商幫自己擦屁股。廠商自然不樂見如此,因此,廠商在手機出廠時就會預設:僅讓使用者以一般權限帳號運行。

-----廣告,請繼續往下閱讀-----

普通消費者在一般使用過程中,不太容易察覺到這件事情,只有某些非常規操作,像是「刷機」或「root」的玩家,才會用到比較高的系統權限。

提升你的地位,才能帶走手機的全身心

「提權」,意即將自己的操作權限由一般使用者提升至「系統最高權限」,造訪手機內部的任何路徑、存取手機的所有檔案。

對於鑑識人員來說,提權就是取得重要跡證的關鍵,一旦擁有裝置的至高無上權後,就可以從手機中獲得嫌疑犯的詳細資料、相關罪證。例如,當鑑識人員來到 Android 手機的 App 所在路徑 /data/data/ ,執行「ls –al」指令,就可以順利列出了該路徑下的資料夾及檔案。

執行「ls –al」後。圖/作者提供。

嫌疑犯與他人的通訊紀錄,時常也會成為重要的犯罪證據之一,倘若鑑識人員需要針對 Line 進行取證,便可在/data/data/路徑下查找是否有與 Line 相關的 「package name」,例如負責儲存 Line 相關資料的「jp.naver.line.android」資料夾。

-----廣告,請繼續往下閱讀-----

當我們需要調閱 Line 裡面的聊天訊息時,鑑識人員會切換至「jp.naver.line.android」中的「databases」,裡頭便有著存放聊天訊息的關鍵檔案!

讀取 Line 的 databases資料夾後,可以找到內部的檔案列表。圖/作者提供。

鑑識的奧義:永不言棄,突破手機的「心防」!

透過鑑識人員與手機之間的「攻心大戰」中,想必讀者們對於智慧型手機的取證有了初步的了解,一窺鑑識人員不斷攻略手機的生活。

儘管面臨著重重難關及挑戰,鑑識人員從不輕言放棄,在巴掌大小的手機之間攻城掠地,力求掌握提取跡證的關鍵契機,為還原真相及打擊犯罪貢獻一己之力。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
用顯微鏡查「秋毫」 找出破案關鍵
顯微觀點_96
・2024/10/08 ・1865字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

用於鑑識科學的比較顯微鏡受到 1929 年的情人節黑幫大屠殺事件影響,有了進一步的發展。但是,除了比較顯微鏡外,還有哪些顯微鏡應用在鑑識科學呢?這篇文章帶你來一探究竟。

通常物證有許多種類和樣式,因此調查中會使用多種類型的顯微鏡和鑑識工具。現場通常使用的簡單放大鏡或低倍率(7-50X)立體顯微鏡,可幫助檢測和收集微量證據。另外,也會針對犯罪現場進行拍照,建立和犯罪行為之間的關聯。

彈道、毛髮、纖維和工具痕跡比較

還記得當時卡爾文‧戈達德(Calvin Goddard)協助調查情人節黑幫大屠殺案件,為了釐清涉案槍枝來源,而開發了識別子彈和彈殼的比較顯微鏡,最後確認槍枝並非來自警方。

-----廣告,請繼續往下閱讀-----

比較顯微鏡是一種可並排分析樣本的設備,由透過光橋連接的兩個顯微鏡組成。樣本被放置在兩個載物台上,並使用連接兩個觀察頭光橋中的內置分割畫面同時觀察、比較可疑和已知的樣本。

用於比較彈道的比較顯微鏡具有長工作距離光學元件,還包括子彈座、鹵素或 LED 照明選項、偏光濾光片、放大倍率轉換器以及用於調整放大倍率和工作距離的輔助鏡頭。由於每支槍管內表面的製造痕跡都不相同,留在彈頭的細微特徵也不會一致。

加上射擊時,從裝填子彈到退出彈殼,彈殼在各步驟因為和槍枝組件的相互作用而留下獨特的痕跡,例如:撞針撞擊底火的撞針痕、火藥爆炸,彈殼向後撞擊槍機面所形成的彈底紋、只有具抓子鈎槍枝才會留下的抓子痕等。因此透過比較顯微鏡的比對鑑定可以用來確認涉案槍枝。

除了彈道比對外,比較顯微鏡還可以透過並排比較來確認簽名真偽,或是在確定歷史日期時使用。

-----廣告,請繼續往下閱讀-----

凡「做過」必留下痕跡

根據法國法醫學家羅卡(Edmond Locard)提出的羅卡定律(Locard exchange principle, 又稱羅卡交換定律):「凡兩個物體接觸,必會產生轉移現象」,也就是犯罪(嫌疑)者必然會帶走一些東西、也會留下一些東西,現場必會留下微量跡證。

因此,犯罪現場除了槍枝、子彈、彈頭和彈殼等物證外,槍擊殘留物(gunshot residues,GSR)或微量跡證(trace evidence)也是破解案件的關鍵。GSR是由槍擊後槍口排出的所有顆粒組成,主要包括炸藥底火、推進劑(火藥)、穩定劑和其他添加劑的燃燒或未燃燒完的顆粒。

GSR 顆粒最常見的特徵是其形狀和化學成分,華萊士(J.S. Wallace)和麥奎蘭(J. McQuillan)發現,所有檢測到的顆粒尺寸均在1微米到12微米之間,呈球形和不規則狀,主要成分為鉛、銻和鋇,可用掃描電子顯微鏡(SEM)配備能量色散X射線光譜偵測器加以檢測鑑定。

GSR通常是從嫌疑槍手的手上或其他物體上收集到,如果嫌疑者手上存在特徵性 GSR,通常會推測此人可能是開槍射擊者、開槍時靠近槍支,或處理被殘留物污染的槍枝或其他物體。

-----廣告,請繼續往下閱讀-----
J.S. Wallace和J. McQuillan使用SEM搭配能量色散X射線光譜偵測器比較K58和Gevelot手槍的GSR。
J.S. Wallace 和 J. McQuillan 使用 SEM 搭配能量色散 X 射線光譜偵測器比較 K58 和 Gevelot 手槍的 GSR。圖/顯微觀點

而在暴力犯罪中,體液是常見的證據。雖然現今常用 DNA分析,但顯微鏡仍發揮其作用。尤其位相差顯微鏡,可將樣品所造成的細微光程差轉變成明顯的光強度對比,能清楚觀察到在明野下透明的樣品,因此常用於自強姦受害者收集的陰道拭子中尋找精子。

另外,土壤也是調查犯罪的重要關鍵。偏光顯微鏡可對土壤顆粒的顏色、形狀和大小,以及當中的礦物質進行分類和分析。因此嫌疑犯鞋子上、屍體運送到埋葬地點的車輛外側或內部的土壤證據,都可能對調查起很大的作用。

土壤鑑測也很重要
土壤鑑測也很重要。圖/Adobe Stock
  • Bullets for my Valentine
  • Lee, H. C. (1998). Applying Microscopy in Forensic Science. Microscopy and Microanalysis4(S2), 490–491
  • Wallace, J.S., & McQuillan, J. (1984). Discharge Residues from Cartridge-operated Industrial Tools. Journal of The Forensic Science Society, 24, 495-508.
  • 孟憲輝(2015)。物證鑑識在槍擊現場偵查上的應用。刑事政策與犯罪研究論文集,18,313-340。
  • Gunshot Residue (GSR)

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從 3G 到 6G:行動通信的進化之路
數感實驗室_96
・2024/06/20 ・825字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

摩斯發明電報和貝爾發明電話,這些似乎是上古時代的科技,其實都發生在過去兩百年內。而手機,作為近五十年來的產物,又經歷了怎樣的演變呢?

讓我們來探討行動通信是如何從 3G 發展到 6G 的。

1989 年,一張名為《The Great Radio Controversy》的搖滾專輯發布,迅速走紅,登上告示牌熱門榜。雖然專輯的歌詞與通信無關,但它的名字「偉大的無線電爭議」確實讓人聯想到無線通信的歷史。而這張專輯的樂團名為 Tesla,沒錯,這正是向那位傳奇的天才科學家特斯拉致敬。特斯拉對無線通信的貢獻可謂奠基石般的重要,而從 3G 到 6G,行動通信技術又經歷了哪些突破和變革呢?讓我們一起深入了解。

-----廣告,請繼續往下閱讀-----

行動通信的歷史雖然只有短短幾十年,但其中包含的豐富內容實在說不完。從精彩的發明故事到商業競爭,再到行動通信所帶來的社會變革,每一個環節都值得深入探討。而在這集影片中,我們僅僅觸及了冰山一角。

下一集將深入探討 WiMAX 那成功的哥哥——Wi-Fi,也就是大家熟悉的無線區域網路技術。讓我們繼續探索這些改變世界的科技!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/