網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

9
4

文字

分享

0
9
4

《天能》裡那些有點難的物理學:一個「逆熵」的世界為何不合理?

Rock Sun
・2020/08/28 ・4112字 ・閱讀時間約 8 分鐘 ・SR值 534 ・七年級

以下文章有電影《天能》的小雷,包括電影中對天能 (TENET) 的設定解釋,和預告中沒出現的場景描述。

 

你有看過《全面啟動》嗎?電影內現實和夢境彼此交錯、互相影響的劇情,可以說是近年來燒腦科幻動作電影的翹楚,它讓我們對身邊的世界有了獨特的看法。

如果你覺得那已經夠讓人匪夷所思了,那不好意思~《天能》將再一次挑戰大家對世界的理解。

而且這一次~大家可能需要帶高中層級以上的物理大腦進去看電影,不然會滿頭問號喔!

《天能》宣傳圖。圖/IMDb

再次警告:以下文章有電影《天能》的小雷

 

 

《天能》中的時間倒轉與熱力學第二定律

預告片中就可以看到《天能》中出現了各種時間倒轉,這裡面其實是有科學知識可循的,電影中也非常明確講出產生這種奇異現象的關鍵,那就是熱力學第二定律

等等~不要看到「熱力學」三個字就放棄思考了,雖然熱力學的內容非常的深而且牽扯到宇宙萬物的運行法則,但若只是要能勉強看懂《天能》,是不需要原文書拿出來重看一遍的。(編按:看這篇文章剛好啊!)

簡單來說,熱力學第二定律是在表述熱力學過程的不可逆性:一旦發生,就無法回頭。

其中能夠量化這個過程的指標叫做「」,當一個孤立系統逐漸朝向熱力學平衡,例如冰溶化、燃燒木頭、食物煮熟、爆炸等等,熵都會變大。也就是說,隨著可作功的能量轉化為不可作功能量,熵就會增加,而系統也就越混亂,藉此測量一個封閉系統的混亂程度(亂度)。

基本上我們身處的世界,萬物都傾向朝最大熵前進。如果把宇宙視為一整個巨大的孤立系統,熵狀態永遠只會增加,不會減少,亂度也會越來越大。

因此從這個角度看,熵的測量也可以被看作是一種時間的指標,因為它永遠朝向一個目標。

既然這件事被稱為熱力學第二「定律」,代表目前為止我們無法違反這個原則,但是當代物理學家們逐漸在熱力學第二定律中發現了一個漏洞,找到了可以在孤立系統中逆轉熵的契機

這就是《天能》這部電影的核心理論:如果有一天我們能夠逆轉熵的變化,我們就可能在時間洪流中逆流而上,做出一些很炫炮的事

反正時間旅行嘛~ 別想太多?圖 Image by Genty from Pixabay

逆熵的契機:神秘的旋轉門

如果我們真的能夠逆熵會發生什麼事呢?若從時間的角度來看,這跟以前老梗的回到過去不太一樣,你不是回到以前的時間點然後再繼續向前,反而比較像逆著時間走,但是你主觀的時間依然在往前進,只是現在你會看到飯變回生米、用原子筆寫出來的字會被撤回、屎會倒流……之類的,但你人生還是在往前走。

那麼怎樣的狀態下可以逆熵呢?

根據美國歷史最悠久的阿貢國家實驗室的研究指出,他們在微觀尺度中逆熵的方法關鍵,也就是從熱力學第二定律的支柱之一:H定理 著手。

H定理說的是,理想氣體分子在一個孤立系統中如何達成熱平衡的現象。最常見的解說模式包括一個有著兩個房間的系統,一冷一熱,它們如何在連通之後達到熱平衡……很簡單嘛~冷的房間逐漸變熱、熱的房間逐漸變冷,最後溫度一樣。

但實際上,科學家無法準確的紀錄系統裡每個氣體分子的移動模式,所以之前我們都將之視為一整個系統討論,如果我們真的要知道這個系統中獨立的分子是如何運動的,科學家們得從量子的角度去理解這件事,所以他們將量子資訊學的抽象數學模式與凝態物理學結合,產生出了一個全新的H定理。

在這個全新的H定理中,當我們從量子化的角度去觀測每一個分子,在某些情況、在某些瞬間,熵是可能變小的

Argonne's researchers and facilities playing a key role in the fight against COVID-19 | Argonne National Laboratory
這個裡可能是第一個產生逆熵旋轉門的地方嗎? (圖片嵌入自 Argonne National Laboratory)

這個構想某種程度上與 1871 年英國物理學家馬克士威爾(James Maxwell)的「馬克士威爾的惡魔」假想實驗不謀而合。在這個非常原始、想要違反熱力學第二定律的假說中,馬克士威爾假設有一個很無聊、閒著沒事的熱力學惡魔,剛好看守連接兩個不同溫度房間的通道,當氣體分子飛過去的時候,惡魔無視熱力學、只讓速度較慢的氣體分子進入一個房間,讓速度較快的分子進入另一個房間。

綜合以上的假說和發現,我們可以非常大概的理解《天能》中的關鍵道具:逆轉門,到底是個怎樣的存在。

逆轉門就是這個惡魔,甚至在電影中開啟一切計畫的逆轉門,正常世界和逆熵世界分別是用紅光和藍光,就像H定理的圖示。至於使用機制是什麼,電影中只是說了使用來自未來的「反向輻射」,在無法理解這是什麼輻射的情況下,我猜逆轉門大概是能夠用量子尺度的方法操控一切吧!也就是說在《天能》的世界中,未來的科學家們發明出了有規則脈絡、穩定的產生逆熵環境的道具,來產生炫炮的特效,來「前進到過去」。

馬克士威爾的惡魔假想:如果有個惡魔能夠控制進出房間的氣體分子。圖/wiki commons

「逆熵」實際上會長怎樣呢?有待討論的燃燒現象

在《天能》中,雖然劇情很明確的說明了我們看到的現象來自於逆轉「熵」的結果,但是 80% 的天能展示,都是集中在逆行時間之箭這件事上,例如子彈倒著飛、破損的牆壁復原(還會順便把正常時間線的可憐人關在裡面)、汽車逆開……等,並沒有很明確的展示出逆轉「熱力學」。但是卻有一幕很不一樣,也讓我印象深刻。

就是在逆熵世界被火燒會發生什麼狀況!

在故事中段,主角來到了逆熵的世界,很不幸的被困在一台翻覆的車中,汽油流滿地,這時候反派很老套的點燃了打火機丟在地上,點燃了汽油希望凍死主角……

你沒看錯~在逆熵世界裡,被火燒到會被凍死。

在這裡先整理一下,從兩個世界角度看這個現象會是什麼樣子:

因為主角等人身處於逆熵世界,在這裡由他們眼中觀測到整個事情時間順序差不多是這樣:車子撞毀–>汽油流滿地–>起火–>火焰蔓延–>火車–>主角失溫、車窗結冰

除了結果有點匪夷所思之外,其他看起來還算正常。

但是如果你從正常的時間線觀看這整個逆轉過程,會變這樣:一台結冰車停在路上–>開始退冰–>出現火焰–>火焰退去–>還原成汽油

逆熵世界產生被火燒會發生會怎樣呢? 圖/ Image by Hermann Kollinger from Pixabay

在開始討論之前,想先簡簡單單引入一個吉布斯自由能的概念,幫助大家理解。

在現實世界中,一個化學反應會不會自己開始,需要參考自由能公式:

ΔG=ΔH−TΔS

其中H代表系統內的內能物理量「」;S 就是熵;T 是絕對溫度 K;G 是自由能,

一個現象能夠順理成章的開始反應,ΔG 必須要是負值。燃燒木頭就是一個例子,這是一個放熱反應,所以整體系統的內能「焓」降低(ΔH為負)。燃燒的木頭系統會產生更多分子,所以熵是增加的(ΔS為正,所以−TΔS還是負),這樣 ΔG 就會是負值。

回到電影中的畫面。首先退冰這件事,大概就是車體、人類身上的冰霜變成水蒸氣吧~這是現實世界在室溫中絕對會發生的事,但是我們要想的是……在逆熵的世界裡它們是結冰,這就是在大白天馬路上絕對不可能發生的事(除非氣溫低於冰點)。

結冰是一個有趣的熱力學現象,因為放熱所以焓降低(ΔH為負),但是同時水變冰所以熵也變小了(ΔS為負,所以−TΔS變成正值),這時候決定ΔG是否為負最大關鍵就是溫度,必須要越低才會發生。

接下來,我們就要進到下一個部分:在逆熵世界燃燒汽油

如果我們參考最單純的燃燒辛烷反應來當作參考:

2 C8H18(l) + 25 O2(g) → 16 CO2(g) + 18 H2O(g) + 10860 KJ

如果把整個式子逆轉,就是一個在現實世界完全違反熱力學定律的反應,因為它熵變小(ΔS為負,所以−TΔS變成正值),因為是吸熱反應,所以焓又變大(ΔH為正),這時候不管溫度為幾度,ΔG必定為正值,所以完全不會發生。

但是如果今天在逆向時間世界發生了這個燃燒反應,在現實世界中就會看到奇怪退冰現象之後,釋出的熱剛好把二氧化碳和水汽還原成辛烷的過程。

Tenet ending explained and all your questions answered - CNET
沙小???(圖片來源: Cnet.com)

相信看完以上幾段之後,熟悉熱力學的朋友可能會有點狐疑,如果是真正的逆熵世界,時間逆轉或許可以理解,但是燃燒這個化學反應還會如此順利的進行嗎?因為從逆轉時間的角度看,電影中還是把火焰拍出來了,但是如果燃燒這件事沒有吸熱在周遭製造出低溫,結冰是不會發生的。

我覺得以上的事情需要更多熟悉熱力學的朋友來幫忙,找出整個過程的合理性,電影畫面是正確的嗎?還是大導演想要產生炫炮特效可能漏了什麼?

說了這麼多,我只給你一句話:「不要理解它,感受它。」……好好看電影吧~

參考資料

文章難易度
Rock Sun
62 篇文章 ・ 311 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者


0

13
5

文字

分享

0
13
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》