0

3
0

文字

分享

0
3
0

ㄉㄨㄞ歪歪歪的浪漫!為什麼彈簧是螺旋狀?──虎克定律的精神

linjunJR_96
・2020/09/01 ・1712字 ・閱讀時間約 3 分鐘

「就是個彈簧,很重要嗎?」

當你第一次學到有關彈簧的虎克定律時,可能會有點困惑它為何出現會在課本,到底有什麼用途。在國中出現第一次後,虎克定律會不斷出現,高中再教一次,大學普物再教好幾次。了解小小的彈簧對於我們的物理課程有這麼重要呢?

彈簧。圖/pixabay

要回答這些問題,我們可以先來對彈簧做一些觀察。一般的彈簧是金屬做的,由一條細絲繞成螺旋狀。而彈簧的特色在於,施加外力時的外型變化特別明顯,形變的一定範圍內移去外力後又可以迅速回到原來的形狀,甚至固定好的話可以提供張力(或壓力)。

不過,就物理學的角度來看,為什麼彈簧要做成這個樣子呢?

把彈簧拉直,變成不捲的金屬線會怎樣?

想回答這個問題,我們得先來看:不捲的金屬線會怎樣?

如果是根平凡的金屬細絲,受到拉扯時的長度不會有明顯的改變(至少用人的眼睛看起來是如此)。

不過事實上,當我們真的將重物掛在金屬線上,仔細測量是可以觀察到它的長度的確有微小的變化;更重要的是,重物的重量與伸長長度也是有著類似虎克定律的關係。不過由於我們講的是金屬線,而不是彈簧,所以在這裡不如先用ㄅ來表示:

(掛重重量)=(伸長多少)×ㄅ

這種「外力」與「形變」的現象可以從原子的視角來討論:

當材料被拉扯時,相鄰原子之間的距離被拉長;被拉開的距離越長,想將它們留在原處的恢復力就越大。

這個力量大小與原子種類有關,所以我們若改用不同材質的細線,可以測量到不同的ㄅ值。

大部分的材料都會有這種現象,只是金屬的ㄅ值相對大許多。一條一公尺的銅線大概要掛上100公斤的重量,才會拉長1公分,一般來講很難用眼睛觀察到。

這時我們注意到,ㄅ的大小除了與材料有關,也會與長度有關。回到原子的視角,在固定的重量下,兩兩原子之間拉長距離都一樣。所以如果將金屬線當成一列長長的原子串,原本長度越長的線,其中就有越多的原子要與鄰居拉開距離,因此伸長量也會越長。就像是如果把許多橡皮筋串接在一起,很容易就能拉開,同樣施力下,延展的總長度會比一條橡皮筋長很多。

彈簧的秘密:用螺旋將大大的長度放進小小的空間

這時候如果我們需要在同樣的施力情況下,有更多的長度變化的空間,彈簧的形狀就顯得合理啦。螺旋的結構能在短短的距離內容納極大的長度,因此對外力更為敏感。雖然螺旋狀牽扯到側向的力,不過從原子的角度也都和原子的種類、原子間距變動有關,所以大致上的原理是類似的。

圖/pixabay

我們可以從這個想法類推:兩條彈簧串在一起時,原本長度變成兩倍,掛上重量後拉長的長度也會變成兩倍。所以說,就算是一樣材質的彈簧,只要改變串接的數量,就能直接調整整體的彈性大小。如果有什麼問題是一條彈簧不能解決的,那就用兩條就好了。(誤)

在實際應用上,如果我們得到了 ㄅ值,也可以倒過來測量重量。但是直接用一條金屬線來測量重量不太容易,因為形變太短啦。而橡皮筋這類的材料雖然較容易形變,卻是由較複雜的高分子組成,表現出來的ㄅ值相對不太可靠,會忽大忽小。這也是為什麼,課本上會使用彈簧好朋友來測量重量。

重要性不遜於牛頓第二定律的虎克定律

從物理上來說,當受到外力時,物體要嘛移動,不然就是發生形變。彈簧其實只是一個常見且容易觀察的案例,向我們展示虎克定律如何運作。

而形變與外力的正比關係(也就是ㄅ),其實廣泛存在於各式各樣的固體材料,舉凡金屬、木頭、玻璃等等,不論是細絲還是塊材,在普遍情況下,對外力的形變都可以用ㄅ來描述。

因此在機械、材料、土木工程等各種領域,常常都會需要使用類似的概念。這樣來看的話,虎克定律與牛頓第二定律一樣,都是非常重要且基本的力學原理。怪不得從國中開始就要一學再學呀。

文章難易度
linjunJR_96
21 篇文章 ・ 222 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

1
0

文字

分享

0
1
0

災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?

EASY天文地科小站_96
・2021/09/19 ・2765字 ・閱讀時間約 5 分鐘
  • 文/陳子翔(現就讀師大地球科學系, EASY 天文地科團隊創辦者)

知名物理學家史蒂芬.霍金(Stephen Hawking)認為,小行星撞擊是宇宙中高等智慧生命最大的威脅之一。而回首地球的過去,六千五百萬年前的白堊紀末期,造成恐龍消失的生物大滅絕,也肇因於一顆直徑約十公里的小行星撞擊。那麼,我們應該擔心小行星帶來如同災難片場景的巨大浩劫嗎,人類又能為這件事做什麼準備呢?

我們該擔心哪些小行星,小行星撞擊能被預測嗎?

太陽系中的小行星不可勝數,但並非所有小行星都對於地球有潛在的危害。那麼,哪些小行星是應該注意的呢?

我們可以簡單從兩個條件,篩選出對地球有潛在威脅的小行星:第一是小行星的軌道,第二則是小行星的大小。如果一個天體的運行軌道與地球的運行軌道沒有交會,那也就不需要擔心它會部會撞到地球了。而直徑越大的小行星,撞擊地球產生的災害就會越大,例如一顆直徑 10 公尺的小行星墜落能造成小範圍的建築物受損,而直徑 50 公尺的小行星撞擊,其威力則足以摧毀整座大型城市。

https://upload.wikimedia.org/wikipedia/commons/thumb/5/59/Chelyabinsk_meteor_event_consequences_in_Drama_Theatre.jpg/1024px-Chelyabinsk_meteor_event_consequences_in_Drama_Theatre.jpg
2013 年俄羅斯車里亞賓斯克小行星墜落事件,隕石在空中爆炸的震波震碎大片玻璃。圖/Nikita Plekhanov

過去天文學家透過遍布世界的天文台,不斷在夜空中尋找近地小天體,並持續監測它們的動向。而透過觀測資料推算其軌道,就可以算出這些危險的小鄰居未來與地球發生「車禍」的機率有多大,而這篇文章的主角「貝努」,就是一顆被認為有較大機會撞擊地球,因此被重點關注的對象。

貝努撞地球會是未來的災難嗎?

貝努在 1999 年被發現,是一顆直徑約 500 公尺的小行星,它以橢圓軌道繞行太陽,公轉週期大約 437 天。由於貝努的軌道與地球相當接近,它每隔幾年就會接近地球一次,而本世紀貝努最接近我們的時刻將會發生在西元 2060 年,不過別擔心,該年貝努與地球最接近時,距離預計也還有七十萬公里,大約是地球至月球距離的兩倍,撞擊風險微乎其微。

綠色為地球軌道,藍色為貝努軌道。圖/University of Arizona

然而天文學家真正關注,撞擊風險較大的接近事件則會發生在下一個世紀。根據目前的軌道計算,貝努在西元 2135 年和 2182 年的兩次接近,會有較大的撞擊風險。說到這裡可能許多讀者會覺得,既然我們都活不到那個時候,何必去操心那些根本遇不到的事情呢?

那麼,讓我們想像一個情境:

如果今天天文學家突然發現了一顆與貝努一樣大的小行星,並算出它將在一年後撞上地球,那身為這個星球上「最有智慧的物種」,我們能怎麼應對呢?

很遺憾的:我們很可能對於撞擊束手無策。當前人類並沒有任何成熟的技術,能夠在這麼短的時間內改變小行星的軌道。這時候人們可能就會希望前人早點望向星空,調查小行星,好讓人們能夠有多一百年的時間準備應對的方法了!

小行星軌道計算不就是簡單的牛頓力學,為什麼算不準?

那麼貝努在未來 100〜200 年到底會不會撞擊地球呢?其實天文學家也說不太準,只能給出大概的機率而已,而且時間越久,預測的不確定性就越大。

你也許會想,天體的運行軌道不就只是簡單的牛頓力學,三百年前的人就已經掌握得很好了,在電腦科技發達的現代怎們會算不準呢?確實,如果要算地球與火星在 100 年後的相對位置,那電腦還能輕鬆算出相當精確的答案,但如果是計算小行星 100 年後的位置,事情就變得棘手多了……

由於小行星的質量很小,就算是相對微小的引力干擾還是足以改變其運行方向,而混沌理論(Chaos theory)告訴我們,任何微小的初始條件差異,都能造成結果極大的不同。因此要對小行星軌道做長期預測,就不能只考慮太陽的引力,而是必須把行星等其他天體的引力也納入計算,才能獲得比較準確的結果。尤其是當這些小行星與地球擦肩而過時,即使只有幾百公尺的位置偏差,受到的引力也會有相當的不同,使得小行星的未來軌跡出現巨大的差異。

而更令天文學家們頭痛的是,有些問題甚至不是萬有引力能夠解決的,其中一個因子就是「亞爾科夫斯基效應」(Yarkovsky Effect)。這個效應是這樣的:當陽光照在自轉中的小行星上,陽光會加熱小行星的受光面,而被加熱的這一面轉向背光面時,釋放的熱能會像是小小的火箭引擎一樣推動小行星。這個作用的推力非常小,但長期下來還是足以對質量很小的天體造成軌跡變化,也讓軌道預測多了很大的不確定性。

亞爾科夫斯基效應的動畫。影片/NASA

OSIRIS-REx 任務揭露貝努的神秘面紗,也讓軌道推估更精確

為了更深入了解貝努,NASA 在 2016 年發射 OSIRIS-REx 探測器探查這顆小行星。OSIRIS-REx 主要的任務包括從貝努表面採取樣本並送回地球分析、對整顆小行星做完整的調查,以及評估各種影響貝努運行軌道的因子,改善貝努軌道的預測模型,評估將來的撞擊風險。

在軌道分析方面,OSIRIS-REx 一方面能在環繞貝努的過程中緊盯貝努的「一舉一動」,讓天文學家透過精確的觀測結果反推貝努的軌道特性。另一方面,要評估亞爾科夫斯基效應對小行星軌道的影響,也需要考量小行星的地形地貌、反照率等等因素,因此 OSIRIS-REx 的各項觀測資料,也有助於建立更精確的軌道預測模型。

OSIRIS-REx 探測器。圖/University of Arizona/NASA Goddard Space Flight Center

目前 OSIRIS-REx 的任務還沒有結束,但是在取得更準確的軌道預測模型與撞擊風險評估上,已經有了初步的成果。根據這次任務提供的觀測資料,天文學家將預測貝努未來軌道的時間極限,從原本的西元 2200 年延長至 2300 年。而西元2300年之前,貝努撞上地球的機率大約是 0.057% (1/1750),最危險的一次接近則會發生在西元 2182 年

「知己知彼,百戰不殆」。面對像貝努這樣的危險鄰居,唯有盡可能認識它的一切,才越能夠掌握其未來的動向,進而在將來思考要如何面對小行星的撞擊的風險。另外,目前 OSIRIS-REx 也正在返航地球的旅途上,期待 2023 年 OSIRIS-REx 能順利的帶著貝努的樣本回到地球,帶給我們更多有關小行星的重要資訊!

參考資料

EASY天文地科小站_96
4 篇文章 ・ 7 位粉絲
EASY 是由一群熱愛地科的學生於2017年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策