0

0
0

文字

分享

0
0
0

鑰匙怎麼開門?先搞清楚鎖中暗藏的彈簧奧秘—《知識大圖解》

知識大圖解_96
・2017/01/29 ・677字 ・閱讀時間約 1 分鐘 ・SR值 514 ・六年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

這個簡單的裝置如何保護你的財物安全?

自古以來,人類使用各種鎖與鑰匙來確保居家財物的安全。最早的鎖由一組木製鎖簧所組成,唯有相符的鑰匙才能推動鎖簧,順利開鎖。這種鎖名為鎖簧鎖(pin-lock),是現代彈子鎖(pin-tumbler lock)的原型。

giphy-2
圖片來源:all that is interesting

 

彈子鎖的鎖芯內有一組以彈簧連接,且長度不一的上、下鎖簧。將扁平的小鑰匙插入鎖芯時,鑰匙側緣的鋸齒會將鎖簧向上推;使用正確的鑰匙時,下鎖簧的頂端就會齊平,也就是下鎖簧準確落入鎖芯內。如此一來,開鎖者便能轉動鎖芯,順利開鎖。其他鑰匙也許也能插入,但因下鎖簧頂部無法對齊,因此無法轉動鎖芯。

09-%e9%91%b0%e5%8c%99%e9%81%8b%e4%bd%9c%e5%8e%9f%e7%90%86
本圖出自《How It Works 知識大圖解 國際中文版》第 27 期(2016 年 12 月號)。

不過,並非所有鑰匙都呈扁平狀。中世紀流行的凸塊鎖即採用圓柱狀的鑰匙。這種鎖的內部並無鎖簧,而是有個凸塊構造,插入的鑰匙若不相符即無法動彈;唯有擁有正確「刻槽」的鑰匙才能順利轉動鎖芯。這種設計也促成了首款萬用鑰匙的誕生;萬用鑰匙上的刻槽大多被銼平,因此不會被鎖內的凸塊擋住。

許多公司正在研製不需鑰匙即可打開的機械門鎖;只要你出聲或刷一下智慧型手機,就能開鎖。不過,目前多數的鎖還是只能以傳統的鑰匙來開啟。


2016-12_hiw_27

 

本文節錄自《How It Works 知識大圖解 國際中文版》第 27 期(2016 年 12 月號)

更多精彩內容請上知識大圖解

文章難易度
知識大圖解_96
76 篇文章 ・ 11 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

0
0

文字

分享

0
0
0
嗶——超速了!什麼?聲音竟然有「速限」
linjunJR_96
・2020/11/11 ・1866字 ・閱讀時間約 3 分鐘 ・SR值 565 ・九年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

光速是宇宙的終極速限,任何的物質運動和資訊傳遞都不准超速。不過最近有人做出了最新預測,除了一般物質外,聲音的傳遞速度竟然也有最大上限?

不管是光(電磁波)還是聲音,都是以波動的形式傳播。值得注意的是,波速只會跟系統本身性質(例如:介質不同)有關,一般的繩波或是水面波同樣也是如此,不論震動得多用力或多快,都不會讓波跑的更快或更慢。

我們可以把聲波的傳遞想像成下圖中的彈簧。既然彈簧波的速度可以用彈性係數和彈簧質量來表示,同樣的,聲速應該也可以用某些性質來描述。

可以把聲波的傳遞想像成圖中的彈簧。圖/Shyam Srinivasan

先從聲音的性質說起

聲音在不同材料中傳遞的差異,可以用體積模數(Bulk Modulus,簡寫 B )來表示。體積模數代表物體在面對外部壓力時,會做出多少體積上的改變。數學上可以寫成:

等號左邊是施加的壓力,右邊是體積模數 B 乘上體積變化量占總體積的比率,負號只是習慣,這代表相同壓力下,B 值越大物體越不容易壓縮,和彈簧的 F=-kx 類似。我們知道越「硬」的彈簧反應越快,可以更快地傳遞波動;同樣地,比起在空氣中傳遞,聲速在較難壓縮的液體和固體中會比較快。因此不難看出,B 會與聲速扯上關係,而且 B 值越大聲速越快。

聲波在固體傳播的速度比在空氣中快。圖/giphy

一般來說,聲速可以寫成:

分子就是上面提到的體積模數 B,而分母的材料密度則表示介質越稀疏,聲速越快。國中學過的聲速與溫度成正比便是這個道理,當溫度變高時,空氣體積膨脹,密度變小,因此聲速傳遞更快。

為什麼聲速有上下限?

不過公式中的 B 和材料密度都是需要透過實驗獲得的材料參數,因此很難看出聲速會有什麼上下限。如果要再往前一步,就必須進入微觀的原子尺度。想像兩個同極相斥的磁鐵,彼此互相靠近時,斥力會逐漸變大;這是因為隨著兩個相斥磁鐵逐漸靠近,抵抗靠近的磁力位能會逐漸增加。

當兩個同極磁鐵互相靠近,因抵抗靠近的磁力位能增加,斥力會逐漸變大。圖/giphy

同樣地,當原子間的鍵結能量增加,將兩顆原子拉伸或壓縮的難度會隨之上升,物體也就越不容易被壓縮。也就是說,體積模數 B 正比於單位體積內原子間的鍵結能量,巧合的是,材料密度也能寫成單位體積內的原子質量,於是我們可以將聲速寫成:

一般固態物質中,鍵結能量可由古早的波耳氫原子模型導出,大約是 α2c2me / 2(原子質量),α 是一大串常用的物理常數,c 是光速,me 是電子質量。於是我們在原子尺度的物理圖像中,得到了聲速的新公式:

公式中的英文字母都是常數,唯一重要的是原子質量,原子質量越小的聲速便越快。依照理論,聲速最快的會是原子量=1 的固態氫原子,聲速為 36100m/s 。

聽起來很厲害,實際上真的是如此嗎?

針對一系列不同原子量的固態元素,我們可以看看他們的聲速是否的確符合預期。不過因為 B 的實際值和鍵結種類,晶格結構等複雜因素有關,因此並不會完全落在理論線上,不過整體的趨勢十分吻合。

固態元素中聲速對原子量的對數圖。斜直線為斜率 -0.5 的理論預測,虛線為擬合直線。紅點為原子量=1時的聲速上限。圖/Science advance

有趣的是,如果我們將新的聲速公式移項一下,會發現聲速上限對光速的比率,可以用簡單的物理常數來表示,這點是前人使料未及的。這結果或許不像光速這麼絕對,不過仍然是一次很漂亮的科學推理,也為固態物理的理論與實驗提供了嶄新的發展題材。

參考資料

  1. Trachenko, K., Monserrat, B., Pickard, C. J., & Brazhkin, V. V. (2020). Speed of sound from fundamental physical constants. arXiv preprint arXiv:2004.04818.
linjunJR_96
33 篇文章 ・ 606 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

3
0

文字

分享

0
3
0
ㄉㄨㄞ歪歪歪的浪漫!為什麼彈簧是螺旋狀?──虎克定律的精神
linjunJR_96
・2020/09/01 ・1712字 ・閱讀時間約 3 分鐘 ・SR值 522 ・七年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

「就是個彈簧,很重要嗎?」

當你第一次學到有關彈簧的虎克定律時,可能會有點困惑它為何出現會在課本,到底有什麼用途。在國中出現第一次後,虎克定律會不斷出現,高中再教一次,大學普物再教好幾次。了解小小的彈簧對於我們的物理課程有這麼重要呢?

彈簧。圖/pixabay

要回答這些問題,我們可以先來對彈簧做一些觀察。一般的彈簧是金屬做的,由一條細絲繞成螺旋狀。而彈簧的特色在於,施加外力時的外型變化特別明顯,形變的一定範圍內移去外力後又可以迅速回到原來的形狀,甚至固定好的話可以提供張力(或壓力)。

不過,就物理學的角度來看,為什麼彈簧要做成這個樣子呢?

把彈簧拉直,變成不捲的金屬線會怎樣?

想回答這個問題,我們得先來看:不捲的金屬線會怎樣?

如果是根平凡的金屬細絲,受到拉扯時的長度不會有明顯的改變(至少用人的眼睛看起來是如此)。

不過事實上,當我們真的將重物掛在金屬線上,仔細測量是可以觀察到它的長度的確有微小的變化;更重要的是,重物的重量與伸長長度也是有著類似虎克定律的關係。不過由於我們講的是金屬線,而不是彈簧,所以在這裡不如先用ㄅ來表示:

(掛重重量)=(伸長多少)×ㄅ

這種「外力」與「形變」的現象可以從原子的視角來討論:

當材料被拉扯時,相鄰原子之間的距離被拉長;被拉開的距離越長,想將它們留在原處的恢復力就越大。

這個力量大小與原子種類有關,所以我們若改用不同材質的細線,可以測量到不同的ㄅ值。

大部分的材料都會有這種現象,只是金屬的ㄅ值相對大許多。一條一公尺的銅線大概要掛上100公斤的重量,才會拉長1公分,一般來講很難用眼睛觀察到。

這時我們注意到,ㄅ的大小除了與材料有關,也會與長度有關。回到原子的視角,在固定的重量下,兩兩原子之間拉長距離都一樣。所以如果將金屬線當成一列長長的原子串,原本長度越長的線,其中就有越多的原子要與鄰居拉開距離,因此伸長量也會越長。就像是如果把許多橡皮筋串接在一起,很容易就能拉開,同樣施力下,延展的總長度會比一條橡皮筋長很多。

彈簧的秘密:用螺旋將大大的長度放進小小的空間

這時候如果我們需要在同樣的施力情況下,有更多的長度變化的空間,彈簧的形狀就顯得合理啦。螺旋的結構能在短短的距離內容納極大的長度,因此對外力更為敏感。雖然螺旋狀牽扯到側向的力,不過從原子的角度也都和原子的種類、原子間距變動有關,所以大致上的原理是類似的。

圖/pixabay

我們可以從這個想法類推:兩條彈簧串在一起時,原本長度變成兩倍,掛上重量後拉長的長度也會變成兩倍。所以說,就算是一樣材質的彈簧,只要改變串接的數量,就能直接調整整體的彈性大小。如果有什麼問題是一條彈簧不能解決的,那就用兩條就好了。(誤)

在實際應用上,如果我們得到了 ㄅ值,也可以倒過來測量重量。但是直接用一條金屬線來測量重量不太容易,因為形變太短啦。而橡皮筋這類的材料雖然較容易形變,卻是由較複雜的高分子組成,表現出來的ㄅ值相對不太可靠,會忽大忽小。這也是為什麼,課本上會使用彈簧好朋友來測量重量。

重要性不遜於牛頓第二定律的虎克定律

從物理上來說,當受到外力時,物體要嘛移動,不然就是發生形變。彈簧其實只是一個常見且容易觀察的案例,向我們展示虎克定律如何運作。

而形變與外力的正比關係(也就是ㄅ),其實廣泛存在於各式各樣的固體材料,舉凡金屬、木頭、玻璃等等,不論是細絲還是塊材,在普遍情況下,對外力的形變都可以用ㄅ來描述。

因此在機械、材料、土木工程等各種領域,常常都會需要使用類似的概念。這樣來看的話,虎克定律與牛頓第二定律一樣,都是非常重要且基本的力學原理。怪不得從國中開始就要一學再學呀。

linjunJR_96
33 篇文章 ・ 606 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。