Loading [MathJax]/extensions/tex2jax.js

1

11
0

文字

分享

1
11
0

HOW TO 成為科學家?(穿越版)

Peggy Sha/沙珮琦
・2020/08/11 ・3321字 ・閱讀時間約 6 分鐘 ・SR值 544 ・八年級

許多人小時候都夢想成為「科學家」,不過,說到了科學家,你腦袋中浮現的只有那穿著實驗服的研究人員嗎?那可就太小看科學家了!

每個年代都有屬於當時的科學家,他們嘗試透過自己的方式去理解世界、獲得知識。那麼,你想成為的,究竟是哪一種科學家呢?

坐上時光機,來看看你想成為哪種科學家吧!

古典時代:問天問大地,宇宙到底從何而來?

讓我們將時間拉回古典時代,這時候的科學家,對於大自然總有各式各樣的問題:宇宙的起源是什麼?世界是由什麼東西組成的?人之所以為人,與動物不同的是什麼?

可以變成雕像不覺得投資報酬率很高嗎?(誤)

 

西元前 600 年左右,泰利斯 (Thales) 提出了一個非常關鍵的問題:「什麼是萬物之原?」。這個問題為何這麼重要呢?因為他在解答的過程中,放棄了原本的神話體系,而是改以理性和自身的觀察去理解世界,進而提出了自己的答案:「水是萬物之原」。泰利斯思考的方式影響了後世無數人,也因此被尊為哲學之父。

-----廣告,請繼續往下閱讀-----

除了用具體的事物去解釋萬物,也有哲學家另闢蹊徑,用抽象的概念去理解世界,像是畢達哥拉斯便認為「數學」才是一切的解答。他將世界區分為「可感知」的部分以及「可理喻」的部分,並相信「可感知」的東西總會有缺陷,而「可理喻」的事物則是完美且永恆的,比如數學。畢達哥拉斯非常重視論證的重要性,強調人們應該先「假設」,而後通過演繹去導出結論,這樣的思考方法,也讓他提出了著名的畢氏定理。

此外,發現浮力的阿基米德、研究幾何的歐幾里德、定義哲學的亞里斯多德也都是非常重要的人物。如果你想成為像他們一樣的科學家,首先,可以先從學會如何「對話」下手,無論東方或西方,追求知識的人們常常通過對話與討論去辯證道理,在不斷詰問的過程中,推翻或驗證所學所知,進而獲得新的省思。

順帶一提,這時的學者們也有一項厲害的隱藏技能,便是「成為雕像」(咦),如果想要流芳百世,在這時候成為科學家最划算了(喂)

  • 如果對於「世界是怎麼來的?」這個問題很有興趣,歡迎去此文看看更多討論!

中世紀:鍊金術鍊出實驗器材

從西羅馬滅亡之後,到文藝復興之前,被稱作「黑暗時代」,不過,這段時期的各項發展並不是真正停滯了,相反地,這時候開始出現了許多科學探究的方法,像是羅傑·培根 (Roger Bacon) 便推崇以實驗來獲得知識,而非針對各個典籍進行辯論。他 16 歲左右進入牛津大學就讀,學習幾何、音樂、天文,並閱讀了希臘先哲的著作。畢業後,他開始教授哲學與數學,更自掏腰包打造出一間實驗室。

-----廣告,請繼續往下閱讀-----
想不到吧!鍊金術對於後世的科學發展其實有很大的影響呢。

另一方面,我們現在熟悉的現代大學制度正是從這時候開始發展的,如今當我們談到世界最早的現代大學,便是 1088 年成立的波隆那大學。而除了義大利之外,法國與英國也有許多類似大學在這時成立。這時的大學會教授文、法、神、醫四科,其中,文科就包含了:語法、邏輯和修辭以及算術、幾何、音樂和天文,怎麼樣,聽起來跟現在的大學課程是不是十分相似呢?

如果你不喜歡讀書,卻還是想跟科學沾上一點兒邊該怎麼辦?那你可千萬別錯過中世紀的「全民運動」──鍊金術。中國的煉丹術煉出了不少死皇帝(?)阿拉伯與波斯的鍊金術則鍊出了許多實驗器材:燒杯、試管與蒸餾設備,此外,他們也發明出蒸餾、昇華、結晶等等實驗方法,更成功提煉出純酒精、硝酸、硫酸等物質,對於往後化學的發展起到了關鍵的作用。

所以說,如果你想成為中世紀的科學家,可以選擇進入宗教體系或是去大學就讀,畢竟當時的宗教與教育可說是息息相關。同時,你也必須學習拉丁文,因為當時幾乎全仰賴拉丁文傳授知識。當然啦,進入教會其實也有些風險,因為你必須命夠大,才能躲過異端指控、逃離宗教審判。

  • 想知道古人是怎麼鍊金的,可以參考此文

科學革命:站在巨人的肩膀上,看見不一樣的世界

接下來到了啟蒙時代,也是近代歐洲科學大爆發的時代。啟蒙時代並不是一個彈指突然出現的,而是承襲著文藝復興的力道,以及歐洲活字印刷術發明的契機(對,中國的畢昇比他早了四百年)。這時候訊息流通的速度加快了許多,系統化的科學研究方法也應運而生。

-----廣告,請繼續往下閱讀-----
站在巨人的肩膀上,我們從此到達了更遠的地方。

在認識這時代的科學家前,先讓我們談談那位提出「我思故我在」的哲學家笛卡兒,他認為人們應該對一切都抱持著懷疑的態度,要大膽假設、小心求證,他更在《談談方法》 (Discours de la méthode) 一書中提出了四個重要的方法:

  1. 不接受任何自己不清楚的事物
  2. 將難題拆解、一一解決
  3. 解決問題時依照先易後難的順序逐步解決
  4. 綜合檢驗所有部分,看看是否真的解決了問題

這種逐步拆解的方法讓人們得以確實地解決各式複雜的問題,而他批判的精神也大大影響了後人們從事科研的態度。此時代還有伏爾泰、孟德斯鳩、盧梭等等知名的哲學家,讓社會充滿著求知的能量,以理性去思考各種問題,改善人們的社會和生活。

仰望星空的人們,也促進了科學革命的發生。哥白尼在 16 世紀發表了《天體運行論》,提出日心說,而伽利略則在 17 世紀利用自己製作的天文望遠鏡,發現了木星的衛星系統、金星的盈虧變化,這些天文現象支持了日心說,督促人們不得不以新的觀點重新審視宇宙。

牛頓正是在此時站上了巨人的肩膀,於 1687 年發表《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,簡稱 Principia),而埃米莉.沙特萊 (Émilie du Châtelet) 則將其翻譯成法文、加上解說和註釋,使得牛頓的著作得以普及。三大運動定律、萬有引力定律,自此澈底顛覆了人類對於世界的認知。

-----廣告,請繼續往下閱讀-----
  • 去認識超級厲害的科學傳播先驅埃米莉.沙特萊,看本文

覺得自己絕不可能成為像是牛頓一樣的大大?其實,回望過去種種的研究和科學成果,都不是單靠一時一地一人所為,而科學家也絕不僅只有一種樣貌。只要我們永遠懷著探索未知的好奇心,學好笛卡兒老大說的「大膽假設、小心求證」,或許,就能離科學家更近一步吧!

在我們的生活中,其實各行各業都有許多充滿科學魂的職人,快去我們的專題百工裡的科學人」認識他們!

專題由此去:

  1. 吳軍(2019)。全球科技大歷史
  2. Lucas N. H. Bunt, Phillip S. Jones, Jack D. Bedient(2019)。數學起源:進入古代數學家的另類思考
  3. 王鑫、 許玲玉(2013)。歷史脈絡下的科學與技術
  4. 教育百科。中世紀大學
  5. 埃米莉.沙特萊──奔放不羈的科學傳播者
  6. 「不科學」的自然發生說,與它其實蠻科學的起源——自然發生說簡史(一)
  7. 亞里斯多德的單人版維基百科:科學何須計算?--《科學大歷史》
  8. 發現新彗星的女天文家──《蒙塵繆斯的微光:從古代到啟蒙時代,在思想及科學發展中發光的博學女性》
  9. 念哲學沒有用?為何哲學淪為低等學問?
  10. 克卜勒誕辰|科學史上的今天:12/27
  11. 「世界是怎麼來的?」古希臘哲學家向科學邁出的第一步
  12. 演化論的萌芽和發展,與達爾文也難以回答的《生命如何創新》?
  13. 由泰利斯、畢達哥拉斯到亞里斯多德,古希臘如何開展科學思維——《月球之書》
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
科學新聞誰來說?當科學家與記者意見相左時!——《是炒作還是真相?媒體與科學家關於真相與話語權的角力戰》
商周出版_96
・2025/04/05 ・4280字 ・閱讀時間約 8 分鐘

同床異夢:科學家與科學記者間的緊張關係

為了新成立的科學媒體中心負責人一職準備面試期間,我讀到許多科學家的意見,他們指出媒體對MMR疫苗和基因改造等議題的報導削弱了公眾對科學的信任。然而,當我更深入閱讀當時的科學新聞時卻發現情況並不那麼單純,許多嘩眾取寵的報導出自綜合記者或政治與消費的分線記者,消息來源是善於操縱媒體的運動人士而非優秀科學家,反觀科學記者筆下的報導則多數公正平衡。

中心成立後的頭幾個月主要是諮詢,過程中我與一些傑出的科學記者交流,詢問新的科學新聞辦公室如何產生價值,他們花了很多時間回應我接二連三的提問。互動中我清楚意識到科學記者不需要別人教他們怎麼做報導,而且他們其實與科學家一樣苦惱,覺得手機、核能、複製技術等等議題有太多聳動新聞。後來討論焦點就放在科學媒體中心如何改善現況,方法包括鼓勵科學家接受訪問,以及提升科學專業在編輯室內的地位。

一種說法認為科學記者是個特別的記者類型。有人向英國廣播公司前新聞部主任弗蘭.安斯沃思(Fran Unsworth)提出疑問:為何她們的公司高層很少人有科學報導背景?她短暫遲疑後回答:英國廣播公司的科學記者大都熱愛自己的工作,喜歡報導更甚於管理。我在其他媒體也注意到同樣現象,許多科學、醫藥、環境記者在專門領域耕耘超過二十年。湯姆.菲爾登被問到為何熱愛科學報導,他的回答是:

科學報導的內容幾乎都是探索性而非指控性—代表我和科學家都能開開心心回家!而且我能在自由出入實驗室、見到地球上最聰明的一群人、對他們的畢生心血提出各種粗淺的問題,這是多麼大的特權。再來科學新聞多彩多姿,生醫、太空、氣候、生物多樣性、古生物……最後一點,科學新聞很重要,是現代社會不可或缺的一部分。

「要迅速還是要正確?」——新聞編輯室裡的艱難選擇

二○○二年科學媒體中心剛成立時,社會上針對科學和媒體之間為何緊張有過一波辯論,其中一個話題是科學價值觀與新聞價值觀的矛盾。已故的理查.多爾(Richard Doll)爵士教授是發現吸菸與癌症關聯的科學家,他曾經對著滿屋子的記者一語道破:「你們不喜歡老調重彈、報導大家都知道的事情,總想找些新鮮的。但很可惜,科學裡新的事物通常不對,真理需要透過時間慢慢建立。」

-----廣告,請繼續往下閱讀-----
科學追求真理累積,媒體偏好新鮮話題,價值觀自然衝突。圖/unsplash

另一方面,懂得反求諸己的記者通常也不諱言表示媒體反映真相有很多侷限。《華盛頓郵報》資深記者大衛.布羅德(David Broder)一九七九年曾說:「我希望媒體能一再重複、直到大家明白—每天送到門口的報紙,只是記者對過去二十四小時內聽聞的某些事情做出片面、匆促、不完整的敘述,內容不可避免會有瑕疵與偏差。」難怪科學家對記者戒慎恐懼,而記者與科學家合作時也倍感挑戰。曾經有位報紙編輯對著一房間的皇家學會成員說:在他的編輯室內,「要迅速還是要正確」這問題只會有一個答案。那些科學家的惶恐表情我歷歷在目。

我進入媒體關係工作之前拿的是新聞學學位,至今仍記得一位前記者曾在講座中告訴大家:「車禍後無人傷亡」不能成為新聞,「車禍導致五名青少年死亡」才能引起大眾關注。研究媒體的學生辯論新聞價值觀已經辯了數十年,也有人大膽嘗試不同做法,比方說《龜媒體》(Tortoise Media)之類新興平臺就訴求「慢新聞」,旨在建立有別於速度至上的新模型,透過「慢速新聞學」理念以更長時間來更加深入地製作更大、更複雜的報導。但儘管媒體業界發生許多變化,傳統的新聞價值觀仍屹立不搖。

科學媒體中心所有工作都是為了支持科學報導的高標準,不過我們在二○一一年列文森調查期間發現還有其他機會能夠撼動這些標準。該調查由布萊恩.列文森勳爵法官(Lord Justice Brian Leveson)主持,目的是在《世界新聞報》(News International)竊聽醜聞案後瞭解英國媒體業界有什麼慣例。我當時的同事海倫.賈米森(Helen Jamison)建議我們向調查庭提交證據,幾杯所謂的「女士汽油」下肚後,她操著濃厚曼徹斯特口音說:「傷害公眾利益的不是竊聽名人電話—而是糟糕的科學報導。」隔天我們發郵件給幾位科學通訊人員,詢問他們關注什麼議題,一週後就提交多頁書面證據。

我告訴同事自己被傳喚去做口頭證詞時她們還覺得我在瞎掰。小組內部連續幾週密切關注各大媒體如何報導列文森調查案,包含麗貝卡.布魯克斯(Rebekah Brooks)、阿拉斯泰爾.坎貝爾、保羅.戴克瑞(Paul Dacre)和安迪.考森(Andy Coulson)在內很多媒體界大人物都有出庭,而今居然也有我一份,令人興奮又忐忑—被傳喚的人只有我代表科學界,一定要把握好機會。

-----廣告,請繼續往下閱讀-----

標題戰爭:聳動 vs. 精準,誰來決定科學新聞的呈現?

但其實我沒進過法庭,緊張情緒一目瞭然。印象特別深的是御用大律師羅伯特.傑伊(Robert Jay)和列文森勳爵本人一再要我放慢語速。官方紀錄上,提醒我兩次還不見效,列文森這麼說:「不必因為半小時的限制就講很快,時間是可以延長的……而且我有點擔心,總覺得速記員頭上好像冒煙了。」

我的主要論點是媒體長期以來執著於同一套價值觀,在書面證詞中也有所描述:

追求引發恐慌的故事、誇大單一專家從小規模研究得出的結論、不願將令人擔憂的研究結果置於宏觀而令人安心的脈絡、為了平衡而捏造不存在的學界歧見、過分偏愛另類觀點等等。

當天《獨立報》恰好印證我的觀點,一篇跨兩頁的報導標題為:「眼盲者重見光明—患者因幹細胞『奇蹟』痊癒。」然而實際情況是患者並未痊癒,雖然回報視力小幅度改善(他們原本視力極差,已被登記為盲人),但這僅僅是一項安全性研究,而且只有兩名患者參與。當然,研究本身是值得報導的,在幹細胞研究剛起步、真人試驗剛開始的時期,這是個重要的進展。問題在於報導口吻暗示科學研究取得了巨大突破,可能給成千上萬黃斑部病變患者帶來不切實際的希望。

同一天稍晚我揪著心打電話給《獨立報》科學編輯史提夫.康諾,告知我將他的報導當作科學新聞不良案例交給列文森調查庭。他當然談不上高興,但至少沒發飆,所以我鬆了一口氣。原來前一天晚上他提交的原稿內容較精緻,但夜班編輯決定將報導放在頭版,所以文字編輯就對標題進行過加工。康諾將原稿發過來,我們倆就在辦公室玩起「找出不同點」的遊戲了。

-----廣告,請繼續往下閱讀-----

離開法庭時,《太陽報》總編輯攔住我。我在證詞中批評他們前一週煽動恐慌,報導內容是居家用品內的化學物質,但標題卻叫做「商店貨架上滿滿的乳癌『風險』」。原本我以為對方要吵架,沒想到他說《太陽報》真心想改善科學報導品質,邀請我們為報社裡的一般新聞記者開一場科學報導培訓班。隨著列文森調查案持續推進,業界標準似乎終於迎來變革,而且這一次沒有落下科學新聞。

作證時我順便提出有必要為科學報導制訂新的指導方針,還誇下海口表示只需要幾小時就能與記者和科學家共同完成草擬。一週後,調查庭將人召集起來要我們開始,沒想到折騰了整整一天,而且過程中好幾次我都擔心無法達成共識。標題就是特別棘手的項目,記者和文字編輯很堅持標題只追求簡潔和引人注目,沒必要精準總結文章內容,但科學家聽了很火大,認為這是合理化不精準的敘述。

科學家要求標題的正確性,記者堅持要簡潔吸引,雙方激辯不休。圖/unsplash

我感覺自己成了全球和平談判的調解員,必須設法安撫所有人不拍桌走人並達成協議。所幸雙方都有成就這樁美事的意願,最終相互妥協:標題不應誤導讀者對文章內容的理解,且不應以引號包裝誇大的敘述

總體來說,新指導方針鼓勵記者從協助大眾的角度切入,告訴閱聽人什麼證據是可靠的,又有什麼證據還在研究階段。例如其中有幾條的內容是:新聞故事應附上來源以便讀者查詢。應標明研究的規模、性質和侷限性。應指出研究處於何種階段,並從合理角度預估新療法或新技術能為民眾所用的時間點。

-----廣告,請繼續往下閱讀-----

我們將指導方針寄給列文森勳爵,很高興他在最終版本的報告裡也建議採用。調查案結束後成立了獨立報刊業標準組織(Independent Press Standards Organisation)在各大新聞編輯部推廣指導方針,由於制訂過程有編輯和記者的參與所以接受度很高,不至於引起反彈。

為科學家舉辦講座時,我會展示一些因為科學家參與而變得更客觀準確的新聞報導,其中個人特別喜歡的一篇出自二○○八年的《每日郵報》,內容提到一項小鼠研究發現常用的保濕霜與癌症有相關。記者費奧娜.麥克雷(Fiona MacRae)引用兩位不同專家的意見質疑這項研究與人類皮膚的相關性,並指出該研究需要能在人類身上複現才有意義。

專家之一表示:因為這項研究就停止使用保濕霜太「瘋狂」,還補充說明:「小鼠皮膚癌研究其實不太能幫助我們瞭解人類的皮膚癌。」最精彩在於標題是「保濕霜與皮膚癌相關(僅限小鼠)」,而且括號內外用了同樣大小的字體。

從這個案例來看,優秀的記者可以在講述有趣故事的同時確保讀者不會過早丟掉面霜。我還會在講座使用的幻燈片裡摻入一些小報的報導實例來挑戰學術界偏見,比方說《每日郵報》的社論或許爭議頗多,但他們的科學新聞通常品質並不差,不推廣特定立場的時候更是如此,有時甚至優於大報。我還會強調《每日郵報》在英國銷量排行第二,如果連線上版也算進去讀者數超越所有大報,因此務實一點說:如果科學家希望更有效地向大眾傳遞信息,完全沒有不與《每日郵報》合作的道理。

-----廣告,請繼續往下閱讀-----

——本文摘自《是炒作還是真相?媒體與科學家關於真相與話語權的角力戰:從基改食品、動物實驗、混種研究、疫苗爭議到疫情報導的製作》,2025 年 03 月,商周出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
1

文字

分享

0
1
1
「科學」能有價值觀嗎?堅持「客觀」反而讓民眾失去信任?——《為何信任科學》
貓頭鷹出版社_96
・2024/05/26 ・3357字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

科學這門事業並非價值中立,個別科學家也不是。沒有任何人可以真正做到價值中立,當科學家這樣講自己,人們會覺得他們虛偽,因為那是不可能的。除非他們是白痴學者或超級天真,不然就是不誠實。然而誠實、開放和透明又被認為是科學研究的核心價值。科學家怎麼可能同時做到誠實,又說他們沒有自己的價值觀?如果科學家要堅守誠信,同時卻讓大眾誤解他們的角色(就算不是故意的),這會讓他們的事業出現根本的矛盾。

可能有人會反駁,科學家並不是說他們沒有自己的價值觀,只是不會允許這些價值觀影響到科學工作。這種論述不可能證明對或錯,但社會科學研究和一般常識都顯示這不太可能。這就把我們帶到下一個問題,不知為何長久以來都沒有人認真討論一件事,但它卻是許多美國人不信任科學的核心因素:要說科學是價值中立的,多少是在說它沒有價值,至少除了創造知識以外沒有其他價值,而這很容易就變成在說科學家沒有價值信念。當然不是這樣,但如果科學家不願意討論他們的價值觀,就會給人一種印象,認為他們的價值觀有問題,所以才需要遮遮掩掩,或認為他們根本就沒有價值信念。你會相信一個沒有價值信念的人嗎?

我在第二章提出了一個問題:忽視科學主張但最終發現它是對的,風險是什麼?相比之下,相信一個錯誤的科學主張,風險又是什麼?回答這個問題必須仰賴價值。我和康威合著的《販賣懷疑的人》提到,氣候科學所引起的爭辯,幾乎都是價值上的爭辯。很多有影響力的人物在一九八○和一九九○年代相信,政府干預市場的政治風險是如此之大,超越了氣候變遷的風險,因此他們懷疑、蔑視,甚至否認後者的科學證據。這些立場由自由主義智庫繼承,得到共和黨支持,演變成共和黨支持者很多都否認氣候變遷,只是有些積極、有些消極;然後再演變成很多質疑「大政府」的人都懷疑氣候變遷,包括商人、長者、福音派基督徒、住在美國鄉下的人。

即使氣候變遷的證據不斷累積,懷疑論者還是堅稱,就算氣候真的有在變遷,情況也不會太嚴重,或者不是「我們造成的」。因為如果事情真的很嚴重而且是我們造成的,那我們就應該採取行動,可能需要政府以某種方式管制。如此一來,否認氣候變遷逐漸變成美式生活的常態,先是否認證據,最終否認事實。這個問題非常嚴重,但是對於氣候變遷否認者秉持的價值,不能一網打盡說是錯的。

-----廣告,請繼續往下閱讀-----
共和黨支持者很多都否認氣候變遷。圖/giphy

我們可以討論大政府和小政府的優缺、市場管制不足或過度管制的風險,但任何這類討論都(至少在某種程度上)是從價值出發。如果要開誠布公討論這個話題,就必須討論我們的價值觀。不同的人面對同樣的風險,可能有不同的想法,不代表他們就是愚笨或腐敗。人為氣候變遷的科學證據很清楚,疫苗不會導致自閉症很清楚,使用牙線有益健康也很清楚。但價值觀導致許多人拒絕接受證據指出的事情。

回到剛才的問題:你會相信一個沒有價值信念的人嗎?答案當然是不會,這種人是反社會人格。你也不會相信那些擁抱你所厭惡的價值的人。但如果你認為,某個人的價值觀起碼部分與你相似,就算不盡相同,你可能就比較願意聽聽他的想法,接受他說法的一部分。因此,無論價值中立是否能讓一個主張在知識論上比較站得住腳,可以確定的是它在現實中沒有用,不能以此確保溝通、建立信任的連結

科學寫作的主流寫法不只試圖隱藏作者的價值觀,也把他們的人性一同抹煞了。價值觀隱藏、情緒不得伸張、避免使用形容詞,甚至連「我」這個字都無形中禁止了,即便論文只有單一作者也一樣。理想的科學論文寫得好像作者沒有價值觀或感覺,甚至好像作者根本不是人,這都是為了表現出客觀。

圖/envato

科學家可能覺得根本沒辦法讓否認氣候變遷和相信地球年紀是 6000 年的人相信他們。或許這是真的。我曾經公開表示對於要如何跟千禧世代交流感到非常絕望,他們之中有些人聽信末世論,認為世界就要毀滅了,幹麻還擔心氣候變遷?但當我陷入絕望,隔天幾位記者就告訴我怎樣才能透過基督教價值和教導打動這些人。他們建議我從價值觀下手,社會科學研究也支持這種想法。

-----廣告,請繼續往下閱讀-----

結論

科學家壓抑自己的價值觀,堅持科學是價值中立的,這是一條歧路。他們認為人們如果相信科學沒有價值觀,就會相信他們,但這是錯的。

墨頓顯然這樣想,但他可能是錯的,或許反過來才是對的。原因如下:

政治與社會觀念保守的基督徒、自由主義者、共和黨人拒絕相信演化論和人為氣候變遷,大部分分析都聚焦在科學家與這些人之間的價值衝突。但我相信,驅動大多數科學家的價值觀,還是和大多數美國人的價值觀有重疊之處,包括多數的保守派和宗教信徒。近來有一些科學家開始公開聲明他們的價值觀,我認為部分原因是,他們深信這些價值觀確實得到廣泛接納,可以作為信任連結的基礎。 我認為他們是對的。

我認識的大部分科學家都想要預防疾病、促進人類健康、透過創新和發現來強化經濟、保護美國與全世界美麗的大自然。前共和黨議員殷格利斯講得很有說服力,他談到他和海洋生物學家一同造訪大堡礁,他們肩並肩站著,欣賞珊瑚礁周邊生物撼人的美麗。殷格利斯了解到一件事:他看到「創造」,科學家看到「生物多樣性」,但他們實際上看到的、在意的、珍惜的,是同一件事。

-----廣告,請繼續往下閱讀-----

我好喜歡這個故事,因為多數人至少都在某方面珍愛自然。不同背景的美國人都曾造訪國家公園和森林,去健行、釣魚、露營、開車、攝影、漫遊、抱怨,雖然從事不同活動,但美景與體驗帶來了共同的喜悅。儘管如此,我們對人類與自然世界的關係,確實有不一樣的想法。有些人想要在冬日的黃石公園騎雪上摩托車,有些人想要安靜休養。幾乎所有美國人都說他們相信自由,然而我們對這個詞的理解卻嚴重分歧,也很難同意該把哪一類自由看得最重要。柏林有句名言:狼的自由可能代表羊的死亡。同意「自由」這個詞意義並不大。

宗教歷史學家普羅特勞指出,猶太人、天主教徒和新教教徒都相信十誡,但是版本差距之大,令人吃驚。例如天主教放棄了不可崇拜偶像,而猶太教與新教徒堅守此道。天主教因此少了一條戒律,只剩九條很奇怪,於是他們把最後一條一分為二,變成第九條是不可貪圖鄰人之妻,第十條是不可貪圖其他東西。儘管如此,美國人中超過 70% 都信奉這三個宗教,他們都還是認同不可殺人、偷竊、通姦或做偽證,也相信我們應該崇拜唯一真神、不可妄稱神的名、守安息日、孝敬父母。伊斯蘭教也同意這些,只是比這三個宗教更加強調慈善:課(zakat),也就是施捨,是五大支柱之一。不過,看看 zakat 這個字和希伯來文中的 tzedakah 多麼相似,tzedakah 代表慈善施予,是猶太生活的道德義務。慈善也是基督教的核心價值,虔誠的摩門教徒會繳納什一奉獻。

在很多政治議題上我們意見相左,但我們的核心價值大部分都重疊。釐清這些我們都同意的部分,並解釋它們和科學研究的關聯,我們就有機會克服盛行的懷疑論與對科學的不信任,尤其是因價值受到衝擊而產生的不信任。

We have been authorized by Princeton University Press to use this conten. 該內容由普林斯頓大學出版社授權使用

——本文摘自《為何信任科學:科學的歷史、哲學、政治與社會學觀點》,2024 年 04 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。