0

7
2

文字

分享

0
7
2

念哲學沒有用?為何哲學淪為低等學問?

好青年荼毒室
・2017/01/28 ・3538字 ・閱讀時間約 7 分鐘 ・SR值 528 ・七年級

  • 編按:本文為「好青年荼毒室(哲學部)」針對讀者好青年 K 的問題:「為何哲學會淪為很多人眼中的低等學問?」的回覆文章,作者為豬文。
古希臘哲學家蘇格拉底、亞里斯多德、克律西波斯和伊比鳩魯。圖/By Matt Neale from UK - Greek philosophersUploaded by NotFromUtrecht, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=12858253
古希臘哲學家蘇格拉底、亞里斯多德、克律西波斯和伊比鳩魯。圖/By Matt Neale from UK – Greek philosophersUploaded by NotFromUtrecht, CC BY 2.0, wikimedia commons.

首先,這個問題預設了哲學淪為很多人眼中的低等學問,然而這是一個「事實問題」,我不肯定社會是不是有「很多人」這樣想。我猜至少流連於荼毒室的好青年都不會這樣想吧,否則他們也不會想來這裡被哲學荼毒。如果大家有身邊人鄙視哲學的親身經驗,都可以留言跟我們分享一下~

不管是不是有「很多人」,有些人討厭哲學,倒是無可否認。箇中最重要的原因,應該是他們都覺得哲學沒有用。但為什麼他們會覺得哲學沒有用呢?因為不同緣由而討厭哲學的人會有很不同的想法。我在此嘗試分開幾個層次去談。

念哲學哪有錢?!

哲學為什麼無用?最簡單的理由當然是唸哲學賺不到錢呀!試想一下,如果你中學成績非常非常好,但卻跟家人朋友說要入哲學系,他們第一個反應很可能都是:「你是不是瘋了?入哲學系幹嘛?」他們的反應當然不是出於對哲學這門學科本身有什麼認識,而只是純綷知道哲學系學生能找的工作不多,哲學系不是一門你唸完之後可以飛黃騰達的科目。所以,持這種價值觀的人看來,不單止哲學是「低等」的,其他一切賺不到錢的學科,例如其他人文學科甚至自然科學也屬「低等」。

哲學關我X事?

當然,有些人之所以認為哲學無用,不一定只是源於普遍哲學系學生賺不到錢這個事實,也可以是出於對哲學這門學科的一定理解(或誤解)。例如,有些人會認為哲學所探討的問題都是無關痛癢的。哲學家會爭論自我同一性、心靈與物質如何互動、我們如何認識世界等問題。這些哲學問題很多時候都不會對我們的現實生活,有很直接或很大的影響。哲學家之所以會問這些哲學問題,並窮一生去研究,很多時候只是出於純綷的好奇心,純綷想認識真理。如果有些人沒有這種好奇心,自然不會有興趣探求這些真理,亦不能夠欣賞哲學這門學科。

-----廣告,請繼續往下閱讀-----

哲學整天吵來吵去沒有結果?

另外一個可能導致人覺得哲學本身就無用的原因是,哲學問題很少找到一個大家公認正確的答案。千古以來,幾乎沒有任何一個哲學問題可以一錘定音地宣判它已經被解決。幾千年前蘇格拉底問我們應該怎樣活、什麼是美、什麼是真理。幾千年後的哲學家,還是在問差不多的問題。相對於科學這幾千年來的發展,帶領我們一步一步的認識整個宇宙,哲學的發展便似乎顯得停滯不前。這個現象甚至令人質疑哲學問題本身便沒有所謂答案。如此一來,哲學便淪為一門研究一些不存在的東西的學問,那哲學自然無用。

但是,究竟哪個學科可以告訴我們哲學問題沒有答案呢?似乎就只有哲學。這顯示了視(某)哲學問題沒有答案,本身就已經是一個哲學立場。換句話說,以這種理由反哲學的人,本身就很吊詭地要進入哲學討論。而且即使原來某哲學問題是沒有答案的,哲學討論使得我們對刻議題有更深刻的理解,使得我們發現該問題沒有答案,這個哲學討論的過程本身便是有意義的。(關於哲學問題是不是沒有答案,哲學有沒有所謂進步,可參考上一篇樹洞回答:討論了二千多年還沒有共識,哲學問題會不會其實沒有答案?

哲學不過是哈拉打屁?

還有一個十分普遍導致人視哲學無用的原因,是哲學研究所使用的方法有時難以被其他學科的人理解。科學研究講求經驗觀察,數學講求演繹推論。但這兩者都不是研究哲學問題的主要方法。例如,當哲學家研究公義是什麼時,哲學家不是在觀察公義是什麼(不管是不是透過設計某實驗,使對象置於一個特殊環境中來觀察),也不是在計算公義是什麼(不管是不是透過建立某種模型)。哲學家做的是透過思想實驗、概念區分等方法,去論證公義究竟為何物。當然,觀察與計算的結果,對哲學辯論的過程或會有影響。但這些影響的結果,卻不是觀察與計算本身就可以提供給我們,而要經過哲學論證出來。

其他學科的人,有時難以理解思想實驗、概念區分這些哲學常常使用的方法,以致他們都覺得哲學是無用的學問。例如,在科學家的眼中,哲學家這種做研究方法,相比他們實實在在地在實驗室做實驗,就會顯得十分虛浮,不夠扎實,甚至覺得哲學研究只是一些吹水(哈拉打屁)。(有關哲學是不是吹水此問題,還可參看另一篇文章〈哲學不是…?〉)但正如上一個視哲學無用的理由,這個覺得哲學只是吹水漫談的想法,又是科學本身就能證明的嗎?似乎要說明科學有用、哲學無用,這本身又已經進入了哲學討論的範疇了。(所以科學家通常的做法不是嘗試跟你論證科學有用、哲學有用,而是直接對哲學家的討論,例如科學哲學、心靈哲學,視而不見。他們通常都是直接把哲學家當透明……這才是最高級的侮辱呀…..)

-----廣告,請繼續往下閱讀-----

哲學本身無問題,只是現代的學院哲學有問題

最後一個我會討論的想法是:哲學本身不是沒有用,甚至對每個人都是一門至關重要的學問。無用的不是哲學這門學問本身,而是當代進行哲學研究的方式。

這個想法的普遍程度,一點都不遜上述討論過的觀點,甚至哲學界內的一些哲學家也會持有這種觀點。例如,香港著名哲學家李天命,便多番在他的哲普著作之中,批評當代的學院哲學。他曾以「茶餐廳會議」來諷刺學院裡舉辦的那些哲學研究會議。又曾說以前的哲學家,例如蘇格拉底和孔子,都是對人類文明有巨大的影響力的人。但現代的哲學家卻全都淪為了躲在象牙塔內的哲學教授。

這種態度背後的基本想法是:哲學本是有意義,它可以影響每個人的生命,甚至整個人類文明的發展。它也曾經如此。但當代的學院哲學卻令哲學失去了這個哲學之為哲學的價值。當代的哲學使哲學變成一門門檻極高的專業。在當代,沒有受過訓練的一般人,根本沒有可能進入到哲學的世界。

其實,這個對哲學太過專業化的抱怨,也不是一個新鮮的想法。早在柏拉圖的年代,柏拉圖便曾強調過哲學,作為一門學問,最根本的任務便是回應人一些最基本的關注。但有趣的是,柏拉圖自己的哲學卻成為了那種最專業、最無法理解的學院哲學的代表。例如,柏拉圖創立的柏拉圖學院,其門上便掛著一個標示寫著:「不要讓任何沒讀過幾何學的人進來。」(有說這不是真的)柏拉圖不是也強調哲學應該要在地和親民嗎?為什麼他自己的哲學又變成這樣呢?

-----廣告,請繼續往下閱讀-----
柏拉圖(左)與亞里斯多德(右)。圖/By Raphael - Web Gallery of Art:   Image  Info about artwork, Public Domain, https://commons.wikimedia.org/w/index.php?curid=75881
柏拉圖(左)與亞里斯多德(右)。圖/By Raphael – Web Gallery of Art:   Image  Info about artwork, Public Domain, wikimedia commons.

要回答這個問題,最關鍵的是,如果我們期望哲學真的能回應我們的最根本困惑,哲學變得專業和離地卻是無可避免的。因為要回應人類這些最根本的困惑本來就是一件極之困難的事,而不是我們想像中的簡單。例如,人生的意義,我們最根本的關注之一,真的可以輕鬆回答嗎?

這個看似在地問題,其實無可避免會涉及更多更多離地的問題 ── 人究竟是一種什麼樣的東西?人與世界上其他東西有什麼不同?人又是如何與這個世界產生關係呢?世界又是怎麼來的?這個世界裡面有所謂意義嗎?從「人生有沒有意義」這個在地的人生哲學問題出發,我們一路問下去,卻發現背後有更多形上學、知識論、後設倫理學問題。故此,哲學離地,並不是故意裝作高深,而是這些在地的問題本來就沒有我們想像中簡單。如果只想追求一些片面的慰藉,你要讀的可能是《讓你幸福十個要訣》一類的心靈雞湯書,而不是哲學。

當然,無可否認,在如今的學術環境之中,仍充斥大量沒有意義的哲學論文、專書、研討會。這些東西全都是為了學術前途而做的。甚至寫這些東西的人自己也覺得他們寫的東西是毫無意義的。但這只顯示了整個學術環境的問題,此問題不獨哲學專有,並不表示哲學作為一種專科這件事本身是有問題的。

  • 備註:本文一些想法參考了 Bernard Williams 一篇名為 “On Hating and Despising Philosophy” 的文章。有興趣進一步思考這個問題的好青年可自行閱讀一下。

  • 編按:二千多年前,曾經有個叫蘇格拉底的人,因為荼毒青年而被判死,最終他把毒藥一飲而盡。好青年荼毒室中是一群對於哲學中毒已深的人,希望更多人開始領略、追問這世界的一切事物。在他們的帶領下,我們可能會發現我們習慣的一切不是這麼理所當然,從這一刻起接受好青年荼毒室的哲學荼毒吧!

本文轉載自好青年荼毒室(哲學部),〈哲學樹洞:為何哲學會淪為很多人眼中的低等學問?〉。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
好青年荼毒室
29 篇文章 ・ 10 位粉絲
好青年荼毒室,一個哲學普及平台。定期發表各類型哲普文章,有深有淺,古今中外,無所不談。在這裏,一切都可以被質疑、反省和追問。目標是把一個個循規蹈矩的好青年帶進哲學的世界。網頁:corrupttheyouth.net;臉書:https://www.facebook.com/corrupttheyouth。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

4
8

文字

分享

2
4
8
「意識」是什麼?人們已經找到答案了嗎?
PanSci_96
・2023/11/26 ・6000字 ・閱讀時間約 12 分鐘

「意識」是什麼?

直到現在,仍是宗教、哲學、心理學、神經科學都還無法解答的難題。

但是今年, 2023 年,一場來自神經學家與哲學家對於「意識」解釋的賭注,在經過長達 25 年的研究後,終於要畫下句點了嗎?到底是誰贏了?對自己頭上頂著的大腦,我們又了解多少了?

25 年前,一場圍繞「意識」之謎的賭局

1998 年,神經科學家克里斯托夫・科赫(Christof Koch)和哲學家戴維・查爾莫斯(David John Chalmers)打賭一箱葡萄酒,如果 25 年後,人們已經能清楚地解釋意識背後的神經機制,那麼就是科赫贏了。反之,如果還是未能解答意識之謎,就是查爾莫斯贏了。

-----廣告,請繼續往下閱讀-----

但在揭曉勝者之前,我們要先來談談一個最基本的問題,「意識」到底是什麼?首先我們要先定義清楚,因為在中文中,意識指的可能是一個人的清醒狀態、也可以是對內在自我的一種感知、又或是包含感知、情緒、思考等等的一種總和、又甚至可以是指在精神分析理論中與前意識和潛意識的比較。

若要深入探討意識定義的發展以及不同的哲學論點,那真的不做個三十集做不完,在這集的時間內,就讓我們把重點放在感質(Qualia)的相關概念。感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。我們感知世界的方式、感受事物的質感、觸覺、視覺、聽覺、嗅覺等等都是屬於感質。

感質,指的是個人直接體驗的主觀感受,被認為無法通過客觀描述或第三人稱觀察來完全理解或解釋。圖/wikipedia

舉一個例子。若是把一顆紅蘋果放在大家面前,詢問蘋果這是什麼顏色,相信大家應該都會說這是紅色。然而,雖然科學能解釋紅色是因為有波長約 620 到 750 奈米的光,刺激到視網膜的錐細胞,產生一連串的神經反應,最後形成大腦的表徵,但卻無法解釋我們對紅色的主觀感受是怎麼形成的。

哲學家們也常思考,你看到的紅色,和我看到的紅色究竟是否一樣,是否有可能我眼中的紅其實是你眼中的綠。

-----廣告,請繼續往下閱讀-----

舉另一個例子,這件數年前爆紅的衣服,你覺得是藍色與黑色相間,還是白色與金色相間呢?

另外,像是這張圖究竟是兔子還是鴨子?

圖/wikipedia

這張圖究竟是狗還是小女孩?

明明有張客觀的圖片存在,每個人的主觀感受卻有不同的答案。

-----廣告,請繼續往下閱讀-----

「困難問題」(Hard problem of consciousness)是找不到答案的問題?

在意識賭局中的哲學家戴維・查爾莫斯,就提出感質以及主觀經驗為什麼(why)存在以及如何(how)產生是所謂的困難問題(Hard problem of consciousness),相較於簡單的問題是討論意識相關的功能和行為,困難問題涉及意識的經驗(現象、主觀),是沒辦法客觀觀察測量。也就是這個問題,是沒有答案的。

舉一個屬於困難問題的例子,明明都只是大腦的神經在放電,為何某些神經放電後會導致飢餓感而不是其他感覺,譬如口渴?他認為即使沒有飢餓這種「感覺」,飢餓衍伸出的行為,例如進食,也可以發生。因此這些產生的感覺,無法單純簡化由大腦等物理系統解釋。

圖/giphy

然而,困難問題的說法其實也存在爭論。根據 2020 年哲學期刊文章的互動式學術資料庫 PhilPapers 的調查, 29.72% 的受訪哲學家認為難題不存在,而 62.42% 的受訪哲學家認為難題是一個真正的問題。

也有一群神經科學家們雖然接受困難問題的存在,卻也認為困難問題未來可以被解決,又或是被證明這不是一個真正的問題。並開啟了他們對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。

-----廣告,請繼續往下閱讀-----
精神科學家開啟對於意識相關神經區(neural correlates of consciousness)簡稱 NCC 的研究發展,試圖找到足以產生意識的最小神經集合。圖/PanSci YouTube

但 NCC 的研究被認為最多只能找到神經反應與意識的相關性,解決的仍然只是簡單問題而非困難問題。為了突破 NCC 本身的限制,人們又開始轉往重視意識理論(theories of consciousness (ToCs))的發展。希望透過意識理論來超越以 NCC 為基礎的方法論,轉向提供更具解釋性見解的意識模型。

在意識模型這邊還在爭論不休,讓我們先把鏡頭換到神經學家這一邊。

研究科技進步,為意識研究帶來哪些幫助?

面對意識這個艱難的大哉問,克里斯托夫・科赫當初怎麼那麼有自信,敢發起這個看起來勝算就不大的挑戰呢?有那麼愛喝嗎?

1998 年,年輕有為的克里斯托夫・科赫已經是加州理工學院的助理教授,並和生命科學領域大咖中的大咖弗朗西斯・克里克,合作研究意識這個主題。沒錯,就是和華生一同發現 DNA 是雙股螺旋結構的克里克。除此之外,克里斯托夫還擁有物理的碩士學位,擁有跨領域的知識,讓他更加相信透過實證的方式,能找到意識的神經機制。

-----廣告,請繼續往下閱讀-----
克里斯托夫・科赫合作研究意識的對象便是與華生一同發現 DNA 是雙股螺旋結構的弗朗西斯・克里克。圖/PanSci YouTube

當時有許多大腦研究的技術蓬勃發展,像是功能性磁振造影(fMRI)已經獲得廣泛使用,使得科學家們能在對象進行活動或是受外界刺激時,同步從大腦血氧濃度的變化來推斷神經反應。

此外,光學遺傳學(optogenetics)技術也在那個時期開始萌芽,這讓研究者能用極佳的時間解析度來調控特定的大腦神經元,並藉此解碼大腦的秘密。舉例來說,現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞,並在小鼠頭上裝上 LED 光纖,只要開啟 LED 的光刺激,那些特定神經細胞就會興奮或抑制。藉由觀察小鼠行為的變化,就能了解不同行為表現是由哪些神經元所調控。

現在的光學遺傳學能讓科學家們鎖定小鼠的特定神經細胞。圖/PanSci YouTube

厲害的是,在 1979 年光學遺傳學的技術還未誕生前,克里克就認為如果想要了解大腦的運作,精準控制大腦中一種類型的所有細胞是非常重要的,而若想要有極佳的時間和空間精細度,必須使用光的技術,這與後來光學遺傳學的發明不謀而合。

有了這些科技加持,長達 25 年對於意識的賭注也即將來到結局。

-----廣告,請繼續往下閱讀-----

所以,誰贏了賭注?

2023 年 6 月 23 日,在科學意識研究協會的年會上,揭曉了這長達 25 年的賭局。神經科學家克里斯托夫・科赫(Christof Koch)最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒(1978 Madeira)給哲學家戴維・查爾莫斯(David John Chalmers)實現諾言。

克里斯托夫・科赫最終承認,目前還不能解釋大腦的神經元是如何產生意識,並買了一箱好葡萄酒給戴維・查爾莫斯。圖/PanSci YouTube

當然,這不是說意識的來源永遠沒有解答,只是當初賭局設下的 25 年時限到了。實際上到了 2018 年,他們兩位根本都忘了這場賭局,直到一位科學記者佩爾・斯納普魯德重新提及這個話題,才讓大家重新想起。

恰巧那個時間點,克里斯托夫・科赫和戴維・查爾莫斯都參與了鄧普頓世界慈善基金會支持加速意識研究的大型項目。該計畫建立一系列意識理論的「對抗性」實驗,希望透過讓兩個或多個持相反觀點的競爭對手共同合作研究,來挑戰各種意識假設。

意識理論的百家爭鳴

而其中包含兩個著名的意識理論,全局工作空間理論(Global Workspace Theory (GWT))和整合資訊理論(Integrated Information Theory (IIT))。

-----廣告,請繼續往下閱讀-----
全局工作空間理論(Global Workspace Theory (GWT))。圖/PanSci YouTube

全局工作空間理論(Global Workspace Theory (GWT))的概念,最早是由認知科學家伯納德・巴爾斯和斯坦・富蘭克林在 1980 年代晚期提出。他們認為意識的產生就像是劇場聚光燈一樣,當這個意識劇場透過名為選擇性注意的聚光燈在舞台上照出內容,我們就會產生意識情境。這聚光燈的投射也代表著全局工作空間,只有當感官輸入、記憶或內在表徵受到注意時,它們才有機會整合成為全局工作空間的一部分,被我們主觀意識到。而我們的行為決策,也是透過這個全局工作空間整合訊息,並分配到其他系統所產生。目前認為全局工作是發生於大腦前方的前額葉區域。

整合資訊理論(Integrated Information Theory (IIT))。圖/PanSci YouTube

與全局工作空間理論打對臺的,是整合資訊理論(Integrated Information Theory (IIT)),最早由朱利奧・托諾尼(Giulio Tononi)在 2004 年提出。這理論認為,意識背後是有數學以及物理為基礎的因果關係。應該先肯定意識的存在,再回推尋找其背後的物質基礎,並認為主觀意識是由客觀的感覺經驗產生的。克里斯托夫・科赫就是此理論的擁護者,他進一步認為,意識背後的那個神經機制,就存在於大腦後方後皮質熱區(Posterior cortical hot zone),包括頂葉、顳葉和枕葉的感覺皮質區域。

讓我們稍微總結一下兩者差異:

全局工作空間理論——

  • 意識只能透過訊息投射到一個稱做「全局工作空間」之後才能呈現
  • 訊息本身不會形成意識
  • 訊息要被注意到才會產生意識

整合資訊理論——

  • 意識存在
  • 產生的關鍵是需要將大腦處理感覺的皮質區域訊息整合

然而,經過六個獨立實驗室的研究,雖然有較多的證據支持整合資訊理論,但兩個理論都存在缺陷和質疑,直到目前都尚未有明確解答能解釋意識的神經機制,這也讓克里斯托夫・科赫大方承認自己輸掉了這 25 年的賭局。

隨著科學測量技術的演進以及越來越多的研究進展,有一些神經科學家認為意識理論即將崛起,目前的狀態只不過是一種研究過渡期。科學哲學家托馬斯・庫恩(Thomas Kuhn)將這種過渡期以「前典範式」(preparadigmatic science)來形容,認為一門不成熟的科學在成熟前,會面臨相互競爭的思想流派並各說各話。就像是當初達爾文提出演化論的物競天擇前有拉馬克主義、災變論與均變論來試圖解釋物種起源一樣。

下一場賭約?

雖然這次的打賭由戴維・查爾莫斯獲得一勝,但克里斯托夫・科赫在今年加倍賭注,認為下一個 25 年他一定會贏。到時候克里斯托夫已經 91 歲,戴維 82 歲了。

大家別擔心,這一集是會員共同選出來的題目, 25 年之後,我們也會再為各位泛糰做一集討論賭局的結果。

最後也想問問大家, 25 年之後,你賭這場對決會是誰贏呢?

  1. 我壓在克里斯托夫・科赫身上,我們一定能解開意識之謎
  2. 我賭戴維・查爾莫斯,意識這個問題,可能很難用科學來解釋
  3. 在那之前, AI 可能都已經有意識了,直接問 AI 還比較快

趕快來留言吧,記得 25 年後要回來看啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 2