Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

點歪技能樹的勇者「卡介苗」,可能可以對抗新型冠狀病毒的原理是什麼?

miss9_96
・2020/04/21 ・3334字 ・閱讀時間約 6 分鐘 ・SR值 598 ・九年級

統計推論,施打卡介苗的國家,COVID-19 罹病率、死亡率皆較低。

圖/wikimedia

在印象裡,疫苗是高度專一性、對抗目標病原體的職人。但有種疫苗,卻點歪了技能樹,也能對抗其他疾病。那麼這位不務正業點歪技能樹的勇者,是誰呢?

新型冠狀病毒(SARS-CoV-2)重創人類世界,全球皆尋求對抗這魔王的藥物或疫苗。然而,科學家意外發現,原始設計預防肺結核的卡介苗 (Bacillus Calmette-Guérin vaccine, BCG),也許能成為對抗冠狀病毒的勇者1

日前《醫學假設》(Medical Hypotheses) 期刊發表了研究,比較「強制」和「無強制」施打卡介苗的國家,在這次疫情的受害程度,感染比例與死亡比例,分別如以下圖表:

-----廣告,請繼續往下閱讀-----

有無強制施打卡介苗的國家,本次 COVID-19 感染率(截至格林威治時間 2020/03/23)

強制施打組 無強制組
感染率中位數(人/每百萬人) 43 290.5
結論 P<0.0001,有顯著差異
各組感染率前五名 強制施打組 無強制組
伊朗(274人) 冰島(1,723人)
愛爾蘭(228人) 盧森堡(1,398人)
葡萄牙(202人) 義大利(1,057人)
南韓(175人) 瑞士(988人)
卡達(174人) 西班牙(708人)
台灣(8人)
有無強制施打卡介苗的國家,本次 COVID-19 死亡率(截至格林威治時間 2020/03/23)
強制施打組 無強制組
死亡率中位數(人/每百萬人) 0.399 2.705
結論 P=0.0058,有顯著差異
各組死亡率前五名 強制施打組 無強制組
伊朗(21.5人) 義大利(100.5人)
中國(2.3人) 西班牙(47.2人)
葡萄牙(2.3人) 瑞士(13.6人)
南韓(2.2人) 法國 (13.1人)
希臘(1.6人) 盧森堡(12.8人)
台灣(0.08人)
  • 統計結論與中位數不含台灣之數據
  • 資料來源:除台灣外之數據均來自參考文獻1,台灣之數據來自衛福部疾管署和內政部。

團隊發現,「強制」施打卡介苗的國家感染率比「無強制」的少(43人/每百萬人 比對 290.5人/每百萬人)。而以死亡率而言,「強制」施打卡介苗的國家死亡率比「無強制」的少(0.399人/每百萬人 比對 2.705人/每百萬人)註1

本次各國 COVID-19 感染率,綠點為有強制施打者,由左至右:中國、伊朗、南韓、葡萄牙、巴西、土耳其、馬來西亞、日本、愛爾蘭、厄瓜多。紅點為無強制組,由左至右:義大利、美國、西班牙、德國、法國、瑞士、英國、荷蘭、澳洲、比利時。中文資料為本文作者加註。From: 參考文獻1
本次各國 COVID-19 ,綠點為有強制施打者,由左至右:中國、伊朗、南韓、葡萄牙、巴西、土耳其、馬來西亞、日本、愛爾蘭、厄瓜多。紅點為無強制組,由左至右:義大利、美國、西班牙、德國、法國、瑞士、英國、荷蘭、澳洲、比利時。From: 參考文獻1

換言之,這暗示人類,卡介苗也許真的點歪了技能樹(幹的好!),出乎意料地成了人類對抗新型冠狀病毒(SARS-CoV-2)的勇者。

卡介苗的多元技能:對抗呼吸道感染、治療膀胱癌

卡介苗是牛分枝桿菌(Mycobacterium bovis)的減毒菌株,原始目的是預防結核桿菌感染,於 1924 年初現人間2 。然而近百年研究,卻發現它在其他疾病上展現多樣化的潛力。

-----廣告,請繼續往下閱讀-----

2015 年的《臨床感染性疾病 (Clinical Infectious Diseases)》期刊裡有項長達 15 年的追蹤研究指出,相較於無施打卡介苗的兒童,施打疫苗的兒童因呼吸道感染而住院的比率下降了 40%3 。而在癌症上,卡介苗是膀胱癌的治療方式之一,且卡介苗還能協助診斷川崎氏症(Kawasaki Disease)註2 4

卡介苗對各項疾病的醫用潛力

保護面向
(Protection)
結核病 (Tuberculosis)
痲瘋病 (Leprae)
非結核性分枝桿菌感染 (NTM infecton)
病毒、寄生蟲、細菌感染 (Heterologous protection)
癌症?(Cancer)
過敏?(Allergies)
阿茲海默症? (Alzheimer)
診斷面向
(Diagnosis)
川崎氏症 (Kawasaki disease)
治療面向
(Treatment)
癌症 (Cancer)
第一型糖尿病 (Diabetes Mellitus-1)
多發性硬化症 (Multiple sclerosis)
過敏?(Allergies)
併發症面向
(Complications)
避免自體免疫缺陷所導致的瀰漫性感染
(Disseminated infection in immunodeficiencies Autoimmunity)
  • 中文資料為本文作者翻譯加註 From: 參考文獻2

多元技能的可能機制:先天免疫系統的強化

科學界還不太清楚,為什麼卡介苗能對抗其他疾病?(為啥點歪技能樹?你說說看啊)其中一項推理是卡介苗可以強化先天性免疫力。換言之,疫苗通常是植入類似病原體的物質,引發專一性的後天免疫機制。而卡介苗此類型的「非專一性」的免疫力,可能是透過先天性免疫機制

一項人體實驗發現,卡介苗似乎改變、刺激單核免疫球(mononuclear cells,如:巨噬細胞)的發炎蛋白質表達,還增加了白血球對抗外敵的表面受器 4

該研究徵求自願者施打卡介苗,且在施打前、後,觀察人體免疫反應。以下圖的實驗為例:施打前後,均向自願者體內注射金黃色葡萄球菌,並收集單核球的 mRNA,以分析卡介苗對於強化單核球、分泌對抗病原體的發炎因子(如:TNFα, IL1β)能力。結果發現,即使卡介苗不是設計用來對抗金黃色葡萄球菌,它依然強化了單核球分泌發炎因子、對抗金黃色葡萄球菌的能力。

-----廣告,請繼續往下閱讀-----

而同時,團隊也收集自願者體內單核球,分析施打卡介苗前、後,單核球表面 TLR4受器的變化。結果發現,卡介苗刺激、改變了單核球的表面受體,強化了對抗病原體的能力。

自願者施打卡介苗前、後,其免疫反應的差異。上圖:施打前後,均向自願者體內注射金黃色葡萄球菌,並收集單核球的mRNA,以分析卡介苗對於強化單核球分泌對抗病原體的發炎因子能力。下圖:施打前後,收集自願者體內單核球,分析表面有TLR4受器的單核球數量變化。中文資料為本文作者加註。From:參考文獻4

為了進一步證實卡介苗提高免疫力,是透過「先天免疫機制」的途徑,研究團隊替缺乏 T、B 細胞的小鼠(SCID mice)註3 注射卡介苗後,再給予致死劑量的白色念珠球菌。結果發現,即便小鼠缺乏後天免疫系統,卡介苗依然保護了小鼠,替卡介苗強化「先天免疫機制」的假設提供了佐證。

後天免疫系統缺乏的小鼠,分為施打卡介苗和對照組。皆注射致死劑量的念珠球菌後,觀察存活率變化。中文資料為本文作者加註。From:參考文獻4

全球疫情嚴峻,而科學家為了釐清這支點歪技能樹的勇者-卡介苗,是否能對抗新型冠狀病毒,澳洲和默克已在 3/30 展開臨床試驗,邀請醫護施打卡介苗,觀察它的防護能力 5 。然而,有鑒於短期內不可能有疫苗,該論文作者認為應將卡介苗納入保護高風險族群(如:醫護、海關)計畫之一。畢竟,在真.勇者誕生之前,這支點歪技能樹的老牌勇者,也許能帶給人類更多驚喜也說不定呢。

保持冷靜,繼續前進。 Keep Calm and Carry On.

註釋

  1. 作者聲明,受限於各國檢驗能力,確診人數和死亡人數,都有待質疑。因此卡介苗的功效仍有待臨床試驗證實。
  2. 川崎氏症 (Kawasaki Disease),又稱皮膚黏膜淋巴結症候群。病因不明,好發於 5 歲以下,可能導致心肌發炎、心臟受損。參考資料:中國醫藥大學附設醫院。
  3. T、B細胞為後天免疫系統,能記得過往侵入體內的病原體。倘若未來遭遇相同的敵人,能快速反應、產生抗體。此系統針對專一性的敵人快速行動,被視為後天免疫系統。
  4. 2020/04/28新增:儘管目前統計上,說明卡介苗可能可以對抗COVID-19,但在臨床實驗無證據前,不建議一般民眾以施打卡介苗作為預防COVID-19手段。

參考文獻

  1. Mayda Gursel and Ihsan Gursel (2020) Is Global BCG Vaccination Coverage Relevant to The Progression of SARS-CoV-2 Pandemic? Medical Hypotheses. DOI: 10.1016/j.mehy.2020.109707
  2. Marco Antonio Yamazaki-Nakashimadaa, Alberto Unzuetab, Luisa Berenise Gámez-Gonzálezc, Napoleón González-Saldañad, and Ricardo U. Sorensene. (2020) BCG: a vaccine with multiple faces. Human Vaccines & Immunotherapeutics. DOI:10.1080 / 21645515.2019.1706930
  3. María José de Castro, Jacobo Pardo-Seco, Federico Martinón-Torres (2015) Nonspecific (Heterologous) Protection of Neonatal BCG Vaccination Against Hospitalization Due to Respiratory Infection and Sepsis. Clinical Infectious Diseases. DOI: https://doi.org/10.1093/cid/civ144
  4. Johanneke Kleinnijenhuis, Jessica Quintin, Frank Preijers, Leo A. B. Joosten, Daniela C. Ifrim, Sadia Saeed, Cor Jacobs, Joke van Loenhout, Dirk de Jong, Hendrik G. Stunnenberg, Ramnik J. Xavier, Jos W. M. van der Meer, Reinout van Crevel, and Mihai G. Netea (2012) Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences. DOI: https://doi.org/10.1073/pnas.1202870109
  5. BCG Vaccination to Protect Healthcare Workers Against COVID-19 (BRACE). ClinicalTrials.gov
-----廣告,請繼續往下閱讀-----
文章難易度
miss9_96
170 篇文章 ・ 1089 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
沒有症狀也不能大意!30 歲後女性都該注意的子宮頸癌預警指南
careonline_96
・2025/06/18 ・2608字 ・閱讀時間約 5 分鐘

圖 / 照護線上

「即使完全沒症狀,也一定要接受子宮頸癌篩檢!」隨著羅氏診斷女性健檢週活動開跑,林口長庚婦產部教授張廷彰醫師如此表示。根據衛生福利部國民健康署 111 年癌症登記報告,子宮頸癌長期位居女性癌症死因前十名,儘管政府長年推動篩檢政策,仍有約 20% 至 30% 的患者在確診時已屬中晚期(二期以上)[1]。近年政府積極推動 HPV 疫苗,但許多 30 歲以上女性仍屬「疫苗空窗世代」,未能在黃金施打年齡接種疫苗,此類族群更應建立定期檢查習慣。

「早期發現對子宮頸癌非常重要!」張廷彰強調,若能及時接受標準治療,一期子宮頸癌的五年存活率可超過 90%,如果進展至中晚期子宮頸癌,便可能會需要接受大範圍手術,再搭配放射治療或全身性治療,對工作及生活造成影響,存活率也比較差。

預防子宮頸癌
圖 / 照護線上

遠離子宮頸癌威脅,三道防線守護健康

子宮頸癌的發生多與人類乳突病毒(Human Papillomavirus, HPV)的感染有關,主要經由性接觸傳染,或透過接觸帶有病毒的物品造成間接感染。張廷彰指出,多數人感染後沒有明顯症狀,甚至可能自行痊癒,但有部分人感染高風險HPV後,因體質因素無法清除病毒,造成高風險HPV持續感染,持續的定義為達半年以上,進而演變為子宮頸癌前病變或癌症。

由於HPV感染與初期病變通常無明顯症狀,許多女性容易忽略定期篩檢的重要性,若等到出現異常出血等明顯警訊時,多已進展為子宮頸癌,往往已錯過早期治療的最佳時機。因此,張廷彰強調女性應透過「三道健康防線」及早防治:第一,建立安全性行為觀念;第二,接種HPV疫苗;第三,定期接受子宮頸癌篩檢,包括抹片與高危HPV DNA檢測,才能有效攔截疾病於早期,守住自身健康防線。

-----廣告,請繼續往下閱讀-----
子宮頸抹片搭配HPV DNA檢測篩檢更完善
圖 / 照護線上

子宮頸抹片搭配HPV DNA檢測 助精準掌握健康風險

目前子宮頸癌的篩檢方式主要有兩種:子宮頸抹片檢查與高風險HPV DNA檢測。抹片檢查是透過顯微鏡觀察子宮頸細胞型態,檢視是否有可疑性的癌細胞存在;而高危HPV DNA檢測則是利用基因技術分析是否有感染高風險型HPV,能在病變尚未發生前就偵測出潛在風險,讓防線更提前。

張廷彰醫師建議女性可搭配兩種篩檢方式使用,以提升篩檢準確度。若HPV DNA檢測結果為陰性,代表近期感染風險較低,可每五年再進行一次篩檢,不僅能減少不必要的頻繁檢查,也能更早掌握健康風險、規劃後續追蹤。

此外,目前政府亦有相關補助政策,鼓勵女性善加利用公費資源以守護健康:

  • 25至29歲婦女:每三年一次免費子宮頸抹片檢查
  • 30歲以上婦女:每年一次免費子宮頸抹片檢查
  • 當年度年齡為35歲、45歲、65歲女性可接受一次免費HPV DNA檢測

透過這些篩檢工具與政策支持,女性可更有效掌握自身健康,及早防範子宮頸癌風險。

-----廣告,請繼續往下閱讀-----
子宮頸癌高風險族群要注意
圖 / 照護線上

9 大子宮頸癌高風險族群要注意!醫:定期檢查遠離威脅

除了公費補助對象為,高風險族群應每年做一次子宮頸抹片檢查,也建議搭配高危人類乳突病毒 HPV DNA 檢測。高風險族群包括未曾接種過HPV疫苗、較早發生性行為、有多重性伴侶、HIV 感染、接受器官移植、使用免疫抑制劑、有家族病史、反覆陰道感染、抽菸或飲酒者等。即使沒有症狀,也應該定期接受子宮頸癌篩檢,才能及早處理。

張廷彰醫師表示,自 2025 年起國民健康署擴大補助子宮頸癌篩檢,符合公費篩檢條件的女性朋友務必好好把握,若未符合資格也可自費進行篩檢,守住健康防線,也呼籲民眾「挺身而出守護健康」,主動提醒身邊女性來一場健康篩檢約會!

筆記重點整理

  • 早期發現對子宮頸癌非常重要,若能及時接受標準治療,一期子宮頸癌的五年存活率可超過 90%,如果進展至中晚期子宮頸癌,可能會需要接受大範圍手術,再搭配放射治療或全身性治療,對工作及生活造成影響,存活率也比較差。
  • 子宮頸癌的發生大多與人類乳突病毒(HPV)感染有關,HPV 第 16、18 型屬於高危險人類乳突病毒,可能導致子宮頸癌前病變、子宮頸癌以及男女外生殖器癌;低危險人類乳突病毒則可能會引起生殖器疣(菜花)。
  • 預防子宮頸癌有三道關鍵防線,包括安全性行為、接種人類乳突病毒 HPV 疫苗、定期接受子宮頸癌篩檢。過去,子宮頸癌篩檢主要仰賴子宮頸抹片檢查近年來許多國家已開始採用 HPV DNA 檢測,因為HPV DNA 檢測能更準確預測未來罹患癌症的風險。
  • 自 2025 年起衛生福利部國民健康署擴大子宮頸癌篩檢,除了子宮頸抹片檢查,還納入 HPV DNA 檢測。在子宮頸抹片檢查部分,25 歲至 29 歲婦女,每 3 年 1 次子宮頸抹片檢查;30 歲以上婦女,每年 1 次子宮頸抹片檢查。當年度為 35 歲、45 歲、65 歲的女性,可接受 1 次人類乳突病毒 HPV DNA 檢測。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
32 篇文章 ・ 6 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。