0

0
0

文字

分享

0
0
0

出現症狀就有高病毒量?新型冠狀病毒感染者體內的病毒量如何變化?

miss9_96
・2020/04/16 ・2132字 ・閱讀時間約 4 分鐘 ・SR值 569 ・九年級

「其中一例,直到第 28 天仍可測出病毒 RNA」

剛有症狀時,病毒量最高;直到第 28 天,仍可測得病毒 RNA

關於新型冠狀病毒 (SARS-CoV-2),德國科學家為了釐清下述疑問,針對慕尼黑醫院的患者,進行研究 1

  • 何時體內病毒量最高?
  • 何時體內病毒仍有可感染他人?
  • 此病毒攻擊上呼吸道、下呼吸道、腸道細胞的能力如何?

研究發現,此病毒「出道即高峰」──研究中所有 COVID-19 的患者出現症狀後,在第 1 至 5 天裡,都可在咽喉測得病毒RNA。

而反觀 2003 年流行的冠狀病毒 SARS,在症狀發作的初期(3.2 天),僅有 32% 能在呼吸道測得病毒2。而香港的研究也得到相仿的結果,COVID-19 症狀初始第一週的唾液裡,病毒 RNA 量即達到最高3

而「病人剛感到不舒服,病毒量就是高峰」的特色,可能就是爆發大流行的主因之一。

-----廣告,請繼續往下閱讀-----
患者出現症狀後,唾液和支氣管沖洗液裡的病毒 RNA 量變化。中文資訊為本文作者加注。圖/參考文獻 3

相較於 2003 年的前輩 SARS,2020 年流行的新型冠狀病毒,顯然更適應、喜愛人類的上呼吸道1,而病毒的偏愛,使它更可能透過上呼吸道的分泌物(如:口水、飛沫、鼻水等)傳播,導致更強大的傳染力。

更令人憂心的是,症狀發作的第 28 天,仍有患者可測出病毒 RNA;而香港研究裡,也有一名患者在第 25 天仍測出病毒 RNA1、3、註2

難道感染新型冠狀病毒的患者,發病數十天後仍有傳染力嗎?

難道感染新型冠狀病毒的患者,發病數十天後仍有傳染力嗎?圖/GIPHY

由於測得病毒 RNA ≠ 帶有活病毒能傳染給他人,因此德國除了以 RT-PCR 判讀外,亦將患者體液和活細胞 (Vero E6 cells) 共同培養。

-----廣告,請繼續往下閱讀-----

值得開心的是,從第 8 天及之後的體液裡,儘管仍可測到病毒 RNA,但已經都無法在活細胞中培養、分離出活病毒1

換言之,儘管病人體內仍有病毒 RNA,但第 8 天後,患者體內的病毒可能已經無法傳染給其他人了1

上、下呼吸道、腸道細胞,都是它的菜

德國科學家發現,COVID-19 患者,其咽喉(上呼吸道)、痰(下呼吸道)、糞便(腸道)的檢體中,都可測得病毒存在;且不同部位檢體的病毒基因型態有差異註3,顯示新型冠狀病毒能侵襲上、下呼吸道、腸道細胞1

極高比例的患者在感染初期,就能在上呼吸道測得病毒 RNA,顯示此病毒比 2003 年的 SARS 更愛人類的上呼吸道;而能在腸道裡繁殖的特性,更表示了此病毒比 2012 年的 MERS,更加適應了人類的腸道細胞。

新型冠狀病毒和它的前輩們相比,顯然是一隻修改了前兩代缺點後再重生的魔王。

隨著病程的發展,某患者的痰、咽喉、糞便裡的病毒 RNA 量,和抗體產生等變化。可發現在剛有症狀時,上呼吸道的病毒量即達到高峰;而下呼吸道、腸道裡的病毒繁殖高峰稍晚,但持續的時間似乎更久。
而人體內的抗體,在症狀出現後數天才會產生,可合理推測抗體並非早期篩檢的好方法。中文資料為本文作者加註。
圖/參考文獻 1

值得一提的是,德國研究指出,9 例患者中,有 4 名表達味、嗅覺喪失,且表示感官喪失的程度,遠比普通感冒更加嚴重1,是個值得深研的臨床特徵。

-----廣告,請繼續往下閱讀-----

而德國科學家更提出建議,由於在第 8 天之後,就已經無法從患者體液裡培養、分離出活病毒。而考量醫療資源有限的現實,且現今多國出現醫療崩潰的情況,可考慮讓痰液中病毒 RNA 量低於 105 copies/毫升,且症狀出現已超過 10 天的患者出院進行居家隔離,以減輕醫護壓力1

德國和香港的研究,提供了我們極大的參考價值。台灣的疫情雖未達崩潰的臨界點,但德國學者的建議,我們應當列入計畫、銘記在心,以防那最糟、最長的一日來臨。

保持冷靜,繼續前進。Keep Calm and Carry On.

註解

  1. 此現象可能有許多的解釋,我嘗試進行假設如下:
    假設一)患者體內雖然有被感染的殭屍細胞,也持續釋出病毒顆粒,但這些病毒顆粒功能不全,無法感染、殺死培養皿的細胞。但患者的免疫力也較低,無法將這些殭屍細胞清除殆盡。
    假設二)患者體內雖殘存病毒,但這些病毒複製出了差錯,導致功能較弱,無法在實驗室的條件下,感染、殺死培養皿的細胞。
    但這些較弱的病毒,因為在患者體內可以持續地嘗試攻擊人體細胞,故仍可在患者體內繁殖。
  2. 香港研究發現,約 33% 患者在症狀出現後第 20 天,仍可測得病毒 RNA。
  3. 在糞便檢體中測出病毒 RNA,其來源可能有二:
    1) 病毒感染腸道細胞。
    2) 病人偶然嚥入痰或口水,因此在排泄物中測得病毒。
    而德國研究發現三處檢體的病毒基因有差異,顯示上、下呼吸道、腸道裡的病毒是獨立發展。

參考文獻

  1. Roman Wölfel, Victor M. Corman, Wolfgang Guggemos, Michael Seilmaier, Sabine Zange, Marcel A. Müller, Daniela Niemeyer, Terry C. Jones, Patrick Vollmar, Camilla Rothe, Michael Hoelscher, Tobias Bleicker, Sebastian Brünink, Julia Schneider, Rosina Ehmann, Katrin Zwirglmaier, Christian Drosten & Clemens Wendtner (2020) Virological assessment of hospitalized patients with COVID-2019. Nature. DOI: https://doi.org/10.1038/s41586-020-2196-x
  2. Prof JSM Peiris, DPhil, CM Chu, MRCP, VCC Cheng, MRCP, KS Chan, FRCP, IFN Hung, MRCP, LLM Poon, DPhil, KI Law, MRCP, BSF Tang, MB, TYW Hon, FRCP, CS Chan, FRCP, KH Chan, PhD, JSC Ng, MB, BJ Zheng, PhD, WL Ng, MRCP, RWM Lai, FRCPA, Y Guan, PhD, Prof KY Yuen, MD (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. DOI: 10.1016/S0140-6736(03)13412-5
  3. Kelvin Kai-Wang To, MD, Owen Tak-Yin Tsang, FRCP, Wai-Shing Leung, FRCP, Anthony Raymond Tam, MRCP, Tak-Chiu Wu, FRCP, David Christopher Lung, FRCPath, Cyril Chik-Yan Yip, PhD, Jian-Piao Cai, BSc, Jacky Man-Chun Chan, MPH, Thomas Shiu-Hong Chik, MRCP, Daphne Pui-Ling Lau, MRCP, Chris Yau-Chung Choi, MRCP, Lin-Lei Chen, MPhil, Wan-Mui Chan, PhD, Kwok-Hung Chan, PhD, Jonathan Daniel Ip, MSc, Anthony Chin-Ki Ng, BSc, Rosana Wing-Shan Poon, PhD, Cui-Ting Luo, MD, Vincent Chi-Chung Cheng, MD, Jasper Fuk-Woo Chan, MD, Ivan Fan-Ngai Hung, MD, Zhiwei Chen, PhD, Honglin Chen, PhD, Kwok-Yung Yuen, MD (2020) Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet Infectious Disease. DOI: https://doi.org/10.1016/S1473-3099(20)30196-1
-----廣告,請繼續往下閱讀-----
文章難易度
miss9_96
170 篇文章 ・ 1109 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
2

文字

分享

0
5
2
研究自閉症成因的新思路:環狀 RNA——專訪中研院基因體研究中心莊樹諄研究員
研之有物│中央研究院_96
・2023/09/22 ・5439字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|寒波
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

自閉症研究的新方向

臺灣民眾大概都聽說過「自閉症」這個名詞,自閉症是腦部發育障礙導致的複雜疾病,同時受到先天遺傳以及後天環境因素的影響,具體成因依然是個謎,科學家須對遺傳調控方面有更多了解。中央研究院「研之有物」專訪院內基因體研究中心的莊樹諄研究員,他的團隊結合生物學、資訊學以及統計學方法,發現自閉症的風險基因與 RNA 之間有複雜的交互作用,在自閉症患者與非患者的腦部有很大差異。如果持續研究 RNA 的調控機制,或能開闢新的方向進一步理解自閉症。

遺傳性疾病成因——致病基因

根據衛生福利部 2023 年統計數據,我國自閉症患者超過一萬九千人。自閉症的全稱為「自閉症譜系障礙(autism spectrum disorder,簡稱 ASD)」,常見症狀是溝通、表達、社交上有困難,經常出現反復固定的狹窄行為,目前尚無有效的治療藥物。雖然經典電影《雨人》的主角雷蒙或是韓劇《非常律師禹英禑》的禹英禑都令人印象深刻,不過天才或高智商的自閉症患者只是極少數,而且不同患者的症狀輕重差異很大,故稱之為「譜系」(spectrum)。

理解遺傳性疾病,可利用遺傳學與基因體學的研究方法,比較患者與非患者之間的遺傳差異,便有機會尋獲致病的遺傳成因。過往研究得知,有些遺傳性疾病只取決於單一或少數基因的強力影響,例如亨廷頓舞蹈症(Huntington’s disease)、纖維性囊腫(cystic fibrosis)等,致病原因較為單純。

自閉症自然也受到先天遺傳基因影響,然而,它涉及許多影響力不明顯的基因,而且影響每名患者的基因又不盡相同,讓遺傳與症狀的關係更加複雜。如果從 RNA 研究路徑出發呢?RNA 是核糖核酸,具有承載 DNA 訊息和調控基因等功能,相比於其他疾病,在 RNA 層次研究自閉症的另一挑戰是取樣極為困難,自閉症患者的病因位於大腦內部,通常無法直接從人腦取樣分析。所幸的是,若檢視去世者捐贈的大腦樣本,仍有機會一窺自閉症的腦內奧秘。

-----廣告,請繼續往下閱讀-----

莊樹諄分析的數據來自公共存取的 Synapse 資料庫,包括上百位自閉症患者與非自閉症者的資料。人數乍看不多,卻已是當今想同時探討同一個人的基因體(DNA 層次)與轉錄體(RNA 層次)間因果關係的最佳的選擇。藉由此一資料庫蒐集的人類腦部組織轉錄體資料,可全面探討各式各樣的 RNA,包含信使 RNA(messenger RNA,簡稱 mRNA)、小分子 RNA(microRNA,簡稱 miRNA),以及莊樹諄鎖定的研究目標:環狀 RNA(circular RNA)

自閉症成因不明,目前尚無治療用藥物。有自閉症的人需要社會與家人的支持及陪伴,透過療育和行為輔導的協助,慢慢活出自我。
圖|iStock

不能轉譯,但似乎會互相影響?非編碼 RNA

莊樹諄的教育背景是資訊學博士,博士後研究的階段投入生物資訊學,之前主要從事 RNA 與靈長類演化方面的研究,探討多樣性切割、RNA 編輯(RNA editing)等議題,環狀 RNA 則是他近年來特別感興趣的題材。

根據生物資訊學的預測,環狀 RNA 這類長鍊的 RNA 分子有數萬個,但實際上有多少仍不清楚。它們在大腦神經系統特別常見,似乎涉及許多基因調控的工作。莊樹諄目前最關注環狀 RNA 對自閉症的影響,不過他指出這番思路不限於自閉症,阿茲海默症、帕金森氏症、精神分裂症(schizophrenia)等疾病也能用同樣的方法探索。

不過,什麼是環狀 RNA 呢?按照序列長度、作用,可以將 RNA 分為很多種類。DNA 轉錄出的 RNA 經過處理,有些形成 20 多個核苷酸長的短鏈 RNA,如 miRNA 屬於此類。一些較長鏈的 mRNA 又會轉譯成氨基酸,產生各式蛋白質。還有些長鍊的 RNA 不會轉譯,仍然維持長鍊 RNA 的形式發揮作用,統稱為長鍊非編碼 RNA(long noncoding RNA,lncRNA),莊樹諄研究的主角環狀 RNA 大致上被歸屬於一種非編碼 RNA。這麼多種類的 RNA 彼此會互相影響,導致複雜的基因調控。

-----廣告,請繼續往下閱讀-----
長鍊非編碼 RNA(lncRNA)是 Pre-mRNA 選擇性剪接的產物,根據不同的生成方式,產生各種類型的環狀 RNA。
圖|研之有物(資料來源|International Journal of Oncology

由 DNA 轉錄而成的 RNA 是線形,至於「環狀」RNA 一如其名,是 RNA 長鏈首尾相接後形成的環形結構,相比線形 RNA 更加穩定,不容易遭到分解。這些長期存在的圈圈,假如序列可以和短鏈的 miRNA 互補,兩者便有機會結合在一起,讀者可以想像為類似「海綿」(sponge)的吸附作用。

miRNA 原本的工作是結合 mRNA,使其無法轉錄為蛋白質,抑制基因表現。可想而知,一旦 miRNA 被環狀 RNA 吸附,便無法再干擾 mRNA 作用,失去抑制基因表現的效果。因此環狀 RNA 能透過直接影響 miRNA,來間接參與調控其他的下游基因。這便是環狀 RNA 的許多種調控功能中,最常被研究的一種。

左圖是 miRNA 抑制 mRNA 轉譯的一般流程。右圖是環狀 RNA 像海綿一樣吸附 miRNA,讓 miRNA 原本抑制 mRNA 轉譯的「剎車」功能失去作用。因此環狀 RNA 透過直接影響 miRNA,就能間接參與調控其他的下游基因。
圖|研之有物(資料來源|Frontiers in Cardiovascular Medicine

自閉症的成因要往腦部深究,環狀 RNA 又在腦部表現最多,使得莊樹諄好奇當中的奧秘。然而儘管如今 RNA 定序已經很發達,環狀 RNA 由於結構的關係,一般的 RNA 定序方法無法抓到這類環形分子。莊樹諄指出這也是 Synapse 資料庫的一大優點,此一資料庫罕見地包含能找出環狀 RNA 的 RNA 定序資料,配合 miRNA、mRNA 與基因體等資料交叉分析,才有機會闡明環狀 RNA 的角色。

尋找環狀 RNA 和自閉症的關聯

莊樹諄率領的團隊已經發表 2 篇環狀 RNA 與自閉症的研究論文,第一篇論文著重於尋找哪些環狀 RNA 和自閉症有關,研究假設是環狀 RNA 透過 miRNA 間接影響自閉症風險基因 mRNA 的表現。由於環狀 RNA、miRNA 和 mRNA 都多達數萬個,需要統計分析的幫忙。

-----廣告,請繼續往下閱讀-----

首先,將樣本分為有自閉症/無自閉症。要注意每個自閉症患者的基因表現仍有差異,納入夠多樣本一起比較,才有機會看出端倪。

接著,尋找環狀 RNA 和風險基因有顯著相關的搭配組合。例如:高比例自閉症的人,某個環狀 RNA 含量較高時,某個風險基因的 mRNA 表達量也較高,那這組環狀 RNA 和基因就存在正相關;反之則為負相關。

不過相關性很可能只是巧合,所以莊樹諄團隊比對序列,找到符合上述相關性的中介因子「miRNA」。最後再觀察「當排除 miRNA 影響時,環狀 RNA 與風險基因的顯著關係即消失」的組合,這些消失的組合,就是真正共同參與基因調控的「三人組」(環狀 RNA、miRNA、mRNA)。

一番分析後,篩選出的環狀 RNA 共有 60 個,其中涉及與 miRNA、mRNA 的組合總共 8,170 組。人類一共 2 萬個基因,與自閉症有關的調控網路就有 8,000 組之多,數字相當可觀,顯示環狀 RNA 的重要性。莊樹諄用統計手法找出的自閉症風險基因,和過去科學家已知的部分風險基因相符合,未來可以繼續探究在這 8,000 組調控網路中,有哪幾組是真的作用在生物上。

-----廣告,請繼續往下閱讀-----

在資訊與統計分析之外,莊樹諄的團隊也有人進行分子生物學實驗,驗證 RNA 調控網路的相互影響。以體外培養的人類細胞為材料,人為誘導遺傳突變,精確分析特定環狀 RNA 在細胞內分子層次的作用。實驗證實選取的環狀 RNA,確實會結合 miRNA,又影響 mRNA 的表現。

環狀 RNA 會取消原本 miRNA 抑制 mRNA 轉譯的「煞車功能」,進而影響自閉症風險基因的表現。
圖|研之有物(資料來源|中研院基因體研究中心

基因調控是什麼?

莊樹諄強調,使用資料庫的公開資料,好處是經過多方檢視,避免資料品質不一致的問題,缺點是大家都能取得數據,必須要跳脫既有的思考模式才能發現新的結果。他在環狀 RNA 議題的新思路,成為第二篇論文的內容:探討環狀 RNA 的遠端調控(trans-regulation)對自閉症的影響

基因的表達會受到基因調控元件(regulatory element,一段非編碼 DNA 序列)的影響,若調控元件就在基因附近,稱為近端調控(cis-regulation);如果調控元件不在附近,甚至位於另一條染色體上,則為遠端調控。

研究基因調控,通常近端比遠端調控容易,因為近端調控元件(cis-regulatory element)的位置就在基因旁邊,不難尋找;但遠端調控卻沒那麼直觀,作用機制也比較難以想像。實際上常常能發現一個基因的表現,受到多處近端調控,加上多處遠端調控的影響。如果想全方位認識一個基因的表現與調控,最好能都能得知近端與遠端的影響,否則難以掌握調控的全貌。

-----廣告,請繼續往下閱讀-----

莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 參與?具體說來就是某個調控位置,先近端調控其周圍的環狀 RNA 基因,再藉由環狀 RNA 影響基因體上其他位置的基因表現,發揮遠端調控的效果。

如圖顯示,環狀 RNA 表達數量性狀基因座(circQTL)近端調控了環狀 RNA,遠端調控其他基因。莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 的參與?
圖|研之有物(資料來源|Molecular Psychiatry

為了避免用語誤解,有必要先解釋一下什麼是「基因」。基因的概念隨著生物學發展持續改變,如今一般人熟悉的定義,基因是由 DNA 編碼序列構成,能轉錄出 mRNA,再轉譯為蛋白質的訊息載體。不過若將基因定義為會轉錄出 RNA 的 DNA 序列,那麼即使沒有對應的蛋白質產物,只要其衍生的 RNA 產物有所作用,也能視為「基因」,如 miRNA 基因、mRNA 或長鏈非編碼 RNA 基因。既然是有 DNA 編碼的基因,便會受到近端、遠端調控位置影響。

探索遠端調控機制有很多想法,莊樹諄可以說又打開了一條新思路。遠端調控位置不在基因旁邊,亦即基因體任何地方都有機會。假如直接挑戰基因與遠端調控位置的關聯性,可能相關的數量可謂天文數字,而且缺乏生物性的理由支持,找到的目標往往令人半信半疑。

莊樹諄引進環狀 RNA 涉及其中的可能性,尋找「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,大幅縮小了搜索範圍。

-----廣告,請繼續往下閱讀-----
莊樹諄透過「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,找到環狀 RNA 參與遠端調控的證據。
圖|研之有物(資料來源|莊樹諄

一番分析後,研究團隊從自閉症患者的基因體上,定位出 3,619 個近端調控的 circQTLs,這些表達數量性狀基因座相當特殊,可能藉由直接或間接遠端調控兩種模式來調控遠端基因(如上圖)。而這 3,619 個 circQTLs,與環狀 RNA、遠端基因三者形成了八萬六千多組的遠端調控網路。接著團隊使用了不同的統計方法,其中 8,103 組通過多重統計測試,顯示較高的機率是屬於間接遠端調控模式。

莊樹諄團隊透過統計手法,找到相當多基因和調控路徑,雖然目前仍不清楚它們影響自閉症的具體細節,卻無疑讓我們新增一分對自閉症的認識。

莊樹諄指出,這套統計方法或可應用至人類的其他複雜疾病(如思覺失調症),找出基因調控的多個可能路徑,提供臨床醫藥研發更多線索。

生物與資訊的跨領域結合

訪談中問到:為何會從資訊科學跨入到生物領域?莊樹諄回憶,1998 他博士班畢業那年才第一次聽到「生物資訊」這個詞,他基於對生命科學的興趣,以及因為內在性格想往學術轉型的想法,引領他到了中研院。

-----廣告,請繼續往下閱讀-----

莊樹諄接著說,2003 年李文雄院士延攬他進入基因體研究中心,之前他們不曾認識。他感謝李院士帶他進入了分子演化的世界,就此打開了研究視野。在剛開始成立自己的實驗室時,缺少人力,李院士讓當時的博後陳豐奇博士(現為國衛院群體健康科學研究所研究員兼任副所長)與他共同工作。莊樹諄強調,他所有分子演化的觀念與基礎,都是陳博士幫他建立的,如果說陳博士是他的師父,那李院士就是師父的師父了。

如今,莊樹諄在中研院的研究生涯邁入第 25 年,從資訊學背景投入生物學研究,大量使用統計工具,他經常需要持續整合不同領域的觀念與工具,推動自己的新研究。在訪談中,他也感謝諸多研究同儕的協助,特別是幾年前建立分生實驗室時,蕭宏昇研究員及其團隊成員的鼎力相助。

莊樹諄的團隊包含資訊、統計、分子生物三個領域的同仁,來自不同領域,傾聽他人意見自然也特別重要,這是他們實驗室的核心價值之一。莊樹諄認為在科學面前,人是很渺小的,需要互相尊重和理解,方能一起解開科學之謎。

最後,莊樹諄特別強調他個人在相關領域的研究,仍有極巨大的進步空間,感謝研之有物的主動邀訪,期望將來能與更多先進交流學習,也企盼年輕新血加入這個生物資訊的跨領域團隊。

莊樹諄期望在環狀 RNA 與基因調控網路的研究基礎之上,可以對自閉症這個複雜疾病的調控機制,提供更多科學線索,幫助臨床上的診斷和治療。
圖|研之有物
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3747 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
被 Covid-19 感染後,病毒進入人體後去了哪裡?嗜好你哪一個細胞?——《從一個沒有名字的病開始》
商周出版_96
・2022/11/14 ・3757字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

我們的生命被機緣所定義,即使是那些我們錯過的。
——《班傑明的奇幻旅程》

「有症狀的人,請戴口罩。」

這是長久以來,預防呼吸道感染的策略。我們一貫以呼吸道症狀,來辨識誰是那個可能散播病毒的「行動病毒複製機」。但隨著新冠病毒的出現,呼吸道症狀不再適用於辨識感染性與否;於是在疫情蔓延期間,防疫策略是無論有沒有症狀都得戴上口罩,甚至激進一點的作法,直接規定大眾關在家中、減少移動。

疫情蔓延期間,無論是否有症狀都得戴上口罩。圖/Pixabay

但是病毒真的這麼安分,就只待在呼吸道嗎?透過不同研究,我們可以一窺在 Omicron 出現前,新冠病毒在人體內到底「去了哪裡」。

最受新冠病毒青睞的人體細胞

新冠病毒透過棘蛋白與人類細胞表面的 ACE2 蛋白質受體結合。與特定細胞受體結合,是病毒「可能」入侵人體的第一個步驟。

那麼人體中哪些地方有最多 ACE2 呢?不管是口腔或鼻腔黏膜的上皮細胞,都有非常高量的 ACE2。

-----廣告,請繼續往下閱讀-----

值得注意的是,與 SARS 病毒相比,新冠病毒棘蛋白與人體 ACE2 分子的親和力,增加了 10~20 倍[1]

也就是說,當你吸入含有病毒的空氣(機率較低),這些新冠病毒在路過上呼吸道之際,附著在上皮細胞的機率可能是 SARS 病毒的 10~20 倍,或者更有可能是透過你沾染病毒的手,觸摸鼻腔、口腔、眼睛的黏膜表皮(機率較高),而給了病毒機會感染上皮細胞。這足以解釋,為何新冠病毒最初感染階段,都是先在上呼吸道複製,且被感染的人甚至在沒有症狀的情況下,就具有傳播病毒的能力。這一點與 SARS 病毒非常不一樣,SARS 主要感染下呼吸道,且病人要在肺炎重症發病後 3~4 天才具有效感染性。

2020 年新冠疫情剛爆發時,穿梭在東亞各國的鑽石公主號遊輪[2],因為一位被感染的乘客在香港上了船,造成全遊輪被隔離在日本橫濱港。最終咽喉試子呈 PCR 陽性的有 712 人(占 19.2%),其中超過 50% 的人自始至終都沒有覺察到病毒的存在,這就是無症狀感染的比例。另外,約有 20% 的感染者出現下呼吸道肺炎症狀,以及 30% 屬於輕症的上呼吸道感染。整體來看,最大宗的感染者(80%)呈現輕微或無症狀。

而根據研究,24% 的確診者,眼睛結膜試子也會呈 PCR 陽性,陽性率約可維持五天左右。

-----廣告,請繼續往下閱讀-----

現在就很清楚,為什麼防疫宣導一直告訴大家不要用手摸眼睛、嘴巴、鼻子,這是絕對有科學根據的。這些黏膜表皮,就是病毒入侵人體的要害,同時是人體系統受到影響的元凶,值得持續探討。

免疫機制控制病毒不亂竄

病毒在口腔或鼻腔黏膜上皮細胞的複製過程中,我們的身體也不是閒著沒事等病毒大軍進攻。當病毒嘗試與 ACE2 結合時,人體有足夠的時間,透過自身的先天性免疫反應對付病毒。

當免疫系統開始作用,我們可能會出現發燒、流鼻水、咳嗽等症狀。因為鼻腔與口腔是貫通的,病毒可以緩慢移到口咽、鼻咽、喉咽和整個上呼吸道,附著在黏膜上與 ACE2 結合進行複製。所以當我們使用快篩劑,無論是鼻咽或是唾液快篩,很容易從這些部位檢測到病毒。

鼻咽或是唾液快篩容易檢測到病毒。圖/Envato Elements

如果身體的先天免疫機制和肺部防禦能力夠強,透過上呼吸道局部的免疫反應,將病毒圍堵並控制,就可以預防病毒侵入下呼吸道和其他器官。病毒感染上呼吸道的表皮,並沒有影響到關鍵的人體功能(嬰幼兒除外,因為他們的呼吸通道較窄小,若有任何發炎腫脹,就可能造成呼吸困難的緊急狀況),因此新冠感染者多數呈現無症狀,或者可能只有輕微的上呼吸道症狀。最終新冠患者在完全無症狀或症狀輕微的情況下,有效地抵抗了病毒的入侵;大多數健康的年輕感染者都是這樣的情況。

-----廣告,請繼續往下閱讀-----

但若是入侵的病毒量過高,或個人先天性的免疫力不足,病毒會在體內持續擴散。嚴重呼吸道感染症狀,甚至呼吸衰竭,可能發生在 1~3% 的人身上,而且經由解剖的結果已證實呼吸衰竭是最主要的死因。

德國解剖註冊中心在 2021 年10 月之前就已收集 1,129 名新冠疫歿者的解剖資料[3],認定 86% 的死因為新冠病毒感染,14% 為其他共病。研究發現,肺部的病變,以及病毒侵襲肺細胞,以至於大量發炎細胞浸潤,從而得出「嚴重發炎反應造成肺功能衰竭」是最主要的死因這個結論。

新冠病毒讓我們再度正視,肺臟這個重要器官,因其功能所需而座落在如此易受傷害的人體部位。台灣每年的十大死因,肺炎都有上榜,可見不論健康與否,一不小心,肺炎都可能成為終結生命的最後一根稻草。

病毒與你的「表面關係」可以很長久

我們已經知道新冠病毒嗜好人體的呼吸道,除此之外,它還有其他落腳處嗎?

-----廣告,請繼續往下閱讀-----

回答這個問題之前,得先釐清一個重點:不同變異株喜歡去的人體部位不一樣。Delta 嗜好感染肺部,Omicron 的感染位置大多止於上呼吸道的咽喉部位。(參見第三章)

為什麼要知道病毒在我們體內去了哪裡?根據觀察,新冠確診者癒後可能出現各式與呼吸道功能無明顯關係的症狀,也就是現在俗稱的「長新冠」(Long Covid)。病毒學家因此懷疑,病毒是否透過不同機制持續存活在人體內,造成更深層的器官感染,才會導致多元症狀的長新冠出現。這是非常值得探討的問題。

事實證明,的確如此。

病毒透過不同機制持續存活在人體內。圖/Envato Elements

除了呼吸道的分泌物及口水(咽喉感染相關)等新冠診斷的主要檢體外,糞便也經常被檢測到病毒存在的跡象,頻繁到可以用下水道的病毒監測系統瞭解疫情的起伏,甚至可以監測變異株的多寡[4]

-----廣告,請繼續往下閱讀-----

腸胃道:病毒長存的溫床

病毒不只頻繁出現在糞便中,還會長期存在某些人的腸胃道內。史丹佛大學團隊進行的長期研究[5],針對 113 名新冠輕症與中症的病人(重症已被排除),追蹤研究十個月,收集並分析他們糞便中是否仍有病毒 RNA。

結果發現,在確診後的第一週內,49.2% 的患者糞便中可檢測到新冠病毒 RNA; 四個月後仍有 12.7% 的人糞便中檢測得到病毒 RNA,但此時這些人的口咽試子的病毒 RNA 都已呈陰性,而在七個月後, 還有 3.8% 的人糞便中仍能檢測到病毒 RNA。仔細分析後,發現胃腸道症狀(腹痛、噁心、嘔吐)與病毒 RNA 是否持續存在於糞便中具有關聯性。

作者同時提醒,以上研究是在變異株 Omicron、Delta 出現之前進行的。不同變異株可能對呼吸道與胃腸道有不同嗜好或親和力,可能也會表現出清除率(每單位時間去除某種物質)的差異,這是病毒變異株固有的生物學特點,可能影響潛在疾病的特性。同時病毒如何存在於體內,也會受到自然感染生成的免疫反應,或疫苗接種引起的宿主免疫狀態的影響而有所差異。

病毒如何存在於體內會受疫苗接種引起的宿主免疫狀態而有所差異。圖/Envato Elements

另一項多中心的合作研究[6],長期追蹤 87 位新冠確診患者六個月,發現他們的 RBD 特異性記憶型 B 細胞數量維持不變(沒有減少),還出現單株抗體細胞有更新的現象,表達的抗體具有更多抗原差異,但病人血清對原始病毒株的中和抗體效價則持續下降。這表示六個月後,這些確診病人體內的 B 細胞仍持續對新冠病毒製造的分子作出反應,而這些病毒分子的來源就是腸胃道。研究指出,14 位確診者當中有一半可以在他們的小腸中檢測到新冠病毒 RNA,同時呈現陽性免疫反應。

-----廣告,請繼續往下閱讀-----

病毒不只長存於腸胃,而且還是活跳跳的病毒。另一項研究[7]提供了充分證據。該研究追蹤免疫功能下降的病患,在確診一年之後,還可以從他們的盲腸組織細胞及乳房細胞直接培養出活病毒。研究者的結論是,免疫功能低下的患者,同時經歷了長新冠症狀和持續的病毒複製。整體而言,這些研究結果以及新興的長新冠研究,提高了胃腸道做為病毒長期藏匿之處,且可以長期影響症狀的可能性。

最後我們要問,除了上述提及的部位,還有其他人類的分泌物可以檢測到病毒嗎?我們必須釐清病毒會在哪些分泌物出現,以便在執行防疫措施時,可依重點需求區分輕重緩急的必備資訊,否則防疫很容易落入草木皆兵,造成不必要的恐慌與浪費資源。

* 本文內容所引用的文獻均發表在 Omicron 出現之前。基於 Omicron 與其他變異株在細胞嗜性的差異,本文部分內容不適用於 Omicron 感染。

——本文摘自《從一個沒有名字的病開始》,2022 年 11 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Wrapp et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):-1263.
  2. Sakurai et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med. 2020 Aug 27;383(9):885-886.
  3. von Stillfried et al., First report from the German COVID-19 autopsy registry. Lancet Reg Health Eur. 2022 Feb 18;15:100330.
  4. Amman, et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-022-01387-y
  5. Natarajan, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (N Y). 2022 Jun 10;3(6):371-387.e9.
  6. Gaebler, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021 Mar;591(7851):639-644.
  7. RNAhttps://www.researchsquare.com/article/rs-1379777/v2
-----廣告,請繼續往下閱讀-----
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。