0

0
0

文字

分享

0
0
0

為何網路性犯罪者會覺得自己沒有錯?由《黑暗網路》看韓國N號房事件

活躍星系核_96
・2020/04/11 ・3421字 ・閱讀時間約 7 分鐘 ・SR值 556 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/長安 臺大中文所碩士,臺北地方異聞工作室成員。參與出版《城市邊陲的遁逃者》,《說妖》桌遊、小說,《臺灣妖怪學就醬》。近期出版《特搜!臺灣都市傳說

前陣子,韓國發生了一起震驚社會的網路性犯罪事件,「N號房事件」。對 N 號房事件的關注,也從韓國燒到了台灣。為什麼這起事件如此令人驚駭?因為它暴露了社會最廣泛、最真實的黑暗面——觀看「N 號房」內非法色情影片的人數,居然高達 26 萬人之多。

「N 號房」指的是 telegram 上的匿名聊天室,兩位年輕記者注意到聊天室的存在,便潛入蒐證,因此「N 號房」的事情才被爆出來。這些匿名聊天室裡充滿了各式各樣的性虐待影片,超過 70 名女性的色情影像與個人資訊,被暴露在這些聊天室的會員面前。其中受害者還有不少未成年少女,即便是潛入的記者,也對於女學生受虐的畫面感到不忍,因此做了噩夢。但是會員們卻樂在其中,付費收看這樣的色情影片。

圖/奇摩電影

這類網路性犯罪事件,在韓國並非個案。揭露韓國女性困境的小說《82 年生的金智英》,安排了一個代表性的情節:金智英從公司離職之後,前公司的同事說,女生廁所內發現針孔攝影機。而這件事是怎麼被公司內的女同事們知道的呢?原來是有某位女同事的男友要求她,不要去上那間女廁,其他女同事才因此得知這個情報。在此之前男同事們,已經觀看偷拍的影片一段時間了——若非其中一位男同事和女同事交往,女同事們可能永遠不會發現針孔攝影機。

在《82 年生的金智英》的改編電影中,則加入了幾個年輕男生們聚在一起,對著色情影片竊笑的畫面,呈現偷拍色情影片接受端的情況。而在一旁看到這畫面的年長男性,也只是覺得「年輕人嘛」,笑笑不以為意。呈現了在輿論層面,男性也沒有因為觀看不正當的色情影片,而受到他人譴責。

-----廣告,請繼續往下閱讀-----

《82 年生的金智英》小說與電影中,都企圖呈現某些韓國女性的日常處境。

除了這些不友善的情境背景,「N號房」如此駭人聽聞的狀況之所以存在,很大一部分仰賴 telegram 聊天室的匿名性。這點和「暗網」十分相似,因為難以追蹤的特性,暗網往往成為許多非法色情影片的溫床。在這些非法色情內容(例如「兒童色情」)逐漸從主流網站或 google 可以進入的網站消失後,就轉入了「地下」像是暗網、匿名聊天室這類較不易追蹤的地方。

這樣的描述,似乎意指暗網與匿名聊天室本來就是藏污納垢的黑暗之地,但其實並非如此。非法色情內容的需求其實一直都在,高度匿名性的網路空間並不會因此催生需求,它只是「讓門檻變低」。

圖/博客來

傑米・巴特利特的《黑暗網路:匿名地下社會的臥底調查》一書中,就說明了網路對於性犯罪、瀏覽未成年色情影片的影響。而這些影響,我們幾乎都可以在韓國的「N號房」事件中,看到相似的影子。

-----廣告,請繼續往下閱讀-----

1. 網路讓使用者覺得現實和數位世界有別

網路犯罪者認為網路與現實有別,並以此作為推託之詞。圖/needpix

網路的犯罪者時常會覺得「現實與數位生活有別」,用這點來擺脫自己的罪惡感。《黑暗網路》提到了約翰・蘇勒爾的「分離效應」,指的是網路使用者會分開他們的真實身份與網路行為,這麼一來,彷彿網路世界可以不受社會規範所管制。因此未成年色情內容的愛好者在觸法被抓時,通常會感到相當錯愕。他們這一刻才意識到,自己做的事有多嚴重。

N 號房爆出來之後,有一些網友評論,認為自己很無辜。原因是,他認為自己「只是付費觀看了色情內容」,因此主張自己無須受罰。但是虐待女性拍攝色情影片,是毫無疑問的犯罪行為。這些參與犯罪的人,怎麼可能沒有意識到呢?可能就是因為他將網路行為區分開來,並且用「付費觀看色情影片」的邏輯來概括,藉此迴避了「現實」的「犯罪」概念。

2.網路誘拐比現實更容易

《黑暗網路》也提到,網路讓「誘拐未成年」變得更加的容易。前網路世代的誘拐緩慢而謹慎,誘拐犯必須先結交孩童的父母或是朋友,才有機會逐步接近目標孩童。但是在網路時代,網路誘拐犯可以透過目標對象的社群頁面,知道可以跟對方聊什麼話題。誘拐犯甚至可以不用離開家裡。

以 N 號房事件來說,犯罪者一開始以「打工」的名義來接近受害者,要求他們提供個人資訊與照片。而要是對方不從,犯罪者就會威脅對方,說要告訴她的朋友——社交網站上的朋友關係,被犯罪者利用之後,就成了被誘拐者們暴露在外頭的弱點。而要掌握這個弱點,犯罪者甚至幾乎不用花任何成本。

-----廣告,請繼續往下閱讀-----

3.網路使用者更容易接觸到非法色情內容

從合法管道進入非法管道其實很簡單。圖/pixnio

《黑暗網路》談到,從合法色情踏入非法色情的管道其實很簡單。合法網站的連結會通往其他網站,其他網站可能會導向未成年色情的頁面⋯⋯根據英國露西希望基金會(Lucy Faithfull Foundation,宗旨是保護兒童與少年免於性誘拐)研究,九成的網路性犯罪者都並非蓄意搜集兒童色情照片。

在 N 號房中,也存在比較入門的群組,入門群組的功能類似於入口網站,吸引人進來之後,再把這些人導到更進階、充滿更多過激內容的群組。網路讓非法色情內容門檻變低,也是「N 號房」參與者會自認無辜的原因之一。但是「N 號房」的參與者真的是無辜的嗎?並非如此。

雖然網路降低了接觸到色情內容的門檻,但是「N 號房」會員要申辦虛擬貨幣(如比特幣)的帳號、要下載韓國並不普及的通訊軟體 telegram、還要交出自己持有的色情影片(可能是認識的人或前女友的影像)、吐出一些不堪的謾罵。這些都是需要付出大量的時間、金錢、精神的行為。參與 N號房的門檻依然很高,但是會員們依然成功跨過了門檻,這實在難以宣稱自己無辜。

4.未成年自製色情影片門檻低

網路讓受害者自行製作、上傳色情影片的比例提高許多。圖/pxfuel

《黑暗網路》也提到,網路的存在,使得由受害者自製色情影片的比例提高了。未成年少年少女們對色情產生好奇是很正常的,但是網路的存在使他們可以輕易地上傳影像,而這些影像一但進入網路世界,就難以消除。有些未成年色情影像的愛好者,會專門搜索這類影像。但是未成年人們,可能很難意識到他們上傳自製色情影片背後的危險性。

-----廣告,請繼續往下閱讀-----

N 號房事件中,也有誘拐者專門針對那些在 twitter 上發大尺度照片的未成年人進行恐嚇。誘拐者偽裝成警方,說她們已經觸犯散播猥褻影像的法律,以配合調查為由,請她們提供更多資訊。若不是網路如此發達、上傳影像如此容易,這些色情影像也不會這麼輕易被拍攝、上傳,落入有心人士手中。

面對網路性犯罪,我們該如何是好?

讓網路性犯罪者意識到責任,是我們當前關心的問題之一。圖/pxfuel

說明網路的媒介與匿名性質,對於性犯罪行為的影響,並非試圖為這些網路性犯罪者開脫,也並非免除他們的責任。而是去意識到,在現有的網路環境之下,存在這犯罪門檻降低的威脅。而且這些犯罪者,時常不會意識到,自己需要為「付費收看非法色情內容」的行為負責。

如何讓這些網路性犯罪者意識到責任呢?《黑暗網路》的其中一個細節或許可以提供一些想法。作者傑米・巴特利特在發現暗網發現通往兒童色情的連結時,他明確意識到,自己如果點下該連結,就犯下重大罪刑。

在許多國家,光是持有兒童色情影片就是重罪。以兩年前被破獲的暗網兒童色情網站「Welcome to video」為例,因這個網站而入罪的人遍及許多國家,許多人動輒被判十年、十五年,但是架設網站的主兇,在韓國卻只被判刑一年半。這次 N 號房的討論中,也有許多人談到韓國判刑太輕的問題。過去幾年的未成年性犯罪案件,最終入獄服刑的只有三成,多數人都被判緩刑或罰款。

-----廣告,請繼續往下閱讀-----

如何讓網路性犯罪者意識到責任呢?如何讓他們意識到,下載、教唆、付費收看非法色情內容,都是犯罪?改變刑責輕重,或是透過輿論來施壓,都是可能的解決方式。但假使此事件最終的結果,法律輕判、輿論輕放,在目前的網路世界缺乏制衡機制的狀況下,相似的犯罪事件極有可能會再次發生。

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 129 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

7
1

文字

分享

2
7
1
應對Deepfake濫用,台灣修正刑法夠用嗎?
法律白話文運動_96
・2022/01/30 ・5302字 ・閱讀時間約 11 分鐘

  • 作者/賴宜欣,台北大學法律系法學組學士,政治大學法律學系碩士,日本國立名古屋大學特別研究生,現為執業律師。

編按:在出現Deepfake之後,網路世界進入了「眼見不為憑」的年代。本次泛科學和法律白話文合作策畫「Deepfake 專題」,從Deepfake 技術與辨偽技術、到法律如何因應。科技在走,社會和法律該如何跟上、甚至超前部署呢?一起來全方位解析 Deepfake 吧!

看完國外針對深度造假技術的相關規範,讓我們回過頭來看看台灣。現行台灣法規,對於使用深度造假的數位性犯罪,其實規範相當不足,常見質疑包括有人提出「罪刑是否相當」或有謂「對於未經同意拍攝散布、或是未真實發生的性影像,並沒有特別規範」等。

而在諸多立委、婦女團體及法界人士的促請下,連蔡英文總統也都跳出來發文,呼籲民眾關注此類事件,並宣示政府會重新盤點法規,研擬推動修法。法務部也稱將朝「加重刑法相關刑責」的方向辦理。

蔡英文總統發文呼籲大眾關注 deepfake。圖/蔡英文 Tsai Ing-wen

不過不少聲音認為,雖然修正《刑法》相關規定是較為簡便,但《刑法》目的只在「究責」,如果真要防制數位性暴力,應該要從前端宣導預防著手,並於事後保護被害人的身心發展。舉例來說,如若進入刑事訴訟,被害人可能會因公開審理的緣故,形成二度受創。種種因素都指出,相關管制應較適合朝制定「專法」的方向發展。

先來看看刑法修正草案的內容

2021 年 11 月 17 日,法務部提出《刑法》修正草案。將保護的範圍主要分成三種:

-----廣告,請繼續往下閱讀-----

第一,針對「真實的性私密影音」,加重處罰「竊錄性影音」的行為,明文處罰竊錄性影音以及進一步散布、傳送或供他人觀覽的行為,最重可處五年有期徒刑。且不但未經同意竊錄會構成犯罪,即使在經同意後所收錄的性私密影音,也不能在未經同意下散布播送。

第二是針對「不實的性影音」,不論是製作合成、散布、播送、交付或以他法供人觀覽,這些都是犯罪行為,最重處 5 年以下有期徒刑;如果還意圖營利,更會加重處罰到 7 年。

第三則是針對「不實活動、言論、談話的影音或其電磁紀錄」,若是意圖散布而製作前述內容,或散布、播送、交付或以他法供人觀覽相關內容,則會受到 3 年以下有期徒刑的處罰,如果意圖營利,更會加重到 5 年以下有期徒刑。

散步私密與不實影音,都屬於犯罪行為。圖/envato elements

參考國外規範,台灣或有可借鏡之處

透過上述的《刑法》修正草案,台灣對於「性私密影音」的管制,終於有了較為清楚的規範。不過,這樣的修法是否足以遏止數位性犯罪了呢?跟國外規範比一比,筆者此處整理幾點,或可供後續立法借鏡的地方。

-----廣告,請繼續往下閱讀-----

一、性犯罪配套對策與保安處分的多元性

韓國相關立法有相當多元的「保安處分」,其中針對性犯罪,設有「性暴力治療計畫、人身情報公開、兒少及身障等福利機構之就業禁止、電子腳鐐」等配套。

舉例來說,2021 年 11 月,N 號房中主要犯罪者們,陸續被判以 15 年到 42 年不等的刑期,而法院在刑期外,更另外作成了多種「保安處分」,除了要求主要營運者及初始創房者「公開身分情報 10 年」,並「限制其在兒少機關及身心障礙人士福祉設施就職」外,也須「配戴定位追蹤的電子裝置 30 年」(註)。

N 號房中主要犯罪者們,除了刑期外,還有各種「保安處分」。圖/envato elements

回來看看台灣,因為台灣沒有制定專法,性犯罪在判刑之餘,相關配套措施是依《刑法》第 91 條之 1 規定,以及《性侵害防罪防治法》相關規定辦理,其中最廣為所知的是對性犯罪行為人進行「強制治療」。

但問題來了,大法官在司法院釋字 799 號解釋中,認為「現行強制治療制度長年運作結果,有趨近於刑罰之可能。」也就是說,長期接受強制治療者,如果仍未達到或無法達到,顯著降低再犯危險的治療目標,就會被一而再強迫接受治療,等同讓受治療者變相被無限期剝奪人身自由,猶如終身監禁,而有牴觸憲法之疑慮。

-----廣告,請繼續往下閱讀-----
大法官曾針對強制治療進行釋憲。圖/關鍵評論網

因此,衛福部因此研擬《性侵害犯罪防治法》修正草案,在第 37 條增訂:「經鑑定、評估,認有繼續執行之必要或認無法達到其再犯危險顯著降低治療目標者,法院得依直轄市、縣(市)主管機關聲請延長強制治療或命接受科技設備監控;其延長或監控期間,每次以三年為限。」 

簡單來說,對於接受強制治療的加害人,是採以 3 年為限度施以監控。雖然這是在權衡「病人的治療」跟「犯人的人權」兩難下的決定,但也讓民間非常擔心是否有縱放社會,提升再犯風險的問題,並呼籲政府應予強化社會安全機制。

有鑑於此,韓國法在處理性犯罪時配套措施的多元,以及從 N 號房判決中看到,賦予法官對保安處分期間訂定的權限,也比台灣寬鬆許多,在這些做法或許是台灣可參考之處。

二、修法似漏未規範處罰未遂犯?

本次台灣的刑法修正,似乎並未囊括未遂犯的處罰。在韓國的《性暴力犯罪法》中,對於數位性暴力的犯罪行為,都設有處罰未遂犯的規定。由於未遂犯的處罰,必須有明文規定才能辦理,這應該是個法規漏洞,希望未來能立法加以補足。

-----廣告,請繼續往下閱讀-----

三、考量組織犯罪可能性,制定加重條款防範

在數位性犯罪的問題中,也必須要注意組織犯罪的態樣。從韓國 N 號房事件可以清楚發現,當數位性暴力以組織犯罪形式開始擴大時,受害程度會急遽上升,受害人也更加難以抵抗。

韓國法院就認為,N 號房的主要犯罪者們,創設色情房並加以營運分工,是構成組織犯罪 。台灣其實也有前車之鑑,在詐騙集團盛行時,為了應對這種犯罪行為組織化的情況,修訂了詐欺罪的規定──若是三人以上共同犯詐欺罪時,會受到比單純詐欺罪更重的處罰。

既然數位性犯罪,非常有可能發展成組織化的犯罪,筆者認為在立法上可以考量像詐欺罪一樣,制定集團犯罪的加重條款來加以防範。

數位性犯罪有可能是組織犯罪。圖/envato elements

四、應考量將「持有與購買者」納入規範

由於台灣這次修法並沒有將「持有與購買者」入罪,但因為有「散布、營利」之人,就一定會有「購買、持有」之人,對於這種只處罰一方的疑慮,韓國法界已出現促請立法規範的聲音 ,台灣是不是也應該考慮一起處罰「持有與購買者」呢?

-----廣告,請繼續往下閱讀-----

對此,有論者擔心,若貿然將持有購買性影像的行為定罪,會因為付費會員過多造成打擊過廣的問題;甚至多數行為人可能只是抱持「性好奇」,甚至是心理尚未成熟、未能認知犯罪的未成年人──這樣貿然處罰可能會與兒少保護有所衝突,因此需要考量比例原則 。

然而,正所謂「殺頭生意有人做,賠錢生意無人做」,若僅單向處罰產出性影像的一方,而對為數眾多的持有與購買者完全不規範,行為人在評估營利利潤大於刑責風險下,仍會前仆後繼的進行數位性犯罪行為。

這麼一來,將無法根本性地遏止數位性犯罪。被害人必須經歷的心理創傷,甚至對名譽、事業的影響,都是對於被害人無法抹滅的痛苦 。

因此,筆者仍傾向贊成韓國律師界的意見「不能再讓當事人的犯罪受到好奇心的保障,任何一次的收看、分享、儲存或散布都是犯罪」,應該將持有與購買列入處罰。但同時也應該在教育及基層機關上,積極推動「犯罪預防」、「青少年事前性教育宣傳」、「成立兒少性犯罪調查專責部門」等,處罰與教育兩者並行不悖。

-----廣告,請繼續往下閱讀-----
持有與購買私密影片應考慮列入處罰。圖/envato elements

五、對「強暴脅迫」的數位性暴力,漏未規範?

韓國《性暴力犯罪法》在 2021 年 1 月 24 開始,將「涉及性私密影像的強暴脅迫」列入犯罪 ,也就是明確規定用性私密影像來強暴脅迫被害人的行為,是一種犯罪。而參考 N 號房事件,脅迫的對象應不只限於被害人本人,如以被害人的性私密影像來脅迫他人,也是犯罪 。

就像報導指出,前述事件的被害人,就受到行為人脅迫「將公開人身情報並對親友不利」,讓其直接自行製作性剝削影片。甚至對青少年們進行強姦、類似性行為後,將影像攝影傳送,以要散布子女的裸照,脅迫被害青少年的父母。

性私密影像的產生,並不一定是由犯罪行為人製作,也很有可能是脅迫被害人自己製作。這常見於雙方過往曾有親密關係,也因此取得相關性私密素材,事後卻將此私密內容作為脅迫工具。

台灣的《刑法》修正草案,目前並沒有就「涉及性私密影像的強暴脅迫」有所規範。對比近來立委高嘉瑜受到家暴及被威脅外流性私密影像的事件,這也彰顯了法規缺陷的問題,應該即時檢討。           

-----廣告,請繼續往下閱讀-----
圖/envato elements

六、考量搭配事前規範的可行性

台灣及韓國,目前都較著重在處罰「利用當下(製作、編輯、合成加工)」及「利用後(散布、營利)」的行為,並未有針對事前的規範。

或許可以考量搭配日本和歐盟的模式,在利用深度造假等技術前就予以分類,賦予行為人相對應的事前注意義務(如:告知影像是以深度造假技術製作的通知義務、加註警語等),以減少後續不當使用的產生。並可透過專家會議及政府部門定時檢討等方式,達成與時俱進的 AI 利用規範。

又或像是美國的《深度造假問責法》(DEEP FAKES Accountability Act)草案,要求使用深度造假技術製作影片的人負起責任。例如,若影片內含有虛假人物的視覺元素,製作者應嵌入數位浮水印(Digital watermarking),讓閱聽者能清楚識別這份影音包含更改後的音檔或視覺元素,或要求提出更改聲明,以及對更改程度的簡單描述。

圖/envato elements

遏止AI濫,用前置作業、處罰、教育宣導應三方並行

台灣目前在數位性犯罪的整體應對上,仍有許多可以檢討的地方。在前置階段,可以參考歐盟、日本或美國,針對 AI 功能進行分類採取如通知義務、加註警示等對應措施。在處置不當利用深度造假等技術時(如數位性犯罪),則應注意「處罰未遂犯、處罰購買及持有者、列入數位性犯罪的強暴脅迫、注意組織犯罪防範」等面向,以期細緻化處罰或配套措施。而防治數位性犯罪的相關教育宣導,更是不可或缺的。畢竟良善的文化才能確保人人尊重彼此,從源頭杜絕類似情況再次發生。

本文爬梳現狀,整理可供借鏡之處,希望本文有助於未來數位性暴力的防制更加完善。

註解

參考資料

一、中文部分

  1. 婦女救援基金會,侵害個人性私密影像防制條例草案。 
  2. 江鎬佑,小玉換臉罪責如「轉傳A片」?數位性暴力法制的缺角
  3. 姜冠霖、王碩勛,從陌生人到熟人凌辱,韓國Deepfake數位性犯罪修法的啟示
  4. 洪敏隆,數位性暴力在台灣無法可管?民團訴求專法防止挖面事件再發生
  5. 現代婦女基金會, 大法官「性侵犯強制治療」釋憲出爐!民間呼籲:高再犯風險回歸社區,須強化安全機制

二、外文部分

  1. 韓國日報,「N번방’ 최초 개설자 문형욱 징역 34년, ‘박사방’ 2인자 강훈 15년 확정」、「박사방운영자 조주빈, 대법서 징역 42년 확정…공대위“끝이 아닌 시작
  2. ‘딥페이크 처벌법’ 신설하긴 했지만, ‘반쪽’ 짜리 법안입니다
  3. 韓國《性暴力犯罪之處罰等相關特例法》。
  4. 대법원 2021도11753, 2021전도112(병합) 대법원 2021도11816‘n번방’ 최초 개설자 ‘갓갓’, 징역 34년… 박사방 ‘부따’, 징역 15년 확정
-----廣告,請繼續往下閱讀-----
所有討論 2
法律白話文運動_96
26 篇文章 ・ 531 位粉絲
法律白話文運動」是致力於推廣法律知識與法治思想的獨立媒體,願與讀者一起從法律認識議題,從議題反思法律。