0

7
2

文字

分享

0
7
2

黑皇后假說:擺爛耍廢也是種演化生存之道!

Yubari
・2020/06/08 ・2099字 ・閱讀時間約 4 分鐘 ・SR值 524 ・七年級

紅皇后假說:演化是場持續努力的軍備競賽

在疫情全球大流行之下,你是否想過這些類似的疾病,為何總是一波還未平息一波又來侵襲,似乎沒有永遠擺脫的一天呢?這個問題,我們可以用演化學中的紅皇后假說來說明。

紅皇后假說 (Red Queen Hypothesis) 是由美國古生物學家 Van Valen 在 1973 所提出。紅皇后一詞起源自英國小說《愛麗絲鏡中奇遇》,故事中的紅皇后說:「在這裡,你必須全力奔跑才能停在原地。」而在演化學上,Van Valen 認為生物必須全力奔跑(演化),才能停在原地(存活),如同一場無止盡的賽跑。

回到一開始的問題,病毒與人類的關係就符合紅皇后假說的說法。當一場流行病爆發後,人體會開始試著辨識出病毒並且消滅,隨著具有抗體的人增加,病情開始趨緩。然而病毒中總會演化出能夠再次入侵人體的新病毒,再次導致流行疾病。於是人類與病毒就這樣不斷的輪流領先,年復一年的前進,但彼此間的距離卻從沒拉開。

而按照紅皇后假說,生物的演化必然是越來複雜,越來越優秀。是個有競爭力還要繼續努力奮發向上的演化解讀,今天文章主要來提供另一種視角了:相對於紅皇后的角色,當然是黑皇后啦!

-----廣告,請繼續往下閱讀-----

黑皇后假說提供了另一種面向:想活下來,有時候耍廢也是個好方法。

愛麗絲與紅皇后必須向前奔跑才能停在原地,紅皇后假說用此故事比喻生物必須不斷向前進化,才能保持生存。(圖/Through the Looking-Glass, and What Alice Found There.)

黑皇后假說:耍廢有時可以活得更好

黑皇后假說 (Black Queen Hypothesis) 由美國的生物學家 Morris 等人在 2012 年提出,故事要從海洋上的耀眼陽光說起。

當太陽光照射海水時,會使得海水中的有機物分解,產生有毒性的過氧化氫分子 (H2O2, hydrogen preoxide),也就是雙氧水的主要成分,因此有一些藍綠菌會產生一種名為 KatG 的酵素來抵抗過氧化氫。然而 Morris 等人發現,有另一些藍綠菌,曾經具有產生 KatG 的能力,但現在卻沒有了。

Morris 等人認為,因為 KatG 是一種需要鐵原子的元素,生物如果失去了合成 KatG 的能力,可以節省能量並有助於在缺乏鐵的環境下生存。那麼這些生物要處理過氧化氫的問題呢?擺爛啊。嗯沒錯,就是擺爛,因為具有 KatG 的藍綠菌可以去除水中的過氧化氫,因此只要這些藍綠菌去降低水中過氧化氫的濃度,那些不具有 KatG 的菌種就可以安穩的活下來,並且省下一堆能量,生活可說是輕鬆又快活。

-----廣告,請繼續往下閱讀-----
藍綠菌組成的疊層石是地球上最古老的化石之一。(圖/Barn @Pixabay,CC0)

這個案例包含了四個黑皇后假說的要點:

  1.  某個需要耗費大量能量或營養的產物。(KatG 酵素)
  2.  只有部分物種生產該產物,為「協助者」。(部分藍綠菌生產 KatG)
  3.  產物可以幫助「受益者」生存。(KatG 降低水中過氧化氫濃度)
  4.  產物對於生存相當重要。

在黑皇后假說中,生物的祖先原是一群協助者,但其中部分的個體為了節省能量與資源,於是在演化的過程失去了該項能力,成為了受益者演化出現之後便開始增加,直到協助者無法負荷為止,讓兩者數量達到平衡。但若有第三方可以提供該項產物,那麼受益者便會不斷排擠掉協助者的生存資源,甚至會使協助者滅絕。

「耍廢」過得就比較好嗎?「爛好人」該如何大反攻?

從上面的例子看來,受益者似乎對於協助者有害。確實當兩者具有共同的需求時,例如:食物、空間……等資源時,受益者的增加會導致協助者的減少。但有時受益者與協助者也不需要競爭相同的資源,這時兩者之間也可以是片利甚至是互利的關係。

但不論是哪一種類型的關係,受益者似乎都不會吃虧,那麼協助者就只能夠當一個任勞任怨的爛好人嗎?這就要回過頭來說說,「黑皇后」除了與「紅皇后」相互映襯,其實還有另一個意義。

-----廣告,請繼續往下閱讀-----

經典樸克牌遊戲「傷心小棧 (Hearts)」中,每張紅心牌代表 1 分,黑桃Q代表 13 分,因此玩家們必須盡力不去獲得分數。然而這個遊戲有個特別規則,被稱為「豬羊變色」或者「射月 (shooting the moon)」,就是當有玩家拿下所有分數牌時,就能逆轉結果,大幅地增加其他玩家的分數。

黑皇后假說取名自撲克牌遊戲傷心小棧,其中黑桃Q為遊戲關鍵。

遊戲中的分數如同協助者的工作一樣,獲得越多越不好。但如果絕大多數生物都選擇不去承擔,而讓少數協助者獨自掌握了一項相當重要的工作時,那麼它在生態系統中的重要性就會大幅提升,甚至能成為所謂的「關鍵種 (keystone spicies) 」,以較少的生物量卻能對於生態系造成巨大的影響。

在遊戲中,最關鍵一張牌,就是分數最多的黑桃 Q,有著最大的風險,也是達成「豬羊變色」不可或缺的一張牌。這就是為何Morris 等人要以黑皇后來命名這個假說,比喻著眾人避之唯恐不及,有時卻又能夠逆轉戰局的那項重要任務。

紅皇后與黑皇后,演化的兩種面向

紅皇后假說的出現,讓我們知道環境的變遷並非演化唯一的動力,生物間的競爭也可以讓生物隨著時間進行改變。而黑皇后假說則向我們展示,除了向前競爭以外,向後依賴也是一種的選擇。

-----廣告,請繼續往下閱讀-----

(所以當你的報告組員都不做事的時候,想想黑皇后理論,或許就不會這麼憤怒……並沒有,我還是很生氣 (/‵Д′)/~ ╧╧)

參考資料

  • Morris, J. J., Lenski, R. E., & Zinser, E. R. (2012). The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio3(2), e00036-12.
文章難易度
Yubari
7 篇文章 ・ 6 位粉絲
一位小小小小地科研究生

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
1

文字

分享

0
1
1
發現免疫系統吞噬作用──梅契尼可夫誕辰│科學史上的今天:5/16
張瑞棋_96
・2015/05/16 ・1052字 ・閱讀時間約 2 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

梅契尼可夫(Élie Metchnikoff, 1845-1916)悠悠醒來,失望地發現自己竟還活著。虧他自己是醫學教授,對愛妻感染的肺結核卻無能為力,只能眼睜睜看著她的生命力一點一滴流逝。因為承受不起失去工作收入,他只能困在這家連像樣的實驗設備都沒有的大學,醫學研究成為難以企及的夢想。於是在愛妻撒手人寰後,他已了無生趣,遂拿起她剩下的鴉片吞食下肚,怎知竟未能如願結束生命。

梅契尼可夫想起令他大受震撼的《物種源始》,也許他應該離開這個令他窒息的環境。於是就在 1873 這一年,他離開俄羅斯,動身前往中亞、西藏遊歷。或許是心境轉變,他於次年回到原來任教的大學後很快又墜入愛河,再度結婚,並且專心研究海星、水母等無脊椎動物的胚胎,企圖從胚胎學的角度探討演化學。

不料命運弄人,他的第二任妻子竟於 1880 年感染傷寒。他已無法再承受失去摯愛的痛苦,他決定自私的先走一步。為了避免自殺帶給妻子難堪,他故意將罹患回歸熱的病患血液注射到自己體內,孰知再一次地,他雖然成功得了回歸熱,卻還是自殺失敗。好不容易結束痛苦難熬的發病過程後,梅契尼可夫終於在 1882 年辭去教職,帶著妻子前往義大利設立自己的實驗室,繼續研究海星與海葵。

梅契尼可夫在透明的海星幼蟲體內發現一種四處遊走的細胞,會主動靠近外來物予以吞噬;隨後在水蚤體內也發現這種吞噬細胞在吞食消化入侵的真菌細胞,他立即想到這正是我們體內的白血球消滅病菌的方式,而於 1884 年發表論文,成為免疫系統之吞噬作用的發現者。然而當時免疫學說的主流意見是以柯霍為首的「體液說」,梅契尼可夫的吞噬說自然受到嘲笑,直到後來更多支持的證據出現,他才於 1908 年獲頒諾貝爾生理醫學獎。

-----廣告,請繼續往下閱讀-----

相較於柯霍對梅契尼可夫冷淡以對,同是微生物學開山祖師的巴斯德卻是熱情邀他來巴黎進行研究。1888 年,他帶著妻子移居巴黎,在巴斯德研究所展開二十年的研究生涯。這段期間,他除了繼續研究吞噬作用,還提出另一個影響深遠的理論。原來他在保加利亞的長壽部落發現他們經常飲用發酵乳,他進一步研究發現發酵乳中有多種乳酸菌,於是主張乳酸菌有益健康、延年益壽,自己也身體力行每天飲用,因而被稱為「乳酸菌之父」。

梅契尼可夫後來活到 71 歲,在當時已算高壽,不知是否真與乳酸菌有關。不過他兩次自殺未遂,而兩個重要發現卻都與保障生命有關,還真像是肩負著某種使命而來的啊!

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。