加拿大麥吉爾大學(McGill University)物理學教授 Gil Holder 表示,「最新發表的結果只是我們利用南極望遠鏡研究的開始,現在的分析只是根據我們目前所發現的 500 多個星系團(galaxy clusters)中的 100 個星系團。我們預期會有完整的資料集更嚴格限制在暗能量及微中子質量。
-----廣告,請繼續往下閱讀-----
最近麥吉爾大學教授 Matt Dobb、博士後研究員 Keith Vanderlinde 與研究生 Tijmen de Haan 剛從南極回來,他們安裝了一個新的探測器讀出系統(detector readout system)到望遠鏡上。該系統是由唯一參與這項計畫的加拿大麥吉爾大學所開發並建造的。這項具備新檢測技術的電子系統將使望遠鏡能尋找大爆炸後的幾分之一秒所產生的特徵(signature),和改善測量物質和微中子性質的方法。
SPT 的研究也正被用於繪製宇宙中物質分布的地圖,以過去無法達成的精確度來測量宇宙微波背景天空中明顯位置的微妙移動(shift)。麥吉爾大學研究生 Alex van Engelen 在他最近提交給天體物理學期刊的論文中,提出目前對這種影響最精確的測量,解釋這些移動是主要由暗物質組成的質量變動(mass fluctuations)引起的重力而造成的。」
這項南極望遠鏡合作計畫由芝加哥大學領導,其他研究團隊包括阿岡國家實驗室(Argonne National Laboratory)、英國卡迪夫大學(Cardiff University)、美國凱斯西儲大學(Case Western Reserve University)、哈佛大學(Harvard University)、慕尼黑大學(Ludwig-Maximilians-Universität)、麥吉爾大學、美國史密松天文台(Smithsonian Astrophysical Observatory)、加州大學柏克萊分校(University of California at Berkeley)、加州大學戴維斯分校(University of California at Davis)、科羅拉多大學博爾德分校(University of Colorado at Boulder)、密西根大學(University of Michigan),以及其他機構的科學家們。
參與南極望遠鏡計畫的麥吉爾大學研究人員包括教學人員 Matt Dobbs、Gil Holder、博士後研究員 Amy Bender 和 Keith Vanderlinde、研究員 Tijmen de Haan、Jon Dudley、Alex van Engelen 及 James Kennedy。
-----廣告,請繼續往下閱讀-----
SPT 的經費主要來自於美國國家科學基金會(United States National Science Foundation)極地計畫辦公室(Office of Polar Programs)。另外部分來自於 NSF 資助的 KICP 物理尖端中心(Physics Frontier Center of the KICP)、Kavli 基金會、Gordon 和 Betty Moore 基金會的支持。加拿大團隊獲得加拿大自然科學暨工程研究委員會(Natural Sciences and Engineering Research Council)、加拿大進階研究所(Canadian Institute for Advanced Research)及加拿大研究講座(Canada Research Chairs)計畫的支持。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
中間有一個小插曲是,1967 年 10 月,英國劍橋大學的研究生喬絲琳.貝爾發現無線電望遠鏡收到了一個非常規律的脈衝訊號,訊號周期約為 1.34 秒,每次脈衝持續時間 0.04 秒。因為有可能是來自外星文明的訊號,因此訊號被開玩笑地取為 Little Green Man 1(LGM-1 號)。但後來他們又發現了多個類似的脈衝信號,最後證實這些脈衝是來自高速自轉的中子星,而非某個文明正在傳遞訊息。