0

0
0

文字

分享

0
0
0

由淡入濃—如是我觀涂靈形象

科學月刊_96
・2012/06/23 ・1104字 ・閱讀時間約 2 分鐘 ・SR值 562 ・九年級

可判定性問題

1928 年希爾伯特在國際數學家大會上,再次呼籲數學家研究數學的基礎。他特別指出三類重要問題值得探討:

一、 數學是不是完備的(complete)?完備性是說對於每一條數學的命題而言,或者可以證明此命題為真,或者可以證明其否定命題為真。

二、 數學是不是相容的(consistent)?相容性是說數學體系不可能依照邏輯的步驟推導出矛盾。

三、 數學是不是可判定的(decidable)?可判定性是說有一套明確的方法,把它運用於任何給定的命題,它會告訴你該命題是否為真。

希爾伯特自己充滿信心認為這些問題都可以得到確定的答案。早在1900年巴黎舉行的國際數學家大會上,他曾經宣布過23 條待解的問題,他說:「每一條明確的數學問題必然能有明確的解答……在數學裡沒有絕不可知的地方(ignorabimus)。」

哥德爾是數學家、邏輯學家也是哲學家。其 提出的不完備定理,讓解決希爾伯特頭兩個 問題的希望就此幻滅。

但是到1931 年,年輕的哥德爾證明了出人意表的結果:

一、 對於明確建構起來的形式化算術理論系統而言,如果這個系統是相容的,那麼它就不可能是完備的。

二、 這個系統的相容性無法在此系統中得到證明,也就是說必須引進比這個系統更強的論證方法,才有可能證明它的相容性。

這兩項結論構成哥德爾著名的「不完備定理」,而渴求解決希爾伯特頭兩個問題的希望也就此幻滅。

1935 年的春天,涂靈去聽紐曼(M. H. A. Newman, 1897~1984)的「數學基礎」課。紐曼是劍橋大學的拓樸學家,也是當時劍橋唯一對數學邏輯最新發展有深刻認識的教授。紐曼曾經出席1928年國際數學家大會,熟知希爾伯特研究數學基礎的方法。涂靈在課堂上學習了哥德爾的不完備定理,也因而知道希爾伯特的第三個問題仍然有待解決。依照紐曼的術語來說,就是要問會不會有一種「機械程序」(mechanical process),把它施用在數學命題上時,能辨識此命題在系統裡能否得證?

專業數學家多半不相信會存在這種判定程序。劍橋名氣最大的數學家哈地(G .Hardy, 1877~1947)在1928年就說:「當然不可能有這種定理,而且幸好不會有這種定理,否則我們就有一套機械的規則來解決所有的數學問題,那我們數學家就沒戲唱了。」法國大數學家龐卡雷(H. Poicare, 1854~1912)在《科學與方法》一書中以嘲弄的口吻說:「我們乾脆想像有一部機器,一頭把公設丟進去,另一頭定理就跑出來。這好像芝加哥傳奇性的屠宰機,一頭把活豬送進去,另一頭就送出火腿與香腸。如此一來,數學家跟機器一樣,都不需要理解自己在搞什麼了。」但是在哥德爾驚人的不完備定理問世後,對於整個數學是否存在判定程序,不能光靠信心說「當然不可能有」,而值得仔細深入地分析。

下一頁 Pages: 1 2 3 4 5 6

文章難易度
科學月刊_96
232 篇文章 ・ 2407 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!免疫功能低下病患防疫新解方—長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2882字 ・閱讀時間約 6 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022 年美、法、英、澳及歐盟等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示該藥品針對 Omicron、BA.4、BA.5 等變異株具療效。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
帕克斯洛維德
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度

0

1
0

文字

分享

0
1
0
強核力與弱核力理論核心:非阿貝爾理論——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/28 ・1733字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

非阿貝爾理論

量子色動力學與弱核力理論有個更為奇特的性質,兩者都是「非阿貝爾理論」 (non-Abeliantheories)。非阿貝爾的意思是強核力與弱核力理論核心(參見【科學解釋 6】)的對稱群代數是不可交換的。簡單來說就是「A 乘 B」不等於「B 乘 A」。

一般人的常識會告訴你,如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣,你用計算機怎麼試答案都不變。一個袋子裝三塊錢、兩個袋子總共是六塊錢;一個袋子裝兩塊錢,三個袋子總共還是六塊錢。

如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣。圖/pixabay

這件事對數字永遠都成立,是千真萬確的事實。然而,我們有個很好的方法能定義出一套數學架構,其中的 AB 不等於 BA。實際上,數學家已經鑽研這個領域很多年了。

條條大路通數學

或許更驚人的是,物理學家竟然也在許多地方應用這套數學,因為某些和物理學相關的事物也是 AB 不等於 BA。矩陣就是我們表示這些東西的一種方式。現在我在倫敦大學學院為新生上的數學方法課就有介紹矩陣力學。以前我的學校制定了一套「新數學」的課綱,所以我在年僅十五歲的時候就多少認識一點矩陣了。

數學的一個矩陣是一群按照行列排列整齊的數字。把兩個矩陣 A 和 B 相乘,會得到另一個矩陣 C,方法是把對應的列和行上面的數字依序相乘。

這種矩陣聽起來可能不像某部電影裡面那掌控一切、創造虛擬實境的超級電腦一樣迷人,卻有用的多。這部電影的角色身穿黑色皮衣,還有出現著名的慢動作躲子彈鏡頭

慢動作躲子彈鏡頭。圖/giphy

我來舉個例子。

你可以用一個矩陣來描述你移動某個物體的結果。相乘的順序(AB 或 BA)在這個例子有明顯的區別。物體先在原地轉九十度再向前直直走十公尺,和先走十公尺再轉九十度,兩種移動方式最後的終點顯然不會相同。假設矩陣B代表旋轉,矩陣 A 代表直行,那麼合在一起的「旋轉後直行」就是矩陣(C = AB);這和「直行後旋轉」的矩陣(D = BA)必定不會相同。C 不等於 D,所以 AB 不等於 BA。要是 AB 和 BA 永遠相同,我們就沒辦法用矩陣來描述這類的移動過程了。正是因為矩陣的乘法不可交換―非阿貝爾,這個工具才會如此有用。

數學和真實世界密不可分

在狄拉克試圖要找出能描述高速電子的量子力學方程式時,矩陣被證實是他所需要的工具。實際上,電子有某項特性讓狄拉克不得不使用矩陣來表示它,這項特性與他描述電子自旋的語言同出一轍;所有原子的行為和元素周期表的規律,都與自旋有深刻的關聯。除此之外,這個性質也啟發狄拉克去預測有反物質的存在。

數學和真實世界之間似乎有緊密的關係,這讓我讚嘆不已。優秀的研究要能解決問題、也要能提出好的問題。而問題永遠比解答還要多,為了研究我們要付出許多的時間和金錢,因此大家得做出抉擇。數學是威力極大的工具,能幫助科學家檢查實驗數據、並從結果當中尋找最有趣的新實驗方向。就算有些方法和結論,好比矩陣及反物質,看起來可是相當古怪的。

秉持著這份精神,我要在繼續討論希格斯粒子搜索實驗之前,先繞個路來講微中子,最後這回要介紹的是一個很重要的真實結果。2012 年 3 月 7 日,中國的大亞灣核反應爐微中子實驗(DayaBay Reactor Neutrino Experiment)發表了最新的研究成果。

One of the Daya Bay detectors.圖/wikipedia

他們的實驗結果不但對標準模型影響重大,也會決定粒子物理學未來的研究走向。如果你只想要繼續讀希格斯粒子的故事,大可跳過這一段沒關係,下一節再見。但是微中子的粉絲可千萬別錯過精彩好戲了!

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

貓頭鷹出版社_96
50 篇文章 ・ 20 位粉絲
貓頭鷹是智慧的象徵。1992年創社,以出版工具書為主。經過十多年的耕耘,逐步擴及各大知識領域的開發與深耕。現在貓頭鷹是全台灣最重要的彩色圖解工具書出版社。最富口碑的書系包括「自然珍藏、文學珍藏、台灣珍藏」等圖鑑系列,不但在國內贏得許多圖書獎,市場上也深受讀者喜愛。貓頭鷹的工具書還包括單卷式百科全書,以及「大學辭典」等專業辭典。貓頭鷹還有幾個個性鮮明的小類型,包括《從空中看台灣》等高成本的視覺影像書;純文字類的「貓頭鷹書房」,是得獎連連的知性人文書系;「科幻推進實驗室」則是重新站穩台灣科幻小說市場的新系列,其中艾西莫夫的科幻小說,已經成為台灣讀者的口碑選擇。

0

4
4

文字

分享

0
4
4
數學有多好用?從種馬鈴薯到上太空,那些我們沒發現的數學——《大自然的數學遊戲》
天下文化_96
・2022/12/25 ・2278字 ・閱讀時間約 4 分鐘

數學的共振系統存在於太陽系中

太陽系的動力系統充滿了共振。

月球的自轉由於受到其他天體的攝動(perturbation),因而有輕微的起伏,不過它的自轉週期與它環繞地球的公轉週期相同,這是自轉週期與軌道週期的「一:一」共振。因此,我們在地球上總是看到月球的同一側,從來無法看到月球的「背面」。

水星每隔五十八.六五日自轉一周,每隔八十七.九七日公轉太陽一周。二乘八十七.九七等於一七五.九四,而三乘五十八.六五等於一七五.九五,因此水星的自轉週期與軌道週期是一個「二:三」共振。事實上,長久以來,天文學家一直以為兩者構成「一:一」共振,以為兩個週期大約都是八十八日。

因為想要觀察像水星這麼接近太陽的行星,實在是一件很困難的事情。這使得天文學家相信,水星的一側熱得不可思議,而另一側則冷得不可思議,最後卻發現事實並非如此。不過共振還是存在,而且比單純的「一:一」更有意思。

在火星與木星之間,有一個寬闊的小行星帶(asteroid belt),其中包含了數千個微小的天體。這些小行星的分布並不均勻,在某些與太陽距離固定的軌道上,我們發現還有些「小行星子帶」,在其他距離上則幾乎找不到它們的蹤跡。這兩者都得歸因於與木星的共振。

火星與木星間的小行星帶。圖/wikipedia

希耳達群(Hilda group)小行星就位在小行星子帶,它們與木星形成「二:三」共振。也就是說,這群小行星所處的位置,剛好使它們在木星公轉兩圈的時間中環繞太陽三圈。而最有名的小行星帶隙(gap of asteroid),則是「一:二」、「一:三」、「一:四」、「二:五」與「二:七」的共振。

各位讀者也許有些擔心,為什麼共振同時能夠解釋小行星帶的叢聚與間隙呢? 答案是每一個共振都具有本身的動力學特徵,某些會造成叢聚效應,某些的作用則剛好相反,全都由共振比例數字來決定。

用數學來預測未來

數學的另一項功能是進行預測。

在了解天體的運動之後,天文學家便能預測月食、日食,以及彗星的回歸等等。他們知道應該將望遠鏡對準何處,才能重新發現運行到太陽背面、暫時無法觀測的小行星。由於潮汐主要是由日、月與地球的相對位置所控制,所以他們也能預測許多年後的潮汐。

(但這種預測的主要困難並非來自天文學,而是大陸的形狀與海底的地形,它們都能使某個高潮提前或延後。然而,即使過了一個世紀,這些地理因素也幾乎不會有什麼改變,因此一旦了解它們造成的效應之後,將這些效應考慮在內只是例行公事。)

反之,想要預測天氣則困難無數倍。對於控制天氣的數學,我們知道的跟控制潮汐的數學一樣多,可是天氣天生就有一種不可預測性。縱使如此,氣象學家仍能做出有效的短期預測,比方說三、四天以後的天氣。不過,天氣的不可預測性與隨機性毫無關聯。在第八章中,當我們討論到混沌概念的時候,將會詳加探討這個題目。

數學所能做的遠不止於預測。一旦了解某個系統如何運作,我們就不必再做個被動的觀察者了。我們可以試圖控制這個系統,讓它照我們的意思行事。可是最好不要野心太大,例如天氣控制就仍處於嬰兒期,我們還無法隨心所欲地造雨,即使天上有一大團現成的雨雲。

控制系統的例子不勝枚舉,從保持汽鍋溫度固定的恆溫器(thermostat)到中世紀式的造林。還有,假如沒有精妙的數學控制系統,太空梭就會在空中橫衝直撞,因為任何太空人絕對沒有足夠迅速的反應,可矯正它固有的不穩定性。至於使用電子式心律調節器幫助心臟病患者,則是控制的另一項實例。

這些例子,讓我們看到數學最為實際的一面,也就是它的實際應用:數學如何造福人群。

隱身文化幕後的數學工具

我們的世界奠立在數學基礎上,數學不可避免地深植於全球文化中。我們並非總能夠了解數學對我們的生活有多大影響,理由是它被人盡可能藏在幕後。

這是很合理的,譬如您找旅行社安排一次度假旅遊時,不必了解設計電腦或電話線的數學與物理理論,也不必了解使某座機場能起降最多架次飛機的最佳化(optimization)程式,或是為駕駛員提供正確雷達影像的信號處理方法。

當您收看電視節目的時候,也不必了解在螢幕上製造特殊效果的三維幾何、藉由衛星傳送電視訊號的編碼方式、解出衛星軌道運動方程式的數學技巧,以及在製造可將衛星送到定位的太空的各個零組件時,每個步驟所應用的數千種不同的數學工具。

還有,農夫在種植新品種的馬鈴薯時,也不必知道遺傳學統計理論,不必知道這理論如何幫助育種學家找出何種基因使這品種具有抗病性。

然而,以前一定有人了解這一切,否則飛機、電視、太空船、抗病性的馬鈴薯都不可能發明出來。現在也需要有人了解這一切,否則它們就不會繼續運作。而將來也需要有人發明新的數學,以便解決新出現的或迄今尚未有解的難題,否則當我們面對某種改變,必須解決新的問題,或是舊問題需要新的解答時,我們的社會便會崩潰。

假如數學以及所有植基其上的發展,突然之間從我們的世界消失,人類社會將在瞬間四分五裂。又假如數學從此停滯不前,再也不會向前邁出一步,我們的文明便會很快開始倒退。

——本文摘自《大自然的數學遊戲 》,2022 年 11 月,天下文化出版,未經同意請勿轉載。

天下文化_96
116 篇文章 ・ 600 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。