Loading [MathJax]/extensions/tex2jax.js

2

0
3

文字

分享

2
0
3

病毒感染有可能導致癌細胞生長?致癌基因是如何被發現的?

活躍星系核_96
・2017/10/16 ・5262字 ・閱讀時間約 10 分鐘 ・SR值 593 ・九年級

文/陳弘之|台大醫學系四年級

洛克菲勒大學的Founder’s Hall source:wikipedia

1911年,洛克菲勒醫學研究所(洛克菲勒大學前身)的裴頓.勞斯(Peyton Rous)教授發表了一篇論文,帶給了生醫界一個新的想法:

病毒感染有可能導致癌細胞生長。

根據論文的實驗方法,勞斯教授取出了母雞的胸部癌細胞,並經研磨、離心和過慮後,將濾液注入健康的母雞體內,發現實驗的母雞有很高的比例都誘發癌細胞的生長;又因為實驗使用過濾器材的孔徑比細菌還小,所以癌症的誘發可能是經由濾過性病毒傳染。

裴頓.勞斯(Peyton Rous)教授。圖/wikimedia commons

但勞斯教授的論文當時並沒有立即在學界引起廣大的迴響,一直要到 1960 年代,科學家才終於發現和鼠類乳癌與白血病(血癌)息息相關的 RNA 病毒。特定品系的實驗鼠有很高的比例會罹患相同的癌症,而且還能在電子顯微鏡中觀察到 RNA 病毒從癌細胞表面出芽生長;很顯然的,這種 RNA 病毒會經由垂直傳染,而致癌因子在不妨礙細胞基本機能的情況下由親代傳給子代,如此造就了高比例的同品系實驗鼠產生相同的癌症。

-----廣告,請繼續往下閱讀-----

但究竟癌症傳染的機制為何?致癌的機轉又是怎麼一回事?是否了解了致癌的病毒就可以一勞永逸地治療癌症?本文將帶領讀者看看科學家們是如何一步一步的回答這些問題。

反轉錄病毒的發現

既然先前觀察到從癌細胞表面出芽生長的是以 RNA 為遺傳因子的病毒,很直觀的就會認定造成垂直遺傳的致癌因子就是該病毒的 RNA,但科學家發現這種 RNA 病毒的生活史當中存在著合成的病毒 DNA,那麼致癌的因子到底是病毒的 RNA 還是 DNA,就需要進一步的驗證了。

霍華德.特明(Howard Temin)教授。圖/BY Associated Press@wikimedia commons

威斯康辛大學的霍華德.特明(Howard Temin)教授提出了一個可能:

  1. 這種 RNA 病毒會先以 RNA 為模板合成互補的 DNA 序列
  2. 合成的病毒 DNA 會嵌入宿主的 DNA 中
  3. 嵌入後的病毒 DNA 成為 RNA 合成的模板並進行病毒複製

雖然看起來合理,但這樣的假說在當時面臨一個很大的問題:以 RNA 作為模板合成 DNA」在整個生物界中是前所未聞,也和弗朗西斯.克里克(Francis Crick)所提出的細胞中心假說(central dogma/遺傳訊息是由 DNA 到 RNA 到蛋白質)相違背,更重要的是具有以 RNA 為模板的 DNA 合成酶從來就沒有被發現過!

-----廣告,請繼續往下閱讀-----

但就在 1970 年,麻省理工學院的戴維.巴爾的摩(David Baltimore)教授發現了催化以 RNA 作為模板合成 DNA」的酵素。

巴爾的摩教授選擇鼠類白血球增生性腫瘤病毒(Rauscher mouse leukemia virus/R-MLV)與勞斯肉瘤病毒(Rous sarcoma virus/RSV)兩種 RNA 病毒來做實驗,他將病毒株純化並加入鎂離子、氯化鈉、二硫蘇糖醇(dithiothreitol/可避免酵素中的硫醇根氧化)和去氧核苷三磷酸(dNTP/其中 dTTP有做放射線標定)創造出有利於 DNA 合成的培養環境,結果產生了分子量大且具有放射性的 DNA 產物。

戴維.巴爾的摩(David Baltimore)教授發現了催化以 RNA 作為模板合成 DNA」的酵素。圖/wikimedia commons

為了證實該DNA的合成是源自於病毒的 RNA,巴爾的摩教授又更進一步做了兩組對照的實驗:

  • ※已知僅 RNA 會被胰核糖胰核酸酶(pancreatic ribonuclease)破壞,DNA 則否

1-1一般病毒培養進行 DNA 合成做為實驗對照組

1-2病毒培養的環境中加入胰核糖核酸酶

2-1靜置純化過的病毒株 20 分鐘再進行DNA合成反應

2-2預先用胰核糖核酸酶處理純化的病毒 20 分鐘再進行DNA合成反應

經過與對照組 1-1 產率的比較後發現,1-2 在加入胰核糖核酸酶會使得 DNA 產物下降,2-2 預先用胰核糖核酸酶處理的病毒株其DNA 產率更低,2-1 單純靜置 20 分鐘後則還有相當的產率。

-----廣告,請繼續往下閱讀-----

此實驗結果證成了以 RNA 作為模板合成 DNA」的假說,而這種僅在特殊 RNA 病毒上發現的「以 RNA 為模板的 DNA 合成酶後來被稱作反轉錄酶;反轉錄病毒在將 RNA 反轉錄成 DNA 後,病毒的 DNA 會嵌入宿主的DNA,經由轉錄、轉譯合成病毒的蛋白質,使得宿主細胞病變(例如癌化),也因為病毒帶有的致癌基因在感染後已成為宿主 DNA 的一部份,所以當生殖細胞也受到病毒感染時,減數分裂後的配子也就理所當然的帶有病毒的致癌基因,造成癌症的垂直傳染。

Src 基因的發現

了解了病毒如何將致癌基因帶給宿主後,科學家的下一個目標就是要研究到底反轉錄病毒中的哪一段基因具有致癌性。1970年代,某些突變後的致癌性反轉錄病毒被發現,這種突變的反轉錄病毒雖然可以感染宿主,卻沒有致癌能力,顯示致癌與否的關鍵就存在於變種與原病毒株之間的基因體差異。

加州大學舊金山分校的哈羅德.瓦慕斯(Harold Varmus)、米高.畢曉普(J.Michael Bishop)和多明尼克.施特赫林(Dominique Stehelin)教授設計了以下的實驗,用鳥類白血病性肉瘤性病毒(avian leukosis-sarcoma virus)找出了一種致癌基因 src(命名由來為肉瘤 sarcoma):

  1. 分離出基因突變後不具致癌性的反轉錄病毒並取其 RNA,經基因分析和比對,發現其亡失了10-20%的基因體。
  2. 取出原病毒株的完整 RNA,在反轉錄酶的催化下合成單股的互補 DNA(cDNA),並用放射線標定 DNA產物。
  3. 將突變病毒的 RNA 與具有放射性的 cDNA 進行鹼基配對,沒有 RNA 配對的 cDNA 為突變病毒亡失的基因體,含有致癌基因。
  4. 用管柱層析法分離出帶有致癌基因的 cDNA,並命名為 cDNAsrc。

從病毒中找到 cDNAsrc之後,科學家又有了新的發現:原來在許多種健康的鳥類(包括:雞、火雞、鵪鶉、鴨和鴯鶓)細胞當中也可以找到和 cDNAsrc 鹼基互補的 DNA 序列,這表示反轉錄病毒所帶的致癌基因,很有可能是鳥類原有的 DNA 序列,只是在反轉錄病毒的生活史中,和嵌入的病毒 DNA 一同被轉錄,並且成為新的病毒基因體的一部分,而帶有 src 基因的病毒在感染後可以促使宿主細胞大量分裂(癌化)所以在演化過程中被保留了下來。

-----廣告,請繼續往下閱讀-----
許多種健康的鳥類(包括:雞、火雞、鵪鶉、鴨和鴯鶓)細胞當中也可以找到和 cDNAsrc 鹼基互補的 DNA 序列。圖/pixabay

但更驚人的還在後頭,科學家接著發現源來不只是鳥類,所有脊索動物門的動物細胞內都能找到和 cDNAsrc 互補的 DNA 序列!既然 src 基因存在於所有的脊索動物,則其必然具備某種重要的細胞生理機能。所以科學家接著所要解決的問題是:

  1. Src 基因所轉譯的蛋白質具有什麼細胞機能?
  2. 嵌入病毒src基因(v-src)後的宿主細胞究竟產生了怎樣的病變?

Src基因的細胞生理機能

科羅拉多大學的雷蒙.艾瑞克森(Raymond Erikson)教授率先找出 src 基因的功能。

他從感染勞斯肉瘤病毒(RSV)的實驗動物中萃取出專一的抗體,並使用免疫沉澱法分離出 src 基因轉譯出的蛋白質,經過分析,這種蛋白質的分子量約為 60,000 道爾頓,故稱之為 pp60src;又將受感染的動物細胞進行固定和組織切片後,再用鐵蛋白(ferritin)標定與 pp60src 結合的抗體,發現 pp60src 皆附著於細胞膜的內側面,尤其集中在細胞的隙型連結(gap junction)。

艾瑞克森教授接著將 pp60src 與抗體的複合物加入含有 [32P]ATP 的培養液中,放置一段時間後,發現 ATP 上帶有放射性的磷酸根被轉移到與 pp60src 複合的抗體的重鏈(heavy chain)上,顯然 pp60src 具有催化蛋白質磷酸化的功能,而這也是科學家第一次了解到致癌基因的致病機轉:

-----廣告,請繼續往下閱讀-----

細胞生理的控制很大一部分倚靠著蛋白質的磷酸化/去磷酸化,如 pp60src 在接受到細胞外的分子訊息後活化,磷酸化下游蛋白質,下游蛋白質再進行一連串的訊息傳遞與放大,最後活化轉錄因子,產生蛋白質並改變細胞生理狀態;當磷酸化/去磷酸化沒有受到精準的調控,細胞內複雜的代謝途徑就會受到影響,若其中牽涉到細胞生長的訊息傳遞途徑,就可能造成細胞不正常的增生,也就是細胞的癌化。

Src 基因的磷酸化功能雖有重要的生理意義,但在之前學界中都沒有被發現,這是因為不同於一般的磷酸化酵素會作用在蛋白質序列中的絲胺酸(Serine)和蘇胺酸(Threonine)上,pp60src則是將磷酸根轉移到酪胺酸(Tyrosine)上,而細胞中磷酸化絲胺酸(phosphorylated serine)和磷酸化蘇胺酸(phosphorylated threonine)的數量大概是磷酸化酪胺酸(phosphorylated tyrosine)的3,000 倍,所以早期並沒有發現酪胺酸磷酸酶的存在。

經過比較後發現,受到勞斯肉瘤病毒感染的動物其癌細胞內磷酸化酪胺酸的數量約為一般動物細胞的 8 倍,是 v-src 的高度磷酸化表現造就了宿主細胞的不正常增生。

核苷酸序列的改變―另一種致癌的機制

圖/wikimedia commons

正當科學家們高興找到的 src 的致癌機轉,以為克服了癌症的難關,麻省理工學院的羅伯特.溫伯格(Robert Weinberg)教授提出另一種不同於病毒感染的致癌機制:

核苷酸序列的改變會活化致癌基因並造成細胞癌化。

其實實驗過程簡單整理如下:

-----廣告,請繼續往下閱讀-----
  1. 用 3-MC、BP 等致癌化學物使得實驗鼠細胞癌化,產生15種不同的細胞株(cell line)
  2. 萃取出不同細胞株的 DNA 並轉染纖維母細胞(fibroblast/NIH3T3)
  3. 觀察轉染後的 NIH3T3 是否有癌化的徵兆,產生凝塊(clump)
  4. 萃取一般動物細胞 DNA 作為對照組,轉染 NIH3T3 觀察是否造成細胞癌化

結果在 15 種細胞株當中,有 5 種萃取出的 DNA 在轉染後會造成 NIH3T3 的癌化,而一般動物細胞則沒有造成癌化的能力,顯然一開始的化學分子操作改變了細胞的 DNA 序列,並使之擁有造成其他細胞癌化的能力:

病毒感染不再是唯一的致癌途徑。

在 1981 年,科學家改採用人類的癌細胞進行相同的實驗,在 26 種膀胱癌(bladder carcinoma)細胞株當中,有兩種萃取出的DNA(EJ和J82)具有使細胞癌化的能力,再經過一番研究,EJ 和 J82 的細胞株當中並不含病毒嵌入的 DNA 序列,可見人類本身的DNA當中就存有某種致癌基因,當該基因被(不正常)活化的時候,便會造成細胞的癌化。

於是科學家的目光開始聚焦在找出人類 DNA 序列中的致癌基因,很快的在 1982 年就從 EJ 和 J82 中分離出具有致癌能力的 DNA 片段,而經過 DNA 比對,該序列和哈威肉瘤病毒(Harvey sarcoma virus)所帶有的致癌基因(ras)基本上是一致的(儀器檢測不出差異);科學家便推測:

人類的 ras 基因在某種機制的活化(突變)後,或許和哈威肉瘤病毒造成的癌化有相同的致病機轉。

在同年年底,科學家分析膀胱癌細胞突變後的ras基因的核苷酸序列後發現,ras 的突變僅僅是由於單一的鹼基置換:

-----廣告,請繼續往下閱讀-----

序列中有固定一個鳥嘌呤(Guanine)被換成了胸腺嘧啶(Thymidine),而該點突變改變了密碼子的遺傳訊息,使得原本 ras 蛋白質上的甘胺酸(Glycine)被纈胺酸(Valine)取代。

這又與哈威肉瘤病毒所帶有的 ras 基因有相同的特徵:

受病毒感染的細胞轉譯出的 ras 蛋白質當中的同樣一個甘胺酸,被精胺酸(Arginine)取代,顯然此甘胺酸對於 ras 蛋白質的構形與功能有重大的影響。

更有甚者,由於哈威肉瘤病毒感染後會導致鼠類的肉瘤(sarcoma/癌細胞起源於軟組織)與白血病(leukemia/癌細胞起源於骨髓),與膀胱癌(carcinoma/癌細胞起源於上皮組織)的癌症分類並不同,這是因為 ras 屬於小分子量 GTP 水解酶(small GTPase/ small G protein),調控著細胞內的蛋白質訊息活化,所以當 ras 被大量轉譯容易造成細胞癌化,而 ras 也是科學家首次發現會造成不同種類癌症的單一基因突變。

為了攻克癌症這個難題

圖/pixabay

為了攻克癌症這個難解的疾病,科學家們從癌症的起源著手,發現了有致癌性的反轉錄病毒,之後又了解到許多致癌基因本來就存在於人類的 DNA,像 src 和 ras,所以又將它們稱做原致癌基因(proto-oncogene),當不正常表現時會造成細胞的癌化。

但癌症的發生機轉非常複雜,每當科學家找出一種致癌途徑卻總發現沒能窮盡所有可能,於是即使研究向前了一步也不得停下追尋答案的腳步,也是在研究癌症的過程中,漸漸拼湊出細胞內各種訊息活化的途徑,當我們現在看著一張張清楚的細胞機制圖時,可別忘了科學家們努力不懈的斑斑足跡啊!

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

19
1

文字

分享

1
19
1
倒楣的愛滋病毒,一住到基因沙漠、不得翻身
miss9_96
・2020/12/21 ・2721字 ・閱讀時間約 5 分鐘 ・SR值 580 ・九年級

約有 0.5% 的患者,不需要服藥、體內病毒絕少發作,猶似永遠被冷凍著。那些人,被稱為「菁英控制者 (elite controllers) 」

上世紀末發明的抗反轉錄病毒療法 (antiretroviral therapy / ART),扭轉了人類和愛滋病毒之間的關係註1、有效地控制了病毒在人體內的肆虐。但科學界驚奇地發現,有些患者不需要吃藥,體內的病毒也幾乎不會爆發,這是怎麼回事呢?

好奇怪啊,「菁英控制者」患者,為什麼不用吃藥?

愛滋病毒將自己基因鑲入宿主細胞的 DNA 中,數年後再大肆複製、產生巨量後代。而約有 0.5% 的患者,不需要服藥、體內的病毒似乎絕少發作,猶似永遠地被冷凍在細胞中。那些天生就能壓制病毒的患者,被稱為「菁英控制者 (elite controllers) 」。

有些患者不需服藥,病毒也絕少發作,像是有魔法控制一樣。圖/giphy

《自然 (Nature) 》期刊近日發了兩篇文章 [1, 2],闡述了菁英控制者體內的病毒,很可能是住到染色體的冷門地段,無法從基因被轉錄成病毒蛋白質,變成一段永無功能的病毒基因。

哈佛–麻省理工和波士頓布萊根婦女醫院 (Brigham and Women’s Hospital) 團隊研究了「菁英控制者」和服用藥物的一般患者,她們體內的被感染細胞 DNA 。想了解菁英控制者裡的病毒基因,發生了什麼事?以及「住到」了宿主 DNA 的那些位置?

-----廣告,請繼續往下閱讀-----

「菁英控制者」體內的病毒,沒有壞掉啊。那為什麼不發作?

團隊發現,在「菁英控制者」細胞裡,病毒基因的拷貝數較少。換言之,鑲入宿主染色體裡的病毒量較低(如下圖 1a )。此觀察合乎常理(「菁英控制者」絕少發病),然而,接下來的發現就耐人尋味了。

和一般服藥的患者相比,「菁英控制者」細胞裡的病毒基因們,完整、不帶缺陷的比例反而比較高(如下圖 1c )!顯示了「菁英控制者」細胞裡的病毒基因,具備複製、被轉錄能力;然而,這群不吃藥的「菁英控制者」鮮少發病,血中的病毒量長年維持在低點。體內的病毒基因雖然完整,但它們彷彿被冷凍了一樣,似乎從來不發病(或鮮少)(如圖 2 )。為什麼?

圖 1:(a)「菁英控制者」和一般服藥者細胞裡,病毒基因數的頻率。
(b)「菁英控制者」和一般服藥者細胞裡,病毒基因狀態的比例。圖/參考文獻2
圖2:兩名「菁英控制者」的 CD4 T細胞(藍線),和血中病毒濃度變化(紅線) 註2
箭頭為患者抽血、提供數據的時間。圖/參考文獻2

「菁英控制者」體內的病毒基因,住到不能被轉錄的沙漠裡了

進一步觀察,「菁英控制者」體內的病毒基因多樣性,發現極低的多樣性。彷彿病毒鑲入宿主 DNA 後,從此不再複製、被轉錄;僅能透過受感染 T 細胞的有絲分裂增加病毒基因,無法透過產生大量子代病毒、感染更多新細胞。因此只能以最原始的狀態保留病毒基因。

這些病毒基因鑲入宿主 DNA 後,從此不再被轉錄,只能以最原始的狀態保留病毒基因。圖/giphy

而基於上述觀察,團隊假設這些病毒基因,可能鑲入到染色體裡某些不轉錄的區域。檢視病毒基因在「菁英控制者」染色體的位置,團隊證實了她們的假設。病毒的基因集中在不轉錄的區域(作者暱稱:基因沙漠/gene deserts)(如圖3),如:

-----廣告,請繼續往下閱讀-----
  • DNA 的非蛋白質編碼區域 (non-protein-coding regions ) 註3。DNA 序列裡,擁有龐大的區域,並不會轉錄成蛋白質。部分人類已知其功能(如:端粒區域的 DNA ),部分仍未知。
  • DNA 的著絲點 (centromere)。該區域負責在有絲分裂時,和紡錘絲 (spindle fiber) 連結的位置。此區域的 DNA 和染色體蛋白質緊密包裹,難以被轉錄
  • 鋅指蛋白質家族 (zinc-finger protein family) 註4
圖3:一名「菁英控制者」的細胞中,病毒基因在染色體裡的位置。圖/參考文獻2

微觀上,「菁英控制者」體內的病毒基因也被抑制

而「菁英控制者」裡的病毒基因,除了住到不轉錄的 DNA沙 漠外;在微觀上,也發現到被甲基化、沉默的特徵。如下圖 4,和一般服藥者相比,「菁英控制者」裡的病毒基因,大幅度被甲基化(超過 90% )的比例更高

圖 4:「菁英控制者」和一般服藥者裡,不同程度被甲基化的病毒基因的比例。圖/參考文獻2

「菁英控制者」體內的病毒住到爛套房,是因,還是果?

最後,團隊討論了「菁英控制者」體內病毒基因的差異,以及她們長期不發病的關係,是因(因為病毒基因住到爛套房,使「菁英控制者」不發病),還是果(其他因素抑制了病毒,而基因住到爛套房現象,是結果)呢?

團隊討論裡,偏向「是原因,同時也是結果」。她們認為「菁英控制者」最初被感染時,部分被感染的細胞,病毒基因可以被轉錄,因此被辨認而清除;而其他被感染的細胞,牠們體內病毒基因被蛋白質緊密包裹、不被活化、轉錄;因為沒有表現出病毒的蛋白質,反倒沒有被認出來,因此沒有被殺害。隨著時間流逝,牠們殘活下來,並帶著病毒基因持續地活下去。

圖5:作者推論「菁英控制者」體內病毒和細胞共生的過程。圖/參考文獻1

註解

  1. 嚴格來說,引發愛滋病的病毒的名稱是人類免疫缺陷病毒 (HIV) ,感染此病毒的人類稱為 HIV 帶原者,而如果此病毒在人體內肆虐,使疾病惡化後才會被稱為愛滋病,又稱後天免疫缺乏症候群 (AIDS) 。因此嚴格來說愛滋病是患者病況惡化後的名稱,而非病毒的稱呼。但在中文的使用者習慣中,似乎會將兩者混用。為符合多數中文讀者的閱讀習慣,本文暫不區分。
  2. 愛滋病病發時,CD4 T 細胞會巨幅下降,低於200 Cells / mm3時被認為發病,必須服藥;血中病毒濃度會快速上升。
  3. DNA 序列裡,擁有龐大的區域,並不會轉錄成蛋白質,如:端粒等。
  4. 為何鑲入鋅指蛋白質家族,為何會降低病毒基因被轉錄的機會?此部分我並沒有讀懂,期許有高手能解讀和分享。

參考文獻

1. Nicolas Chomont (2020) HIV enters deep sleep in people who naturally control the virus. Nature. DOI: 10.1038/d41586-020-02438-7

-----廣告,請繼續往下閱讀-----

2. Chenyang Jiang, Xiaodong Lian, Ce Gao, Xiaoming Sun, Kevin B. Einkauf, Joshua M. Chevalier, Samantha M. Y. Chen, Stephane Hua, Ben Rhee, Kaylee Chang, Jane E. Blackmer, Matthew Osborn, Michael J. Peluso, Rebecca Hoh, Ma Somsouk, Jeffrey Milush, Lynn N. Bertagnolli, Sarah E. Sweet, Joseph A. Varriale, Peter D. Burbelo, Tae-Wook Chun, Gregory M. Laird, Erik Serrao, Alan N. Engelman, Mary Carrington, Robert F. Siliciano, Janet M. Siliciano, Steven G. Deeks, Bruce D. Walker, Mathias Lichterfeld & Xu G. Yu -Show (2020) Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature. DOI: https://doi.org/10.1038/s41586-020-2651-8

-----廣告,請繼續往下閱讀-----
miss9_96
170 篇文章 ・ 1093 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9