Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

環保理由百百種,相關規範究竟保護的是「人」還是「環境」?

法律白話文運動_96
・2019/11/28 ・4146字 ・閱讀時間約 8 分鐘 ・SR值 548 ・八年級

  • 作者/李濬勳。

本文由泛科學與法律白話文運動共同策畫,更多精彩法律普及文章,快到 法律白話文運動 Plain Law Movement 去看個飽啦!

近年來由於溫室氣體增加的緣故,氣候變遷已經造成全球環境越發劇烈,許多原本適合人類居住的地方已經變得不適合居住了。

許多海島國家的小島受到海平面升高的原因不得不撤走當地居民,甚至美國紐奧良地區由於地勢低窪,也深受氣候變遷之影響。美國加州因為氣候變遷導致氣候過於乾燥的緣故,時常發生森林大火,其所造成的財務以及平民損失亦不在話下。

除了氣候變遷之外,還有動物保育的問題,氣候變遷導致動植物的棲息地不再適宜生存,而導致有些物種面臨絕種的威脅。這陣子亞馬遜森林大火也引起了國際社會的注意,法國甚至主動向巴西提出了捐款搶救亞馬遜雨林的建議。這類的環境新聞我們很常在新聞上或是網路上看得到,但亞馬遜雨林大火到底關法國什麼事?為什麼法國要透過捐款來搶救亞馬遜雨林呢?

延伸閱讀:燃燒的雨林,炎上的議題:關於亞馬遜的幾個問題與答案

-----廣告,請繼續往下閱讀-----

許多人常常會覺得很理所當然,我們保護環境就是為了要保護人、保護我們的生活能正常地繼續運行。因為有了健全的環境,我們人類才能好好的生存。的確,當我們討論到空氣污染、水污染、或廢棄物管理的時候,如此直覺的答案的確非常容易出現我們的回應中。

然而,話題若是轉到「動植物保育」時,許多人就可能會開始思考自己的答案到底是正不正確。

試想,我們保育動植物的生存真的是為了保護人類的生存環境嗎?保護海龜的生存到底會保護人類的什麼生存利益呢?保護石虎的棲地,到底可以保護我們的什麼利益呢?

保護石虎的棲地,到底可以保護我們的什麼利益呢?圖/chinadaily

其實關於環境法到底要保護「什麼」仍然有相當大的爭執,本文將從介紹經濟學觀點以及哲學觀點來看環境保護,究竟在這樣的脈絡之下,環境保護的目的為何,並且在最後輔以筆者的想法作為結論,希望給讀者帶來基本的環境法概念。

-----廣告,請繼續往下閱讀-----

在經濟學的眼中,環境保護是什麼呢?

經濟學最主要的目標就是要將社會利益最大化,而所謂的社會利益就是指「所有個人利益的總合」。

在這樣的前提下,只要能將個人利益最大化都會被認為是可行的方式。也因此,在經濟學的觀點之下,控制環境污染只有在我們能證明受污染者的利益會大於污染者的利益時,我們才需要進行環境污染的管制,否則管制這樣的污染對於整體社會利益而言並無助益。

經濟學者看待環境污染並不把它當作一種錯誤,它只是社會發展時所產生的「外部效應」(externality)、一種副產品而已。因此,要不要管制這個外部效應、要如何管制這個外部效應,全都要看能不能達到全體人類利益最大化來做選擇。

經濟學在討論管制問題時,不能不提到法律經濟分析的始祖——扣斯(Ronald Coase)。

-----廣告,請繼續往下閱讀-----
法律經濟分析的始祖——扣斯。圖/The New Yorker

扣斯是最先開始透過經濟學方法討論法律管制的學者,其最有名的論點就是「法律的目的應該是要讓社會交易成本降到最低」,因為這個框架下進行的交易才能讓每個人想辦法爭取自己的利益最大化,所以整體而言也會造成整體社會利益最大化。

扣斯提出三種假設:

  • 他首先認為所有的污染問題都是互相的,例如 A 排放廢氣讓 B 受害,B 也會因此要求 A 不要排放廢氣,而 B 的健康因為廢氣而受到影響,A 受害的則是減少排放廢氣而導致產量減少。
  • 第二,他指出讓污染者與被污染者之間進行對於污染排放與補償的商討會是最好的,因為兩者都會在最大化自己利益的情況下才會同意此交易。而這樣的交易只要能繼續下去,就能達到社會福利的最大化。
  • 最後,他指出若法律導致社會交易成本過高,雙方的交易可能就會因為交易成本太高就不進行,也因此法律的管制應該要最小化,才能讓當事人雙方的交易盡可能地進行。舉例來說,若法律規定污染者要賠償所有損害 5 萬元,但因此這樣的規定讓交易成本提高,也因此 A 與 B 便不會透過私下交流討論賠償事宜。

扣斯的學說主張法律應減少管制,讓當事人透過市場機制進行協商以達到各自最大的利益。這樣的說法當然是基於經濟學的基本假設「人都是理性的」,所以每個人都會選擇理性上能獲得最大利益的結果。當然這樣的方式套用在法律管制上受到了許多非議,也因此後來有許多修正過的法律經濟分析,補充了這個理論的不足與缺點;但不得不承認的是,扣斯的理論深刻地影響了美國環境法的立法與管制強度。

哲學觀點看環境保護

環境法是以「人」為出發點

有別於經濟學上的討論,哲學上對於環境法到底要保護的目的是什麼也有爭論,這樣的爭論與經濟學不同,這裡著重在到底環境法應該要保護的是人還是環境。

-----廣告,請繼續往下閱讀-----
到底環境法應該要保護的是人還是環境?圖/Johannes Plenio@Pexels

首先環境哲學學者 Mark Sagoff 認為環境法的存在就是為了人類,他認為環境保護必須要能展現出社會利益,環境法是一部以人為中心的法律。

他指出我們保護環境就是為了人類的自我利益而已,至於為什麼在這樣的假設之下人類還願意放下自我的利益而成就全社會的利益,是因為身為人我們都具備二種身份,一而為消費者,一而為社會公民。

當我們是消費者時,我們就會想要所有事物的結果都是對我們有利,因此我們會爭取自己的利益,將自己的利益最大化。

然而,當討論到公眾事務時,我們便會將自己的社會公民的身份拿出來,因為我們為了說服其他人同意我們的選擇,我們必須將自己轉換成公民的身份,以「整體社會最大利益」作為自己的論點,也因此在這樣的過程中環境保護就會成為個人用來說服其他社會大眾的最佳方式。

-----廣告,請繼續往下閱讀-----

環境法是以環境生物為中心

提出環境正義的環境社會學家 Dorceta Taylor 認為環境法本身就是為了保護環境而存在,但他的理論也沒有否認人與環境的互動。他認為保護環境本身就是一件道德正確的事。

  • 首先,他認為人類只是整個地球的一種生命態樣,因此環境法的存在就是為了因應人與環境的互動。
  • 再來,他認為人類與其他生命之間都是互相交錯影響,不能忽略任何一方的存在;
  • 最後,他指出每一種有機體都是獨特的個體,並透過自己的方式追求自身利益;因此人類本質上並沒有高於其他物種。

他提出這樣的論點說明人類與生物本質上都是平等的,而環境法並不是為了人而存在,而是為了讓兩者之間取得平衡。

在這種前提之下,他認為人類與其他物種會有許多衝突需要被解決,而這樣的衝突也就是環境法應該要著重的事。例如人若是與動物要爭取棲息地時,這樣的利益衝突如何解決。

他的理論將人類自我防衛、權利下的比例原則最小容許錯誤分配正義以及恢復式正義納入考量,用以做為解決人類與生物之間若有衝突時的解決方法。而在他的理論之下,若人類的基本生存受到脅迫時,仍然可以破壞環境以保全人類生存。

-----廣告,請繼續往下閱讀-----

環境法的辯證與立法者的考量

其實環境法所要保護的究竟是環境還是人,這樣的問題在現今仍然還在爭辯中。但不變的道理是,若要說服立法機關進行環境立法,恐怕我們還是要「以人為本」做為出發點,才能說服立法機關進行相關管制。

還是要「以人為本」做為出發點,才能說服立法機關進行相關管制。圖/MiamiAccidentLawyer@Pixabay

這問題在全世界各地都相同,美國潔淨空氣法 (Clean Air Act) 便開宗明義是為了保護人類健康才進行規範,美國安全飲用水法 (Safe Drinking Water Act) 也採用相同的立法意旨。我國空氣污染防制法第一條便說明了「為防制空氣污染,維護生活環境及國民健康,以提高生活品質,特制定本法。」

但討論到為何要保護「石虎」或為何要保護某種蝴蝶,這樣的話題可能就比較難從「人類健康」為出發點。說穿了,保護海龜到底對我們有什麼幫助呢?

但若從生態系統的觀點來看的話,一個物種的滅絕代表了其他動物的「食物來源」消失,因此其將影響到的是整個生態圈的變化,所以保護動植物還是有其重要性,因為我們不知道一個物種的消失可能會如何蝴蝶效應般地改變我們的生活環境,進而影響到我們的安全與健康。基於這個觀點,保護生態也是以人為中心的立法。

-----廣告,請繼續往下閱讀-----

然而,也有一派認為保護生態是因為我們要維持環境保有原本的樣貌,所以我們是為了環境而保護環境,例如我國野生動物保育法第一條便規定「為保育野生動物,維護物種多樣性,與自然生態之平衡,特制定本法」。

無論如何,環境議題的確是深刻地影響著我們的生活。環境法本身影響的範圍可以說是跨界性的存在,它可能為了保護國民健康而存在、也可能是為了保護環境本身而設立、但同時它也必須要顧及經濟發展與國民生計,因為只要進行環境管制,被影響到的首當其衝一定是業者,例如空氣污染之下許多發電廠業者都會受到影響。

因此,如何適當的管制取得這中間的平衡,便是環境法最大的議題,也是立法者最頭痛的爭執點。

無論如何,環境議題的確是深刻地影響著我們的生活。圖/Jeremy Bishop@Pexels

這也是立法者每當在遇到環境法修訂時會遇到的困境,他們同時希望國家經濟發展能越來越好,但同時也希望國民的健康越來越好,因此在多重利益衝突的情況之下,要如何說服立法者進行相關立法、或是修訂更嚴格的立法,筆者認為多半還是要透過「以人為中心」的論述為出發點,才能成功說服立法者。

當然,要如何說服立法者又會是一個更困難的議題,但環境法由於多半涉及產業發展的議題,所以在美國都會將成本效益分析 (cost-benefit analysis) 納入做為環境法的考量,也就是透過「管制成本」與「管制利益」的分析衡量,只有當管制利益會大於管制成本時環境法才有立法的益處,而這點也是環境法與其他法律不同之處。

參考資料

  • Taylor, P., & JAMIESON, D. (1986). Respect for Nature: A Theory of Environmental Ethics. PRINCETON; OXFORD: Princeton University Press. Retrieved from www.jstor.org/stable/j.ctt7sk1j
  • Sagoff, Mark (2007). The Economy of the Earth: Philosophy, Law, and the Environment. Cambridge University Press.
  • Ronald H. Coase, “The Problem of Social Cost: The Citations,” 71 Chicago-Kent Law Review 809 (1996).
-----廣告,請繼續往下閱讀-----
文章難易度
法律白話文運動_96
26 篇文章 ・ 531 位粉絲
法律白話文運動」是致力於推廣法律知識與法治思想的獨立媒體,願與讀者一起從法律認識議題,從議題反思法律。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
2

文字

分享

1
2
2
讓 AI 取代真人執法可行嗎?將判斷全交給 AI 可能隱藏什麼危險?——專訪中研院歐美研究所陳弘儒助研究員
研之有物│中央研究院_96
・2024/03/18 ・6292字 ・閱讀時間約 13 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|劉韋佐
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

人工智慧將改變以人為主的法治領域?

由人工智慧擔任警察,再也不是科幻電影的情節,交通管制常見的科技執法就是應用 AI 辨識闖紅燈、未依規定轉彎、車輛不停讓行人等違規行為。 AI 的客觀、高效率正在挑戰以人為審判主體的法治領域,這樣的轉變會對我們產生什麼影響呢?中央研究院「研之有物」專訪院內歐美研究所陳弘儒助研究員,他將帶我們思考:當 AI 取代人類執法時,將如何改變人們對守法的認知?

交通尖峰時段,後方出現一台救護車,你願意闖紅燈讓道嗎?
圖|iStock

想像有一天你正在尖峰時段開車,車子停在十字路口等紅燈時,後方出現一輛急駛而來的救護車,你為了讓道必須開過停止線。這時你是否願意冒著違規被開罰的風險?還是承擔風險以換取他人盡速就醫?

在上述情境中,針對「要不要闖紅燈」我們經歷了一段價值判斷過程。如果剛好十字路口有真人警察,他的判斷可能是:這是情急之下不得不的行為,並非蓄意違規。

然而,如果負責執法的是「法律人工智慧系統」(Artificially legal intelligent,簡稱 ALI)情況可能截然不同。

-----廣告,請繼續往下閱讀-----

ALI 這個詞源自 Mireille Hildebrandt 的研究,在概念上可區分為兩類:採取傳統程式碼的 IFTTT(if this then that)、運用機器學習的資料驅動。前者是注重法律推理或論證的計算機模型,將法律規範轉為程式碼,藉由程式編寫來執行法律任務。後者則透過大量資料的學習,來預測行為範式,用於再犯率、判決結果預測上有較好的成果。

一般情況下,應用在交通管制的 ALI 會辨識車輛是否超速、闖紅燈等違規行為,不過交通情境千變萬化,ALI 能否做出包含「道德價值的判斷」將是一大挑戰!

中研院歐美研究所陳弘儒助研究員察覺,人工智慧(AI)正在左右人們對守法的價值判斷及背後的因果結構,進而反思當我們將原本由人來判斷的事項,全權交由 AI 來執行時,可能產生哪些潛移默化的影響?

讓我們與陳弘儒展開一場從法哲學出發的對話,探索 AI 與法治價值之間的緊張關係。

-----廣告,請繼續往下閱讀-----
中研院歐美研究所陳弘儒助研究員,從法哲學出發,探索 AI 與法治價值之間的緊張關係。
圖|之有物

問

怎麼會對「人工智慧」(AI)與「法律人工智慧系統」(ALI)產生研究興趣?

會對 AI 感興趣是因為我很早就對電腦有興趣,我原本大學想唸資訊工程,因為高中有些科目沒辦法唸,於是去唸文組,大學進入法律系就讀,研究所考入「基礎法學組」研讀法哲學。

後來我到美國讀書,當時 AlphaGo 的新聞造成很大的轟動,啟發我思考 AI 的應用應該有些法律課題值得探討,於是開始爬梳 AI 與法律的發展脈絡。

AI 這個詞大概在 1950 年代被提出,而 AI 與法律相關的討論則在 1970、80 年代就有學者開始思考:我們能否將法律推理過程電腦程式化,讓電腦做出跟法律人一樣的判斷?

事實上,AI 沒有在做推理,它做的是機率的演算,但法律是一種規範性的判斷,所有判斷必須奠基在法律條文的認識與解釋上,給予受審對象合理的判決理由。

這讓我好奇:如果未來廣泛應用 AI 執法,法律或受法律規範的民眾會怎麼轉變?

-----廣告,請繼續往下閱讀-----

至於真正開始研究「法律人工智慧系統」(ALI)是受到我父親的啟發。有一陣子我經常開車南北往返,有一天我跟父親聊到用區間測速執法的議題。交通部曾在萬里隧道使用區間測速,計算你在隧道裡的平均速率,如果超速就開罰。

父親就問我:「政府有什麼理由用區間測速罰我?如果要開罰就必須解釋是哪一個時間點超速。」依照一般的數學邏輯,你一定有在某個時間點超速,所以平均起來的速率才會超過速限,可是法律判斷涉及規範性,我們必須思考背後的正當性課題,不能只用邏輯解釋,這啟發我逐漸把問題勾勒出來,試圖分析執法背後的規範性意涵。

問

如果將執行法律任務的權限賦予 AI,可能暗藏什麼風險?

我們先來談人類和 AI 在做判斷時的差別。人類無時無刻都在做判斷,判斷的過程通常會先做「區分」,例如在你面前有 A 和 B 兩個選項,在做判斷前必須先把 A 和 B 區分開來,讓選項有「可區別性」。

在資料龐大的情況下,AI 的優勢在於能協助人類快速做好區分,可是做判斷還需經歷一段 AI 難以觸及的複雜過程。人類在成長過程中會發展出一套顧及社會與文化認知的世界觀,做判斷時通常會將要區分的選項放進這個世界觀中,最終做出符合社會或自身考量的抉擇。

-----廣告,請繼續往下閱讀-----

當我們將判斷程序交由 AI 執行,就會涉及「判斷權限移轉」的問題,這經常在日常生活中發生,你只要發現原本自己可以執行的事情,有另外一個對象做的比你好或差不多好,你就會漸漸把判斷的工作交給它,久而久之,你大概會覺得這是很好的做法,因為可以節省大量時間。

自駕車導航系統就是判斷權限移轉的例子,由於導航通常可以找出最佳行車路線,駕駛人幾乎會跟著走,但仍有可能誤入路況不佳或無法通行的地方。
圖|Vladimir Srajber, Pexels

我擔心這種判斷權限移轉會快速且廣泛的發生,因為 AI 的工作效率極高,可以大幅節省人力成本,但是哪一些權限可以放給 AI?哪一些權限人類一定要守住?我們經常沒有充足的討論,等到發生問題再亡羊補牢可能為時已晚。

以讓道給救護車而闖紅燈的情境為例,如果讓 AI 來做交管,可以節省警察人力,又可以快速精準地開罰,卻迫使民眾需額外花時間,證明闖紅燈有正當理由。如果是真人警察來判斷,警察通常會認為你的行為有正當理由而不開罰。這對於受法律規範的民眾來說,會產生兩種全然不同的規範作用。

AI 產生的規範作用會讓民眾擔心事後銷單的麻煩程序,如果無法順利解決,可能會訴諸民意代表或上爆料公社,並漸漸改變民眾對守法的態度。而真人警察產生的規範作用,將使民眾自主展現對法律的高度重視,雖然當下的行為牴觸法律,卻是行為人經過多方權衡後做的判斷,相信法律會支持自己出於同理心的行為。

-----廣告,請繼續往下閱讀-----

問

使用 AI 執法除了看上它的高效率,也是因為和真人相比 AI 不會受私情影響,比較可以做出公正的判斷。如果從法治觀念來看,為何決策權不能全權交由 AI 執行?

我認為法治的核心價值在臺灣並沒有很好的發展,我們常想的是怎麼用處罰促成民眾守法,長久下來可能會得到反效果。當人們養成凡事規避處罰的習慣,一旦哪天不再受法律約束,可能會失去守法的動機。

事實上,法治最根深柢固的價值為:

法律作為一種人類行為規範的展現,促使民眾守法的方式有很多種,關鍵在於尊重人的道德自主性,並向民眾陳述判決理由。

給理由非常重要,可以讓民眾不斷透過理由來跟自己和法律體系溝通。如此也可以形成一種互惠關係,使民眾相信,國家公權力能用適當的理由來制定法律,而制定出的法律是以尊重公民自主性為主。當民眾理解法律對我所處的社會有利,會比較願意自動產生守法的動機。

AI 執法看似比人類「公正無私」,但它的執法方式以處罰為主、缺乏理由陳述,也沒有對具體情境的「敏感性」。人跟人之間的互動經常需要敏感性,這樣才能理解他人到底在想什麼。這種敏感性是要鍛鍊的,真人警察可在執法過程中,透過拿捏不同情境的處理方式來累積經驗。

-----廣告,請繼續往下閱讀-----

例如在交通尖峰時段應該以維持交通順暢為原則,這時警察是否具備判斷的敏感性就很重要,例如看到輕微的違規不一定要大動作開罰,可以吹個警笛給駕駛警示一下就好。

我越來越覺得人類這種互動上的敏感性很重要,我們會在跟他人相處的過程中思考:跟我溝通的對象是什麼樣的人?我在他心中是什麼模樣?然後慢慢微調表現方式,這是人類和 AI 最根本的不同。

行動者受各種法律變項影響的因果圖。上圖是由真人警察執法,對於處罰之可能性有影響力,可依不同情境判斷是否開罰。下圖是由全自動法律人工智慧執法,由 AI 直接將處罰之可能性加諸在行動者身上,缺乏真人警察二次確認,很可能影響行動者對守法與否的衡量。
圖|之有物(資料來源|陳弘儒)

問

相較於法律人工智慧,ChatGPT 等生成式 AI 強大的語言功能似乎更接近理想中的 AI,其發展可能對我們產生哪些影響?

我認為會有更複雜的影響。ChatGPT 是基於大型語言模型的聊天機器人,使用大量自然語言文本進行深度學習,在文本生成、問答對話等任務上都有很好的表現。因此,在與 ChatGPT 互動的過程中,我們容易產生一種錯覺,覺得螢幕後好像有一名很有耐心的真人在跟你對話。

事實上,對於生成式 AI 來說,人類只是刺激它運作的外在環境,人機之間的互動並沒有想像中的對等。

仔細回想一下整個互動過程,每當外在環境(人類)給 ChatGPT 下指令,系統才會開始運作並生成內容,如果我們不滿意,可以再調整指令,系統又會生成更多成果,這跟平常的人際互動方式不太一樣。

-----廣告,請繼續往下閱讀-----
ChatGPT 能讓使用者分辨不出訊息來自 AI 或真人,但事實上 AI 只是接受外在環境(人類)刺激,依指令生成最佳內容,並以獲得正向回饋、提升準確率為目標。
圖|iStock

資工人員可能會用這個理由說明,生成式 AI 只是一種工具,透過學習大量資料的模式和結構,從而生成與原始資料有相似特徵的新資料。

上述想法可能會降低人們對「資料」(Data)的敏感性。由於在做 AI 訓練、測試與調整的過程中,都必須餵給 AI 大量資料,如果不知道資料的生產過程和內部結構,後續可能會產生爭議。

另一個關於資料的疑慮是,生成式 AI 的研發與使用涉及很多權力不對等問題。例如現在主流的人工智慧系統都是由私人公司推出,並往商業或使用者付費的方向發展,代表許多資料都掌握在這些私人公司手中。

資料有一種特性,它可以萃取出「資訊」(Information),誰有管道可以從一大群資料中分析出有價值的資訊,誰就有權力影響資源分配。換句話說,多數人透過輸入資料換取生成式 AI 的服務,可是從資料萃取出的資訊可能在我們不知情的狀況下對我們造成影響。

問

面對勢不可擋的生成式 AI 浪潮,人文社會學者可以做些什麼?

國外對於 AI 的運用開始提出很多法律規範,雖然國外關於價值課題的討論比臺灣多,但並不代表那些討論都很細緻深入,因為目前人類跟 AI 的相遇還沒有很久,大家還在探索哪些議題應該被提出,或賦予這些議題重新認識的架構。

這當中有一個重要課題值得思考:

我們需不需要訓練 AI 學會人類的價值判斷?

我認為訓練 AI 理解人類的價值判斷很可能是未來趨勢,因為 AI 的發展會朝人機互動模式邁進,唯有讓 AI 逐漸理解人類的價值為何,以及人類價值在 AI 運作中的局限,我們才有辦法呈現 AI 所涉及的價值課題。

當前的討論多數還停留在把 AI 當成一項技術,我認為這種觀點將來會出問題,強大的技術如果沒有明確的價值目標,是一件非常危險的事情。實際上,AI 的發展必定有很多價值課題涉入其中,或者在設計上有一些價值導向會隱而不顯,這將影響 AI 的運作與輸出成果。

思考怎麼讓 AI 理解人類價值判斷的同時,也等於在問我們人類:對我們來說哪一些價值是重要的?而這些重要價值的基本內容與歧異為何?

我目前的研究有幾個方向,一個是研究法律推理的計算機模型(Computational models of legal reasoning);另一個是從規範性的層面去探討,怎麼把價值理論、政治道德(Political morality)、政治哲學等想法跟科技界交流。未來也會透過新的視野省視公民不服從議題。

這將有助科技界得知,有很多價值課題需要事先想清楚,影響將擴及工程師怎麼設計人工智慧系統?設計過程面臨哪些局限?哪些局限不應該碰,或怎麼把某些局限展現出來?我覺得這些認識都非常重要!

鐵面無私的 ALI ?人類與人工智慧執法最大的分野是什麼?

陳弘儒的研究室有許多公仔,包括多尊金斯伯格(Ginsburg)公仔,她是美國首位猶太裔女性大法官,畢生為女權進步與性別平權奮鬥。
圖|之有物

陳弘儒是臺灣少數以法哲學理論研究法律人工智慧系統(ALI)的學者,他結合各種現實情境,與我們談論 ALI、生成式 AI 與當代法治價值的緊張關係。

由於 ALI 擅長的資料分類與演算,與人類判斷過程中涉及的世界觀與敏感性思辨,有著根本上的差異;以處罰為主、缺乏理由陳述的判斷方式,也容易影響民眾對公權力的信任。因此陳弘儒認為,目前 ALI 應該以「輔助人類執法」為發展目標,讓人類保有最終的判斷權限

至於現正快速發展的生成式 AI ,根據陳弘儒的觀察,目前仍有待各方專家探索其中的價值課題,包括資料提供與使用的權力不對等、哪些人類價值在訓練 AI 的過程中值得關注等。

在過去多是由人文社會學者提出警告,現在連 AI 領域的權威專家也簽署公開信並呼籲:AI 具有與人類競爭的智慧,這可能給社會和人類帶來巨大風險,應該以相應的關注和資源進行規劃和管理

在訪談過程中,有一件令人印象深刻的小插曲,陳弘儒希望我們不要稱呼他「老師」,因為他從小就畏懼老師、警察等有權威身分的人,希望以更平等的方式進行對話。

假如今天以 AI 進行採訪,整個談話過程或許能不受倫理輩分影響,但這也讓我們意識到,在 AI 的世界裡,許多人際互動特有的敏感性、同理反思都可能不復存在。

陳弘儒的研究讓我們體會,AI 在法治領域的應用不僅是法律問題,背後更包含深刻的哲學、道德與權力課題,也讓我們更了解法治的核心價值:

法律要做的不只是規範人們的行為,而是透過理由陳述與溝通展現對每個人道德自主性的尊重。

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3654 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
0

文字

分享

0
2
0
標示餐點熱量就能幫助人減肥嗎?消費者知道越多資訊越好嗎?——《經濟學家眼中的世界》
今周刊出版
・2023/06/18 ・1538字 ・閱讀時間約 3 分鐘

市場的公開資訊,真的能幫助消費者做出好決定嗎?

經濟學通常假設消費者主權可以使個人福利最大化:消費者會權衡各種機會,並選擇能夠最大化自己效用的選項

但市場提供的資訊,是否足夠讓消費者最大化自己的福祉?消費者是否會臨時改變心意,喜歡上別的商品?消費者是否渴望擁有一些與當前選項不同的商品?餐點標示熱量有助減肥?

許多經濟學家覺得,企業藉由巧妙的廣告誘使消費者做出不明智的選擇;還有些經濟學家認為,消費者的確做出不明智的選擇,但過失應該算在他們自己頭上。本章稍後將討論這些行為經濟學家的論述。

多數經濟學家猛然意識到,現行市場其實並不缺乏資訊,公開且良好的資訊量非常大。許多製造商努力宣傳自家商品,甚至提供與其他廠牌的優劣比較及相對的價格訊息;聲譽良好的廠牌和在乎名聲的百貨業者,也間接提供優良品質商品的相關線索。這些都是市場行之有年的公開資訊。

在資訊爆炸的時代,只要上網就可以查到各種資訊。 圖/envato

數位革命使資訊量瞬間膨脹數倍。有了網路搜尋功能之後,人們不用走進商店就可以獲得充足的商品訊息。譬如我最近在尋找合適的行李箱,幾個購物網站提供了關於尺寸與重量的資訊、羅列產品的優缺點,還有先前買家對特定型號箱子的評論。

-----廣告,請繼續往下閱讀-----

如果在Google搜尋中輸入「行李箱評價」,一下子就會跳出《消費者報告》(Consumer Reports)、《漫旅》(Travel + Leisure)、《好管家》(Good Housekeeping)、《今日美國》(USA Today)、《商業內幕》(Business Insider)、家電網(Wirecutter)、集點網(Upgraded Points)等提供的資訊。

資訊越多越詳細,真的越好嗎?

儘管可靠的資訊來源比比皆是,消費者仍舊無法窮盡所有資訊。經濟學家認為消費者的確「不應該追求完全的知情」,因為搜尋資訊與消費資訊都需要投入時間和金錢。

因此,對擁有部分資訊的消費者而言,只有未知資訊的預期價值超過獲取資訊的成本時,才值得追求更多資訊。另一方面,即使市場的競爭壓力迫使廠商提供大量的商品資訊,還是依然沒有揭露許多重要、與安全相關的訊息。

舉例來說,曾有廣告商建議布朗威廉森菸草公司(Brown and Williamson Tobacco Corporation)在宣傳旗下新商品時,強調新配方能降低引發心臟疾病的有害氣體,然而這項建議並未被接納。

-----廣告,請繼續往下閱讀-----

一份內部文件顯示,該公司高層認為:「在特定有害氣體對心臟疾病的影響獲得政府證實且廣為人知之前,貿然在廣告中提及這種氣體並不具有策略性價值。」

現在商品上,通常會標示各種產品資訊。 圖/envato

由於廣告商極其堅持,該建議最終遭到菸草公司斷然拒絕。該公司認為,提及這些氣體只會適得其反,因為這麼做,反倒公開揭露吸菸對心血管的不良影響。

當市場競爭機制無法為消費者提供重要的資訊時,政府的干預才具有價值。政府公開揭露與吸菸相關的資訊,確實能降低一部分的吸菸率,也會促使廠商降低香菸中的焦油和尼古丁含量。企業有時也沒有測試自家產品的動機,因為他們發現:消費者不認為廠商的內部測試具有公信力。

——本文摘自《經濟學家眼中的世界 (40周年好評增修版):一本讀懂經濟學的優劣與局限,剖析政府、市場和公共政策,探索人類的幸福》,2023 年 5 月,今周刊出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----