Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

「撿屍」護生態做研究:路殺社公民科學八年成就解鎖

研之有物│中央研究院_96
・2019/10/17 ・4416字 ・閱讀時間約 9 分鐘 ・SR值 515 ・六年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|歐宇甜、美術編輯|林洵安

路殺社做什麼?

近兩年,因為多起石虎路殺新聞,「路殺」這個名詞躍入公眾視野。但早在 2011 年 8 月,臉書社團路殺社的社員們已在台灣每個縣市,每天默默拍攝、收集不同路段的路殺動物遺體,上傳網站建立路殺資料庫,希望能改善路殺現象,避免更多輪下亡魂。

如果發現路上有意外被車輾死的動物屍體,通常大家會覺得很可怕、不敢正視,避之唯恐不及。但成立八年的路殺社,專門拍照記錄血淋淋的路殺畫面,甚至幫動物「收屍」……。他們為什麼會想成立這種古怪的社團?特有生物研究保育中心的助理研究員、路殺社社長林德恩直呼:「完全是個意外!」

2008 年特生中心開設各類調查志工培訓班,請志工幫忙調查全台物種資訊。但是活的動物很難找,死的動物比較容易觀察,林德恩靈機一動:培訓一批志工調查路殺蛇類資料。

2009 年臉書進入台灣,為了方便聯絡,他跟十幾個志工在臉書成立社團,隨手上傳一張死蛇照片,沒想到隔天一開網路,迎面而來一堆動物「遺照」:大家紛紛將手上壓箱寶的路殺照片上傳,社團意外爆紅。於是他決定擴大規模,成立全世界第一個透過社群網站收集路死動物資料的社團,並參考路透社,命名為「路殺社」。

-----廣告,請繼續往下閱讀-----

但臉書不是儲存資料的好所在。所幸,林德恩找到中研院資訊科學研究所莊庭瑞副研究員合作,建立網站「台灣動物路死觀察網」,終於可妥善儲存海量高解析度照片。目前網站上會員已達一萬六千名,每年可蒐集上萬筆動物路殺資料,用來分析路殺熱點、好發季節、受威脅物種,以改善道路設計,減少路殺情形。

路殺社的願景有四,以改善路死為首要目標,藉由蒐集大量路殺動物資料,改善道路設計或增加生態廊道等設施,以減少路殺情況,再擴及到環境教育、珍愛生命以及全民科學等願景。資料來源│台灣動物路死觀察網圖說重製│林洵安

熱心路殺社員半夜去撿屍

除了拍照、記錄路殺資料,有人建議林德恩:石虎、麝香貓或穿山甲等稀有物種,如果被車壓死卻棄置路旁太可惜,能不能幫忙處理?

林德恩請特生中心的同事張仕緯副研究員幫忙接手,整理成標本。「本來擔心會不會收到一堆老鼠屍體?但發覺大家蠻有概念的,都是寄來稀有或保育類動物,才開始正式『收屍』。」林德恩說。現在許多人只要看到路殺動物,馬上就會聯想到路殺社。

林德恩辦公室前方一整排的大冰箱,儲藏著台灣各地熱心民眾寄來的路殺動物屍體,成為重要的科研與防疫的資源。攝影│林洵安

民眾的熱心常常讓林德恩動容。某次,有人發現有動物死在路上,透過朋友輾轉告知林德恩時已半夜十二點,林德恩在社團問:誰在附近能幫忙撿呢?他本來認為沒人有空,明早應該會被清潔隊清掉吧。

-----廣告,請繼續往下閱讀-----

結果有社員說自己在附近,可以去看看。一小時後,他卻傳訊息說找不到,林德恩開始問起細節,才知道他住的地方遠在三十公里外,騎車過去都半夜一點多了,後來經一番波折,終於在某條巷子找到。

林德恩說:「熱心社員有時半夜會幫忙開車或騎車去撿屍,讓我覺得蠻感動,但也很擔心,總要一再叮嚀他們注意安全,畢竟人命最重要。」

只是有的人沒留意寄送原則,應該低溫宅配,卻用「常溫」寄來,下場很精采……有的人則會幽默一下,在包裹名稱寫當歸鴨、人參雞、羊肉爐或帝王蟹,「害其他單位誤會我們一天到晚在團購。 」林德恩哭笑不得的說。

資料來源│台灣動物路死觀察網圖說重製 │林洵安

製作路殺動物標本

路殺社收到寄來的屍體後會怎麼處理呢?通常哺乳類會先交給特生中心張仕緯研究員鑑定種類並製作標本。

-----廣告,請繼續往下閱讀-----

「哺乳類動物屍體如果仍新鮮、未變質,只被壓過一次、有幾道裂痕,可以去除內臟、保留毛皮,製成乾式標本。」張仕緯表示。但夏天溫度高,腐壞速度快,過四小時後肚子膨脹、掉毛,變不新鮮,就無法保存毛皮。這時他就會留下骨骼、牙齒,牙齒可用來鑑定動物年紀,得知族群結構是年輕或年老居多,對於珍稀動物分布研究很有參考價值。

有一次,他收到路殺社寄來珍貴的麝香貓屍體。台灣的麝香貓族群曾經廣泛分布於全台的低海拔山區和平地,棲地和石虎有高度重疊。由於台灣低海拔地區已被過度開發,麝香貓棲息地喪失的緣故,目前除北部山區族群較為穩定外,南部已極為罕見。

路殺社社員卻在台南市區的平地撿到屍體,推測可能有人飼養或附近有最後一塊棲地,因為遭開發而逃離。張仕緯收到後,發現麝香貓的頭部被壓扁,但皮毛仍新鮮,最後製成一隻很漂亮的標本,成為珍貴的研究資料。

珍貴的麝香貓標本,也是來自路殺社成員的貢獻,成為重要的科研資料。攝影│林洵安

狂犬病防治立大功

除了製成標本外,動物屍體還有 許多用途。過去研究人員想取得野生動物必須出野外,可能花十幾天才抓到一、兩隻。林德恩說:「現在我收到屍體會四處轉手,有時要拆解成羽毛、肌肉、腸道等部位,因為各有不同單位或老師想拿去研究,非常搶手!」

-----廣告,請繼續往下閱讀-----

更意想不到的是,路殺社收集的動物標本在重大防疫上竟也派上用場。 2013 年,台灣相隔 50 年後再次爆發狂犬病疫情,當所有人都在追查,究竟是哪個防疫漏洞讓狂犬病傳入台灣時,已經累積大量鼬獾死亡時空點位置資訊及檢體的路殺社,讓防疫專家得以快速釐清疫情,重要性因此受到大眾矚目。

鼬獾是台灣食肉目動物中數量較多的,是最常見的路殺哺乳類動物。有一陣子社員注意到,很多路上的鼬獾遺體外形完好,並非因為車禍身亡,引起大家熱烈討論:牠們是否出了什麼問題?

路殺社與特生中心的獸醫討論後,將民眾送來的疑似生病鼬獾送驗,沒想到竟驗出狂犬病,於是路殺社整理過去的鼬獾路殺資訊和尚未製成標本的大體給防檢疫局檢驗和分析。這件事讓許多人開始了解與關注路殺社的貢獻,從此知名度大增。

集集特生中心的鼬獾標本。路殺社記錄到大量鼬獾非車禍死亡,意外揭露狂犬病疫情,使路殺社聲名大噪。攝影│林洵安

目前,路殺社更逐步將資料收集範圍,擴展到路死動物 (任何原因死亡的動物,不限車禍造成的路殺),大家只要看到路上、路邊或林間等的死亡動物都可以回報。社員因此又發現一個怪現象:每到特定季節都有大批鳥類死在路上。於是路殺社和防檢局等多個單位合作,檢驗這些鳥類體內是否有農藥?竟然發現加保扶(好年冬)、納乃得等幾種劇毒環境用藥,後來這些藥物就被禁用了。

-----廣告,請繼續往下閱讀-----

改善路殺動起來

回到路殺社成立初衷:收集路死動物資料,以分析路殺熱點,情況又是如何呢?

經過八年累積,路殺設網站截至 2019 年 9 月,已收集到超過十萬筆高解析度的路殺照片與資訊,發展出意想不到的多元化應用。

台灣本來就有少數地方已設置地下通道、圍籬、警告路牌等方法減少路殺,但仍然有很多路殺熱點過去比較不受注意,像是三峽的山區道路,路殺社常主動出擊與許多單位合作協力改善路殺。

在路殺熱點的山區道路建設圍籬,阻擋野生動物誤闖馬路。圖片提供│林德恩
生態廊道可連接遭到馬路切割的野生動物棲息地,提供動物們移動的安全通道,以減少路殺。圖片提供│林德恩

雲林古坑綠色隧道的幾個路段有明顯的陸龜路殺問題,路殺社積極介入協助。其他合作單位還有北橫、東北角、高雄、屏東林管處,花蓮台九線拓寬計畫,也把路殺社資料納入考量。

-----廣告,請繼續往下閱讀-----

有些環評公司接了某個開發案,也會來索取資料,想知道當地是否有保育動物、哪些路段有路殺現象等等。

在路殺熱點設立特定物種的警告牌,提醒駕駛減速慢行。圖片提供│林德恩

今年,路殺社也和汽車語音助理 APP 廠商合作,在全台 118 個路殺動物熱點資料,提醒駕駛放慢車速,減少輪下亡魂。例如:每年在陸蟹產卵季,當駕駛人經過陸蟹會走的某些路段、某段時間,APP 會自動提醒,守護陸蟹生命。

路殺社與汽車語音助理 APP 廠商合作,製作「Omnie CUE 道路資訊即時通」,在車輛進入全台 118 個路殺熱點,提醒駕駛盡早放慢車速,達到減少路殺的目標。圖片來源│GOOGLE PLAY

路殺資料治蛇咬、看暖化

除了減少路殺的工作,林德恩笑著說:

偶爾還有一些不同領域的合作,我連想都沒想過!

疾管署負責配置全臺的抗蛇毒血清,由於價格昂貴、有保存期限,而且製備不易,數量極稀少。但這麼珍貴的抗蛇毒血清到底要準備多少、配置在哪些地方,過去沒有很好的判斷依據,往往都集中在民眾常去的幾間教學醫院。但如果傷患在山野被咬,還要花上幾小時去遙遠的教學醫院就醫,恐怕來不及搶救。

-----廣告,請繼續往下閱讀-----

後來,疾管署發現全臺毒蛇資料最多的單位正是路殺社。過去特生中心花了十六年才記錄到四千多筆資料,但路殺社只花了七年多已記錄兩萬五千多筆!從這些資料可以知道哪些地區有哪些種類的毒蛇,即可將抗毒蛇血清配置在最適當的地方醫院、診所或鄉公所,及時救援傷者。

此外,路殺社累積龐大的資料,也彌補傳統科研的資料缺乏問題,例如:全球暖化。每年出現第一隻路殺動物的日期一直提早,表示天氣變暖、動物提早出來活動,與全球暖化密切相關。他們也觀察到物種的擴散,例如喜歡溫暖環境的夜鷹,以前只出現在雲林以南,隨天氣變暖,漸漸擴散到北部生活。

聲名遠播,國外也來取經!

國外很久以前就開始研究路殺,多半是為了人類安全,在一個小區域像某個國家公園或保護區的路段,探討是什麼樣的道路設計或棲地類型,容易導致路殺、車禍。近二十年,才開始以保育角度探討道路開發、路殺是否會影響動物生態。

路殺社以臉書起家,透過群眾參與大規模收集路殺資料,成為「全民科學」,算是全球首例。以前根本不可能透過大量的人際網絡,收集這麼大範圍、涵蓋整個台灣,時間長達整年。許多國家都好奇路殺社是怎麼運作,林德恩常常受邀演講與合作。

日本、香港和馬來西亞參考路殺社,建立類似的網路社群,但規模較小,仍然只用臉書社團收集資料。印度則將路殺社網站的開放原始碼拿去複製建立一個路殺社,較具規模。

路殺社點起的保育之火,不只造福臺灣動物與人民,目前也陸續傳至世界不同國家綻放光明!

延伸閱讀

本文轉載自中央研究院研之有物,原文為撿屍護生態!路殺社八年成就解鎖,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3654 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
0

文字

分享

0
4
0
露兜樹象鼻蟲的身世之考察——分類學家偵探事件簿(四)
蕭昀_96
・2023/12/25 ・3950字 ・閱讀時間約 8 分鐘

一般大眾或甚至其他領域生物學家們,對於基礎生物分類學家的刻板印象,無非是常常在顯微鏡下進行形態解剖比較來鑑定物種、描述並發表新物種,或者常常東跑西跑去採集標本,頂多是抽取遺傳物質進行 DNA 分析。然而一位稱職的分類學家,為了搞清楚物種學名的分類地位,將整個命名系統修訂成一個穩定並適合大家使用的狀態,往往需要做大量的歷史文獻,造訪各大博物館並進行模式標本考察,其中的繁瑣和複雜程度,往往令人出乎意料。

再讓我們複習一次模式標本是什麼和其重要性?

如果有閱覽過這系列的文章便會很清楚的知道,模式標本是物種發表時的實體存證,是學者對分類地位有疑慮時,用以判別的客觀證據。每個物種都有其模式標本,而每個屬也有其模式物種,是判定該屬別的決定性物種,模式種和模式標本是進行物種與屬別層級的基礎分類研究時,不可或缺的重要資訊。

這個故事的主角是一類來自南亞和東南亞的露兜樹象鼻蟲,本文將講述其模式標本和背後歷史脈絡的考察,以及我們對於分類處理過程的案例分享。

分布於南亞、東南亞的露兜樹象鼻蟲和研究緣起

露兜樹科(Pandanus)為分布於東半球的亞熱帶及熱帶地區的灌木或喬木植物,其中林投(Pandanus tectorius)具有抗風、耐鹽的特性,是常見的海岸防風定砂植物,而俗稱斑蘭葉(pandan)的七葉蘭(Pandanus amaryllifolius),則是東南亞常見的料理與糕點製作材料,而南亞和東南亞的露兜樹上棲息著一群黑色扁平的小型象鼻蟲——露兜樹象鼻蟲(Lyterius)。

-----廣告,請繼續往下閱讀-----
露兜樹是東半球的亞熱帶及熱帶地區的灌木或喬木植物。(攝/B.navez from Wikipedia)
小小扁扁的露兜樹象鼻蟲(Lyterius)是與露兜樹有伴生關係的特別物種。(圖/論文原文)

而故事的緣起可追溯到 2022 年,當時筆者正在澳洲進行博士論文題目「澳洲蘇鐵授粉象鼻蟲的多樣性與演化」的研究,我們意外地發現澳洲的蘇鐵授粉象鼻蟲與東南亞產的露兜樹象鼻蟲親緣關係接近,因此我們便想進一步探究本類群的分類。在我們初步搜索模式標本時,我們驚奇地發現德國象鼻蟲學者延斯・普雷納博士 Dr. Jens Prena 似乎曾經有研究過這類象鼻蟲,出於好奇,我們聯繫了普雷納博士,進而開啟了本類群錯綜複雜的分類歷史考察之旅。

露兜樹象鼻蟲分類研究的現存問題

首先露兜樹象鼻蟲的分類問題分成兩個面向,一個是屬別層級的,而另一個是物種層級的。屬別層級的問題比較簡單,我們發現露兜樹象鼻蟲屬有三個相關的屬別,分別為 Lyterius Schönherr, 1844、Barisoma Motschulsky, 1863 和 Plaxes Pascoe, 1885,根據牠們形態的相似性和地理分布的重疊,我們認為牠們應該被合併成單一屬別,也就是說只要我們確認三個屬別的模式種都是屬於同一個屬別後,那自然我們就能依照優先權原則,把 1863 年發表的 Barisoma 和 1885 年發表的 Plaxes 處理為最早發表的 Lyterius 的同物異名。

但是!分類學研究最困難的就是這個但是!

我們雖然追蹤到 Barisoma Plaxes 的模式種和其模式標本,但是 Lyterius 的模式種問題,卻將這個研究的難度拉向了另一個層面——也就是物種層級的問題。

模式標本來源和流向超級複雜的 Lyterius

Lyterius 這個屬別是由瑞典昆蟲學家卡爾・約翰・舍恩赫爾(Carl Johan Schönherr)於 1844 年所提出,並以 Rhynchaenus musculus Fabricius, 1802,這個 1802 年由丹麥昆蟲學家約翰・克里斯蒂安・法布里丘斯(Johan Christian Fabricius )所發表的種類作為模式物種。他的合作對象瑞典昆蟲學家卡爾・亨利克・博赫曼(Carl Henrik Boheman)也在同一本書中使用了 Lyterius musculus (Fabricius, 1802) 這個學名組合,同時他將德國昆蟲學家弗里德里希・韋伯(Friedrich Weber)在 1802 年所描述的 Curculio abdominalis Weber, 1801 也拉進這個屬別,學名組合變成 Lyterius abdominalis (Weber, 1801) ,並且描述一個菲律賓的新物種 Lyterius instabilis Boheman in Schönherr, 1844 。這其中最為複雜難解的,便是 Lyterius musculus (Fabricius, 1802) 和 Lyterius abdominalis (Weber, 1801) 之間的關係了,因為這兩個物種的模式標本來源,都源自於達戈貝爾特・達爾多夫 Dagobert Karl von Daldorff 這位在俄羅斯出生,擁有德裔血統的丹麥博物學家,在 18 世紀末葉任職丹麥東印度公司時,於 1795 年在蘇門答臘的一次採集。

-----廣告,請繼續往下閱讀-----
除了我們常常聽到的荷蘭、英國東印度公司,丹麥也曾經創立了東印度公司。(攝/Wikipedia)

根據我們對於 19 世紀初期的歐洲甲蟲分類歷史文獻的爬梳,達爾多夫在蘇門答臘的標本被帶回歐洲後,應該至少被他贈與或交換給五位學者或機構,而這五位學者就包含剛剛提到的德國昆蟲學家弗里德里希・韋伯(Friedrich Weber),以及丹麥昆蟲學家約翰・克里斯蒂安・法布里丘斯(Johan Christian Fabricius),這兩位顯然同時對這批標本進行分類學研究。

令人存疑的 Lyterius abdominalisLyterius musculus

因此第一個疑點就是,韋伯和法布里丘斯分別在 1801 年和 1802 年用達爾多夫所採集的同一批蘇門答臘象鼻蟲標本,發表了後來在 1844 年被博赫曼放在同一個屬別的物種 Lyterius abdominalisLyterius musculus,這讓人很難不懷疑,這兩個名字會不會根本就是同一個物種,這在當年資訊不流通、分類研究還很粗淺的年代,是非常容易發生的事情。

而支持這樣想法的關鍵則有二,首先德國昆蟲學家約翰・卡爾・威廉・伊利格(Johann Karl Wilhelm Illiger)其實在 1805 年的著作中,就已經提出這兩個物種是同一個物種的論點了,然而這項分類處理卻被博赫曼在 1844 年的著作中,不明地忽略了。雖然博赫曼不小心遺漏了伊利格的分類處理,他卻也在看過兩種的模式標本後,在他那 1844 年的著作中,提出了兩個物種只不過是同一個物種的雄蟲和雌蟲的猜想,然而因為他手邊就只有兩隻標本,一隻是雄的 Lyterius abdominalis ,一隻是雌的 Lyterius musculus ,因此他無法下這個決定情有可原,而我們如今已經知道露兜樹象鼻蟲有很明顯的雌雄二形性,雄蟲的口喙比較短,且足部的前腳腿節有明顯的突起,博赫曼的猜想不證自明。

總而言之,從上述的歷史文獻爬梳,我們可以從

-----廣告,請繼續往下閱讀-----
  1. 韋伯和法布里丘斯研究的都是同一批蘇門答臘採集的標本
  2. 同時代的伊利格和後來的博赫曼都直接或間接的認為 Lyterius abdominalisLyterius musculus 是同一個物種

來推斷,這兩個種類很有可能是同一個種類!

瑞典昆蟲學家卡爾・亨利克・博赫曼。(攝/Wikipedia)

找不到模式標本啊!

在爬梳大量文獻後,我們同時也造訪歐陸各大標本蒐藏去尋找這些物種的模式標本下落。我們很幸運的在德國基爾的動物學博物館找到兩隻 Lyterius musculus 的總/群模式標本。然而,在尋找 Lyterius abdominalis 模式標本的過程中卻碰了壁,不管是文獻還是實際探訪,幾乎都找不到韋伯收藏的下落,韋伯所發表的模式標本有極大的可能已經遺失了,那要怎麼辦呢?

分類學家的決策

雖然沒辦法找到 Lyterius abdominalis 的模式標本,然而我們從以上的間接證據,可以合理相信 Lyterius abdominalisLyterius musculus 就是同一個物種。為了最適當的處理分類議題,穩定整個分類命名系統。我們使用了一個技術性的分類學處理,首先我們指定了 Lyterius musculus 的選模式標本,並且我們將「這一個」標本,再次的指定為 Lyterius abdominalis 的新模式標本,這個時候,這兩個學名便產生了動物命名法規上所謂的「客觀同物異名(objective synonym)」關係,相較於分類學家自行主觀認定的同物異名(主觀同物異名 subjective synonym ),客觀同物異名指的是用同一個標本發表不同學名的狀況,這樣這兩個名字無庸置疑的是同物異名關係,只有最早被發表的名字有優先權,因此我們的 Lyterius abdominalis (Weber, 1801) 獲得了優先被使用的地位,也成為露兜樹象鼻蟲屬的模式種。經由這一波操作,我們確立了 Lyterius 的模式和包含的物種,也因此我們終於能進一步處理剛剛提到的 BarisomaPlaxes 的同物異名,最後我們可以大聲的說:露兜樹象鼻蟲屬的學名是 Lyterius Schönherr, 1844 !

番外篇的 Plaxes 模式標本調查

另外一方面,我們在調查 Plaxes 的模式標本時,也發現到其模式種 Plaxes impar Pascoe, 1885 的總/群模式標本散落在英國倫敦自然史博物館、德國柏林自然史博物館、德國德勒斯登森肯堡博物館、義大利熱拿亞自然史博物館、澳洲國立昆蟲館,幾乎涵蓋了半個地球。這些標本可以分為來自婆羅洲砂拉越和蘇門答臘的標本,採自砂拉越的標本無疑是一個獨立的物種,我們也指定砂拉越的總/群模式標本為本種選模式標本。而來自蘇門答臘的標本,無獨有偶地都和 Lyterius abdominalis 是同一個物種,顯然這個物種在蘇門答臘當地是個常見的物種,這又再次加強我們上面提到的,達爾多夫所採集的同一批蘇門答臘象鼻蟲標本應該就只有一種露兜樹象鼻蟲的推測。

-----廣告,請繼續往下閱讀-----

這個研究重新梳理了露兜樹象鼻蟲的分類歷史並考察了歷史文獻和模式標本,最終作出了適宜的分類學處理,為亞洲地區的象鼻蟲研究推進了一步。

  • 本論文日前已經線上刊載於《動物分類群 Zootaxa 》
  • 此文響應 PanSci 「自己的研究自己分享」,以增進眾人對基礎科學研究的了解。
  • Prena, J., Hsiao, Y., Oberprieler, R.G. (2023) New combinations and synonymies in the weevil genus Lyterius Schönherr (Coleoptera, Curculionidae), with a conspectus of historical works on Daldorff’s Sumatran beetles. Zootaxa 5380(1): 26-36. https://doi.org/10.11646/zootaxa.5380.1.2
-----廣告,請繼續往下閱讀-----
蕭昀_96
22 篇文章 ・ 17 位粉絲
澳洲國立大學生物學研究院博士,在澳洲聯邦科學與工業研究組織國立昆蟲標本館完成博士研究,目前是國立臺灣大學生態學與演化生物學研究所博士後研究員,曾任科博館昆蟲學組蒐藏助理。研究興趣為鞘翅目(甲蟲)系統分類學和古昆蟲學,博士研究主題聚焦在澳洲蘇鐵授粉象鼻蟲的系統分類及演化生物學,其餘研究題目包括菊虎科(Cantharidae)、長扁朽木蟲科(Synchroidae)、擬步總科(Tenebrionoidea)等,不時發現命名新物種,研究論文發表散見於國內外學術期刊 。

1

1
1

文字

分享

1
1
1
2020 年公民科學事件簿:#長新冠(#Long Covid)
A.H._96
・2023/10/20 ・5564字 ・閱讀時間約 11 分鐘

通過患者主導的研究和患者主導的行動主義,
患者似乎正在編寫第一本關於長新冠的教科書

(Amali Lokugamage, 2020 而後被世衛總幹事引用1

時空回到 2020 年 5 月下旬,台灣的新冠疫情頭條新聞是國內新冠肺炎疫情趨緩,連續超過一個月沒有本土確診病例,然而全球確診數卻已衝破 500 萬大關 2。那是台灣全民和網路社群每日為 +0 歡欣鼓舞的日子,清零台灣很難想像其他國家在疫情狂飆下的生活樣貌。

全球大部分國家在封城與疫情無法控制的脈絡下,原本防疫科學辭典裡沒有的名詞,在 2020 年春季歐美英語使用者的網路社群中漸漸流傳開來。由於網路社群媒體允許患者在封鎖與身體狀態不佳的限制下,在網路社群中相互尋找和資訊交流,產生共鳴與共識進而發展出一個共通術語,也就是我們現在熟知的「長新冠(Long COVID)」或國內較不熟悉的另一個相似詞「長途運輸者(Long-hauler)/長途運輸的新冠 (long-haul COVID) 3」。

我們現在知道的「長新冠」已不是網路世界中的虛擬事件,而是科學家和國際組織認定的「科學物件 (scientific object)」。世界衛生組織正式定義:新冠後症狀(Post COVID-19 condition ),簡稱長新冠(Long COVID) 是指在初次感染新冠病毒三個月後繼續或出現新症狀,症狀持續至少兩個月,無法用其他診斷來解釋的病症 4。長新冠患者的發病率也從早期研究的 10%,20% 至近期《自然》期刊《科學報告》5 所敘述的 30-60% 。此篇論文主要提出感染新冠兩年後仍對免疫系統造成不良影響,再次令人不僅感嘆新冠的長尾還真是長,不過我們關注的焦點是論文中的這段敘述:

“有趣的是「長新冠」一詞是由倫敦大學考古學家艾爾莎・佩雷戈(Elsa Perego)在推特上推廣來自患者創造的術語而興起的。”

圖一:網路社群廣用的主題標籤來描述或分享長新冠資訊。圖/作者提供

這個來自 2020 年春天「患者創造的術語」, 2021 年 10 月 6 日世衛公布長新冠的正式定義,雖然使用的是「新冠後症狀(post COVID-19 condition)」,但長新冠仍是最通用的術語。在今年(2023)的 7 月 31 日美國衛生與公眾服務部(Health and Human Service, HHS)宣布正式成立「長新冠研究與實務辦公室 (the Office of Long COVID Research and Practice)」,同時也啟動了長新冠的臨床試驗 6。這場網路社群的公眾參與科學論述理念,由下而上的草根運動,進而引起廣泛群眾社會良知並驅動科學家研究,最後促成相關政策組織的成立過程,即是社會學家所稱的「公民科學(citizen science)」7

-----廣告,請繼續往下閱讀-----

那麼我們不禁好奇,這一切是如何開始的?

現在若按照世衛的「長新冠」定義,感染三個月後持續二個月症狀合計至少五個月的病程,那麼文獻上 2020 年 5 月這個時間點,反應了歐美國家初期大規模感染後,累積一定數量患者在確診後「理論上康復」但卻持續有各種症狀困擾的情形。當時各國的衛生當局和醫療機構尚未認識到新冠感染造成長期後遺症的可能性,而世衛最初資訊亦表示新冠輕症感染者的病程平均持續兩周。

佩雷戈在 2020 年 5 月 20 日(英國時間)是目前文獻上記載最早的長新冠推文,後續網路社群媒體陸續出現如圖一所標示與長新冠有關的主題標籤。佩雷戈與其他科學家 2020 年 9 月發表了一封公開信,標題是「為什麼我們需要患者所提出的『長新冠』術語」,說明長新冠一詞強調了當時輕症卻持續超過二周以上的多種後遺症,這個術語有助於認識新冠發病機制本身具有特異性,而術語本身的簡單性和力量則有助於在全球範圍內爭取公平認可,並確保公眾在接觸新冠風險時,瞭解感染的潛在長期影響 8

圖二:2020 年自 5 月起長新冠公民科學形成的過程。圖/作者提供
註:長新冠公民科學的發展並非完全線性的發展,其中多種面相是重疊的。
(點圖放大)

圖二摘要描述 2020 年自 5 月起長新冠公民科學形成的過程,主要依據佩雷戈與英國格拉斯哥大學人文地理學教授菲麗西蒂・卡拉德(Felicity Callard)、英國劍橋、牛津等大學研究學者梅洛迪・特納(Melody Turner)等人記錄這場 2020 年公民科學發展過程的三篇論文 9, 10, 11

以 2020 年自 5 月的第一條推文,推特社群與其他網路媒體(如臉書、 Slack 和 WhatsApp 社群)快速構建,並在此過程中引入了長新冠作為一種社會條件,導致在短短的三個月內被世衛確認長新冠為一種醫療狀況:世衛國際疾病分類(International Classification of Diseases 11th Revision, ICD-11)正式定義長新冠為新冠後症狀,圖二最後以《自然》期刊編輯於該年 10 月發表的公開呼籲做結:「長新冠:讓患者協助定義長新冠症狀」副標題:長新冠症狀的術語以及康復的定義必須納入患者的觀點。

-----廣告,請繼續往下閱讀-----

「從一條相當不起眼的推文(引入了一個新的主題標籤,最初只被『點讚』一次),在短短三個月內轉變為世衛使用的詞」佩雷戈回憶說明, #longcovid 的使用呈指數級增長。一週內從社群媒體轉向印刷媒體,短短一個月醫學期刊從討論、呼籲、科學家開始下定義、到「長新冠」的引號在主流媒體與科學期刊內容消失,直接使用長新冠一詞,三個月後 2020 年 8 月 21 日在世衛新冠技術負責人瑪麗亞・范克爾霍夫 (Maria Van Kerkhove)聯繫英國的長新冠 SOS 組織(LongCovidSOS)了解宣導者要求後,世衛組織總幹事在線上會議與長新冠宣導者討論這一個疾病。

患者症狀故事:新冠不只影響肺部

佩雷戈與卡拉德指出,長新冠患者在網路社群的公民運動中通過與其他經歷長期後遺症患者集體分享而出現,提供了後來科學的新知,其貢獻包括:口頭、書面、視覺敘述、證詞和論點以及宣傳和政策干預,對傳統科學提出了挑戰,例如在大流行初期的新冠公眾資訊傳遞過程中僅限對肺部影響的討論,長新冠網路社群則協助擴大範圍。

2020 年 4 月一篇廣為流傳的推文,而後經由報紙專欄強調這位患者的後遺症「純粹是胃部症狀」而不是肺部系統,其他患者的多重器官後遺症則陸續在各種平台上,各自分享自身的醫學檢查,要求醫療單位進行更深入調查並向傳統研究團體致電等。現在這些「症狀故事」已在許多科學期刊的出版物中得到驗證,換言之,這些患者不僅提供了早期複雜的症狀,更有助於修正新冠損害的範圍,強調了需要關注所有潛在的面相,並提供有關疾病的機制和治療方法的假設。

新冠不只影響肺部,有位患者的後遺症純粹是胃部症狀。
圖/pexels

特納等人 2023 年發表的研究,在論文中提到是特納本人經歷長新冠症狀後與其他研究人員著手展開的。她反思自己的經歷如何影響她的研究,並質疑患者如何以及為何能在各種醫療機構前識別出長新冠,進而質疑傳統實證醫學的過程。他們蒐集整理 3 萬多筆帶有 #longcovid 和 #longhauler 標籤推文,進一步語意分析 974 條推文內容中的關鍵字後歸納指出:推特使用者最初將長新冠描述為一種無情、多器官、致殘的疾病,卻也因當時公眾和醫療機構缺乏認知,這些推特使用者面臨著恥辱和歧視的不公平待遇。但這些長新冠的早期推特使用者,後來被研究記錄為長新冠最初經歷的科學實證者,藉由此次的集體社會運動 (collective social movement)對長新冠患者的醫療保健需求建立共識。

-----廣告,請繼續往下閱讀-----

同時另一個推特標籤 #researchrehabrecognition (#研究康復認知)也引起了世衛總幹事譚德賽的注意,最後承認長新冠問題並力促解決,特納等人解釋,長新冠患者賦予疾病經歷的含義在很大程度上被理解為有價值的知識形式,可以更全面地認識和治療病情及其影響,這些公民知識通過塑造臨床醫生與患者討論診斷的方式來直接影響臨床實踐,提高了就治療方案和任何建議的生活方式改變達成共識的能力。

長新冠公民運動:衛生服務部門的具體回應

佩雷戈與卡拉德提到的另一個網路社群運動也使得英國政府不得不採取具體行動。 2020 年 7 月,患有長新冠的英國南安普敦大學公共衛生教授尼斯林・阿爾萬(Nisreen Alwan)發起了社群媒體活動「#計算長新冠(#CountLongCovid)」,強調迫切需要正確的康復病例定義、收集數據的標準化方法以及大量基於人群的樣本資料,呼籲政府全面收集監測長新冠。

9 月,網友結合「六個月前」脈絡在推特上集合紛紛留下個人長新冠前後的對比故事。現在我們可藉由應用程式 Thread Reader App 將此推文串合併,一窺當時網路社群如何串連長新冠的個人經歷 12。 2020 年底英國國家統計局公布,「長新冠」監測數據,證實了真實患病率可能比以前認為的要高得多、患者症狀持續三個月或更長時間 13

另外針對兒童和青少年的長新冠症狀, 2020 年的 #兒童長新冠(#LongCovidKids)運動亦促成了英國國會跨黨派國會新冠小組(All-Party Parliamentary Group on Coronavirus in the UK)在 2021 年 1 月舉行的兒童長新冠公聽會,今(2023)年 2 月 16 日世衛也公布了兒童和青少年版長新冠的正式定義 14

-----廣告,請繼續往下閱讀-----
世界衛生組織也公布了兒童和青少年版長新冠的正式定義。
圖/unsplash

特納等人綜合歸納 #longcovid 推文標籤的六個主題:

  1. 個人長期恢復
  2. 看不見的疾病,例如考慮最初對長新冠缺乏認識可能是一種孤立和無形的體驗
  3. 意外族群,如參與者對觀察結果表示驚訝和擔憂,許多長新冠患者很年輕而且以前「身體健康」
  4. 通過量化進行驗證,如對疫情統計資料和醫療系統有限投入的憂慮,強調最初兩週的定義的不足,要求通過監測計算患者發病率來了解病情
  5. 支持和研究的需要,如推特使用者擔心由於知識的缺乏,醫療機構可能無法充分提供醫療保健服務或投資長新冠的研究,因此使用 #researchrehabrecognition,最後獲得世衛的重視
  6. 衛生服務部門的認可

如推文中參與者評論醫療機構如何逐漸意識到長新冠與受到官方醫療保健的認同,如當時的美國首席醫療顧問安東尼・福奇以及世衛譚德塞,從而創造了衛生服務部門的具體行動以及為社會和科學新的認識契機。

網路社群媒體的開放性

網路社群在 2020 年經歷了所謂的醫療煤氣燈(medical gaslighting)效應,當他們處於科學對長新冠不確定性的大環境時,經常覺得被敷衍或誤診,就像是 1944 年經典電影《煤氣燈下》(Gaslight)明明房間裡煤氣燈忽明忽暗,但影片中的老公卻堅持一切正常,這些求助無門的人們,經歷許多令人沮喪的醫療保健挫折,藉由網路群眾的長新冠公民運動,將確診後揮之不去的各種後遺症和醫療狀況與具有相同經歷的人們聯繫起來,以尋求資訊、支持和認可,最終獲得了疾病的驗證和社會的支援 15

當他們處於科學對長新冠不確定性的大環境時,經常覺得被敷衍或誤診。
圖/pexels

特納等人分析推特如何促進集體社會運動的形成社會共識,通過社群媒體的公開和開放的系統,推特的社交網絡使得以前互不相干的使用者能夠分享這些情緒、資訊與交換知識,從普通公民、醫生、科學家到世衛總幹事等知名人士。推特與其他社交網站(如臉書和 Slack )使用方法不同,後者的長新冠社群多是封閉群組,限制公開分享;推特則在長新冠的推文中具有「去中心化」的特性:如沒有單一的意見領袖、使用者間訊息自由流動等。

-----廣告,請繼續往下閱讀-----

例如推特使用者廣泛分享了 #research 、 #rehabilitation 和 #recognition 等單獨術語。 最終,使用者將這三個術語合併成 #researchrehabrecognition ,此標籤的演變展示了集體決策的過程,旨在挑戰長新冠患者由最初缺乏醫療認可和醫療保健規定而面臨的公民知識需求和認可狀態。

長新冠患者的知識因民眾直接地發起參與研究自己或社區、社群的環境和健康危害,提高學界醫界對新冠的新認識,知識從患者通過媒體傳播到正規的臨床和衛生政策管道,就像特納等人的分析,長新冠從一種看不見的疾病轉變為一種公認的疾病。

這些網路社群推文積極的行動,達成的集體共識足以令人信服地向包括世衛在內的醫療機構證明,儘管缺乏傳統的實證醫學,但長新冠是一種真實的疾病。一群網路公民在 2020 年集體編寫了第一本關於長新冠的教科書,此刻我們見證了網路社群的群眾力量,不僅促成了現實世界的真實變化,確保對醫療保健供應的認可,也揭開了科學研究的新序幕。

  1. Lokugamage A, Rayner C, Simpson F, Carayon L. We have heard your message about long covid and we will act, says WHO. The BMJ. Published September 3, 2020. ↩︎
  2. Yahoo News:國際新冠肺炎疫情還在燒 全球確診數破 500 萬大關 ↩︎
  3. 目前已知「長途運輸者」在佩雷戈論文中引用來自 2020 年 6 月的推文:「長途運輸新冠戰士」的患者召集人艾咪・沃森(Amy Watson) ,她從她接受測試時戴的卡車司機帽子中衍生出來:https://twitter.com/katemeredithp/status/1277316840453267456 ↩︎
  4. WHO:https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition ↩︎
  5. López-Hernández, Y., Monárrez-Espino, J., López, D.A.G. et al. The plasma metabolome of long COVID patients two years after infection. Sci Rep 13, 12420 (2023) ↩︎
  6. HHS News: https://www.hhs.gov/about/news/2023/07/31/hhs-announces-formation-office-long-covid-research-practice-launch-long-covid-clinical-trials-through-recover-initiative.html ↩︎
  7. 泛科學、左岸文化 (2018/05/17),什麼是公民科學?誰是公民科學家? ↩︎
  8. Perego, Elisa, et al. “Why the patient-made term ‘long covid’ is needed.” Wellcome Open Research 5.224 (2020): 224. ↩︎
  9. Callard, Felicity, and Elisa Perego. “How and why patients made Long Covid.” Social science & medicine 268 (2021): 113426 ↩︎
  10. Perego, Elisa, and Felicity Callard. “Patient-made Long Covid changed COVID-19 (and the production of science, too).” (Feb. 2021) ↩︎
  11. Turner, Melody, et al. “The# longcovid revolution: A reflexive thematic analysis.” Social Science & Medicine (2023): 116130. ↩︎
  12. Thread Reader App#計算長新冠(#CountLongCovid)與“六個月前”結合的網頁: https://threadreaderapp.com/convos/1308678318821199872 ↩︎
  13. 英國獨立報 The Independent (16 December 2020) ,https://www.independent.co.uk/news/health/coronavirus-long-covid-ons-data-b1774821.html ↩︎
  14. WHO:A clinical case definition for post COVID-19 condition in children and adolescents by expert consensus, 16 February 2023 ↩︎
  15. Russell, David, et al. “Support amid uncertainty: Long COVID illness experiences and the role of online communities.” SSM-Qualitative Research in Health 2 (2022): 100177 ↩︎
-----廣告,請繼續往下閱讀-----
所有討論 1