Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

費秒生物造影

peregrine
・2011/03/13 ・601字 ・閱讀時間約 1 分鐘 ・SR值 628 ・十年級
相關標籤: 原子 (24)

-----廣告,請繼續往下閱讀-----

在產生蛋白質及其他生物分子原子解析度的結構上,X-射線結晶技術(X-ray crystallography)是非常成功的。不過,上述成功需仰賴生長出肉眼可見的晶體。

不巧的是,有些分子難以或完全不晶化。10年前,研究人們員預測,來自X-射線雷射(X-ray laser)的費秒脈衝,於時間及強度上,足以在使未晶化之生物分子蒸發前,產生有用的衍射圖案(diffraction pattern)。

(圖援用自原文)

目前,一支由80餘名科學家組成的國際合作團隊,業已利用史丹佛線性加速器中心的直線加速器相干光源自由電子雷射(SLAC`s Linac Coherent Light Source free-electron laser),來進行兩項證明上述雷射能耐概念的論證研究。在一項研究中,此些研究人員將一種奈米結晶懸浮體(也就是光合的蛋白光體系I(the photosynthetic protein photosystem I))噴過1.8-keV的X-射線束,並記錄每次一個結晶體通過此射線束的二維衍射圖案,之後組合15000個單結晶體的圖案,形成了如圖示的3D投影圖。從此些數據,該團隊以近乎原子的8.5埃(Å)解析度重建了該蛋白質的結構。

於第二項研究中,該團隊將直徑0.45微米(μm)、非結晶之擬菌病毒(mimivirus:屬一種DNA病毒)粒子的浮質流(aerosol stream)噴過上述射線束。由於該射線束每一脈衝近乎10的13次方個光子的強度,該合作團隊能將單一病毒粒子的衍射圖案轉換成病毒內部的實際空間投影圖,雖然解析度僅32奈米(nm)。此些研究代表了我們朝使用更強且更短脈衝,而以逐一原子的清晰度來製作分子影片,邁進了一步。

-----廣告,請繼續往下閱讀-----

原文網址:Femtosecond bioimaging

翻譯:peregrine | 本文轉載自PEREGRINE科學點滴

-----廣告,請繼續往下閱讀-----
文章難易度
peregrine
38 篇文章 ・ 0 位粉絲

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
探索自然知識的先行者:古希臘哲學家如何看待萬物的基本組成?——《世界史是由化學寫成的》
圓神出版‧書是活的_96
・2023/05/15 ・1970字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

古希臘哲學家中,不乏能精準測量天體位置的人,還有能運用幾何學知識來丈量土地的人。儘管他們尚未發展出「實驗」這項科學方法,但相對的,他們非常仔細觀察自然界發生的變化,並思考形形色色的問題,成為自然界和社會的知識探索者。

萬物皆由水組成

古希臘最早深入探索「萬物根源」的人是泰利斯(Thales)。他是個生意做很大的貿易商,曾搭船經由地中海,到埃及推銷橄欖油,是個見多識廣的人。

某天,泰利斯開始萌生疑惑:

世界上有數之不盡的萬象事物,都是由物質所構成的,而且物質的變化方式多得令人驚奇。雖說物質會不斷變化,卻並非無中生有,存在的東西也不可能完全消失;由此可知,物質是不生不滅的。無數物質不斷變化,但為什麼大家都是不生不滅的?

古希臘哲學家泰利斯(Thales of Miletus)。圖/wikipedia

泰利斯認為,所有物質必然是由唯一的「本原」所組成的,而他得到的答案就是水:

-----廣告,請繼續往下閱讀-----

水遇冷後凝結成冰,加溫之後就會恢復原狀;溫度繼續升高的水會成為水蒸氣,再冷卻後又會形成水滴。河川、海洋和地表的水,都會變成水蒸氣上升到空中、形成雲朵,雲又會降水成為雨和雪。水能如此千變萬化,不論怎麼變也不會消失殆盡。話說回來,金屬的變化、生物形體的變化,不也都和水一樣嗎?

泰利斯推論,這些物質的型態和外形不論再怎麼變化,也不會完全消失,應該是因為所有物質都是由某個「本原」所組成的——不論構成的是金屬或生物。

後來泰利斯便把構成所有物質的「本原」命名為「水」。

值得注意的是,泰利斯所說的「水」,並不是指現代科學做為研究對象、做為物質的水,而是將變化不歇、變換型態後生成其他物質,並能再度回歸原初型態的萬物本原稱為「水」而已。這種思考的背景,可能來自於他曾到東方旅行,聽聞流傳在美索不達米亞的世界起源傳說、得知其故事中心就是「水」,才深受影響。

泰利斯的「水」,促使眾多學者開始思考萬物的「本原」(元素)為何。有人認為本原是「空氣」,經過壓縮和稀釋,分別形成水、土和火,進一步創造了自然界;也有人認為本原就是「火」,並將自然界比喻為「燃起、消失,無時無刻都在活動的火」。

-----廣告,請繼續往下閱讀-----

微粒組成萬物

對於「萬物根源」是什麼的問題,德謨克利特(Democritus)提出了名為「原子論」的主張。

和泰利斯一樣,德謨克利特曾周遊地中海沿岸,徒步觀察風土、歷史和文化迥異的各個國家裡,有什麼樣的自然環境與人民,並學習各國的學問和技術。他認為,創造萬物的「本原」存在於無數微粒中,而且這一顆顆粒子永遠不會毀滅。他將這些無法再分解得更小的微粒,以希臘語中意指「不可分割之物」「atomos」(原子)來命名。

德謨克利特還思考了另一項觀點,也就是「虛空」(什麼都沒有的空間),若改用現代科學的用語來說,就是「真空」。因為原子會占據空間、四處活動,所以必須要有提供給原子活動的「虛空」。

簡單來說,德謨克利特的原子論就是「萬物是由原子和真空所構成的,除此之外別無其他」。

-----廣告,請繼續往下閱讀-----
古希臘哲學家德謨克利特(Democritus)。圖/wikipedia

德謨克利特認為,無數原子在除了原子以外什麼都沒有的空間裡,激烈且毫不停歇地四處活動,互相撞擊、形成漩渦。有的原子雖然會和其他原子相連成一團,但這團東西總有一天會分解,恢復成原本四散的原子。只要改變原子的排列方式和組合,就能製造出不同種類的物質。萬物是藉由原子的組合而形成,就連火、氣、水、土也不例外。

據說德謨克利特寫了一系列共七十多部鉅著,但沒有一本流傳下來。由於他大膽主張,人類的靈魂也是由輕盈、活潑好動的原子組成,不會遵從神的指示,而是跟隨控制原子運動的自然定律;只要構成人類肉體的原子瓦解分散,人類的靈魂就會消失。也就是說,神並不存在。他因此遭到統治階層指控「試圖抹滅神的存在」,並飽受攻擊,與他有關的書籍全數遭到銷毀。我們之所以能認識德謨克利特的事蹟,主要是由於反對原子論的哲學家們,將他的思想記錄在自己的著作之故。

——本文摘自《世界史是化學寫成的:從玻璃到手機,從肥料到炸藥,保證有趣的化學入門》,2022 年 2 月,究竟出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
圓神出版‧書是活的_96
13 篇文章 ・ 3 位粉絲
書是活的,他走來溫柔地貼近你,他不在意你在背後談論他,也不在意你劈腿好幾本。 這是一種愛吧。 圓神書活網 www.booklife.com.tw

2

2
0

文字

分享

2
2
0
七十多年前轟炸日本的原子彈,直到現在都還影響著臺灣的我們
科學大抖宅_96
・2022/12/15 ・6053字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

1945年,美國分別在日本的廣島和長崎投下原子彈,造成約二十萬人死亡,也終結了第二次世界大戰。當時的臺灣,尚在日本統治之下,自然地,原子彈爆炸(原爆)的犧牲者中,也有在日本本土生活的臺灣人。然而,原子彈對臺灣的影響,並不僅止於此,也不只是促成臺灣統治權的更替而已。在那之後,原子彈的巨大威力,和對人類文明的衝擊,以多樣的形式留存於臺灣社會;直到現在,我們還是可以看見其痕跡。

其一:跨越七十多年的遺物

國立臺灣歷史博物館的收藏品,就記述著因原爆喪生的臺灣人歷史。

1921年生的新竹人蘇百齡,從新竹州立新竹中學校(今國立新竹高級中學)畢業後,前往日本就讀長崎醫科大學附屬藥學專門部,並於1942年繼續就讀長崎醫科大學。

蘇百齡就讀長崎醫科大學附屬藥學專門部時照片(照片來源:國家文化記憶庫
蘇百齡長崎醫科大學入學許可通知(照片來源:國家文化記憶庫

1945年,原本打算隔年學成回臺的蘇百齡,卻在即將畢業前夕,因為長崎原爆而身亡;一位原本大有可為的醫生,生命就這麼永遠停留於24歲。

-----廣告,請繼續往下閱讀-----

當然,蘇百齡不是唯一因原爆犧牲的臺灣人,但要感謝其家族後人細心保存遺物,並將之捐贈,我們才得以一窺當時罹難者的部分生活面貌。

長崎警察署發放之蘇百齡死亡證明書(照片來源:國家文化記憶庫

而在喪失性命的人之外,也有一些臺灣人不但親身經歷原爆,還能對後世講述親眼所見,如出生於高雄美濃的陳新賜醫師(1914~2016),和出身嘉義的王文其醫師(1918~2015)。當時二人均在距離原爆中心僅700公尺的長崎醫科大學附屬醫院服務,雖然也在爆炸中受傷,但奇蹟似地存活下來。這段故事,由李展平撰寫成《長崎原爆:台灣醫生陳新賜.王文其歷險記》,於2012年出版。

原爆後的長崎醫科大學附屬醫院(相片來源:長崎原爆資料館

曾經參選1996年中華民國總統選舉的彭明敏(1923~2022),在長崎原爆當下也正於長崎的長兄家療養:其不久前才因為搭乘的船隻受美軍轟炸,被送往長崎醫科大學附屬醫院治療,並接受截肢手術;陳新賜醫師即為手術醫師之一。

在彭明敏所著《自由的滋味》裡,是這麼描述長崎原爆:

-----廣告,請繼續往下閱讀-----

我在室內看報紙,聽到頭頂飛機嗡嗡之聲。突然間,有炫目的亮光,好像房裡按下巨大的鎂光燈。差不多同時,有金屬性的巨響,彷彿整個地球被一把巨大的鎚子擊中了。房子劇烈地搖動。……有些水泥建築物仍屹立著,但是,裡面所有木料和其他易燃物都在頃刻間化為烏有。

據說在學校教室內,從整齊排列的白灰燼所在可以看出在死亡瞬間正坐在書桌旁的每一個學生。熱度竟有那樣強烈。大部分的醫科學生都罹難,其中包括四位曾經慷慨輸血給我的台灣留學生。他們有用的生命被消滅,我卻仍活著,這真是悲劇的命運。

……不久這座死亡的城市散發出令人不能忍受的臭氣。善後工作,對於當事人是一種異常的考驗。……幾天之內,又有新的恐怖發生。許多生存者忽然開始由口鼻出血,毛髮脫落,不久便死亡了。

無論如何,雖然原爆說不上是臺灣人的集體經歷,但確實為日治時期的部分臺灣家族或個人,帶來難以抹滅的深刻記憶。

臺灣客籍女詩人杜潘芳格(1927~2016)為長崎原爆犧牲者著作哀悼之詩(圖片來源:文化部典藏網

其二:臺灣的原子彈部署

臺灣這塊土地跟原子彈的連結並未因第二次世界大戰的結束而終止。戰後,臺灣統治權被移交給中華民國政府,其於1949年又因為內戰失利撤退到臺灣。自此,中華民國政權和中華人民共和國政權分別位於臺灣海峽兩岸,處於敵對緊張關係。

1958年8月23日,中國人民解放軍開始隔海砲擊金門,引發第二次臺灣海峽危機,史稱八二三砲戰。在短短約一個半月的時間內,金門遭受了數十萬發的砲彈打擊。而中華人民共和國對金門的砲擊行動,斷斷續續了21年,直到1979年中華人民共和國和美國建交為止。

在這樣嚴峻的大環境下,當時仍協防臺灣的美國軍方,從1958年到1962年,於臺南機場部署了配備核彈頭的屠牛士(Matador)地對地巡弋飛彈。此外,從1960年1月到1974年7月,亦於臺南機場布置了可搭載在戰鬥機上的戰術型核彈。

-----廣告,請繼續往下閱讀-----

根據美國於2008年解密的文件,當金門砲戰最慘烈的時候,美國軍方曾考慮在廈門投擲原子彈,以阻止中國人民解放軍的攻勢。雖然這件事沒有成真,但無論如何,在臺灣的核彈部署,讓臺灣和關島、南韓、日本沖繩並列,成為當時西太平洋的核武基地。

1959年,美國空軍第868戰術導彈中隊於臺南空軍基地試射可搭載核彈頭的屠牛士TM-61C飛彈(相片來源:wiki

其三:中華民國的原子彈研發計畫

鑑於原子彈的超凡威力,不少國家均力圖發展相關技術。暨美國之後,蘇聯於1949年首度成功試爆原子彈,英國和法國也相繼研發成功。中華人民共和國同樣是野心勃勃,並於1964年在新疆測試了第一顆原子彈。毛澤東曾表示:「不但要有更多的飛機和大炮,而且還要有原子彈。在今天的世界上,我們要不受人家欺負,就不能沒有這個東西。」

至於臺灣的中華民國政府, 自然也明白核武的重要性。1963年,當時的蔣介石總統,和以色列核武計畫之父伯格曼(Ernst David Bergmann)私下會面,表達研發核武的決心。在伯格曼的支持與建議下,1968年「新竹計畫」啟動,以清華大學為中心,重點工作項目在培養人才,並建立研發原子彈所需的相關硬體設施。只不過,包括當時國家科學委員會主委吳大猷,以及曾參與美國曼哈頓計畫的女性核物理學家吳健雄,都對臺灣發展核武表達反對意見。在各方壓力之下,蔣介石最後不得不將新竹計畫束之高閣。

1950年代末期至1960年代初期,蔣介石以茶會款待海外回國學人,右四即為吳健雄(照片來源:國家文化記憶庫

然而,臺灣的核武研發並未因此中止。蔣介石政府在吸取新竹計畫的教訓之後,規劃了以和平研究用途做包裝的「桃園計畫」。1969年,中山科學研究院正式成立,原子能委員會則與加拿大簽約,在桃園龍潭的中科院核能研究所興建重水式核子反應爐,稱為台灣研究用反應器(Taiwan Research Reactor,簡稱TRR)。

-----廣告,請繼續往下閱讀-----

在鈾元素中,約有99.264%都是屬於鈾-238,而核能發電常用到的鈾-235只佔了0.72%。提煉出來的鈾元素,必須先經過處理,將鈾-235的濃度提升到3%~5%,才能在商業核能發電使用。如果要製造原子彈,則必須將鈾-235的濃度提高到90%以上。因為事涉敏感,鈾濃縮相關技術與活動都受到監管,非核武國家若要靠自行研發,獲得武器級的高濃縮鈾相當不容易。

基於上述原因,製造核武的替代方案,是利用以低濃縮鈾當燃料的重水反應爐;在其中,鈾-238會吸收鈾-235分裂後產出的中子,成為鈾-239,然後再衰變成鈽-239,而鈽-239也能拿來製作原子彈。這樣的方式,在技術門檻和成本上,比製造高濃縮鈾要低得多。

原子彈「胖子」在長崎市上空503公尺爆炸後所造成的蘑菇雲。該原子彈即為使用鈽-239製作。(照片來源:wiki

在1975年蔣介石去世後,桃園計畫雖仍持續進行,但此時美國抱持聯中制俄戰略,已與中華人民共和國洽談建交多年,以中華民國制衡中華人民共和國的想法也慢慢轉變,反對臺灣發展核武的態度益發明顯。在美國壓力下,臺灣的原子彈研發計畫在繼任的蔣經國總統支持下,轉以更機密的方式運作。

1973年中央社報導。已經可見美國和中華人民共和國的關係正常化正進行中。(圖片來源:國史館檔案史料文物查詢系統

到了1988年,臺灣的核武計畫已經接近成功邊緣,預估再要不了多久即可製造出原子彈。只不過,時任中科院核能研究所副所長的張憲義早已被中情局吸收,臺灣的核武發展進度一切都在美國掌握之中。1月9日,張憲義使用假護照投奔美國,對整個計畫帶來毀滅性打擊,而生命已到末期的蔣經國,也在數天後去世。沒過幾天,美國和國際原子能總署的官員,直接帶領水泥攪拌車進入中科院,將重水式核子反應爐封存,再用水泥灌入重要設施和實驗室,以確保臺灣再也無法重啟爐灶。另一方面,新上任的李登輝總統也不支持相關研究。臺灣的核武研發,戛然而止。

-----廣告,請繼續往下閱讀-----

至於張憲義,儘管一度被通緝,但至2000年已期滿撤銷。他的行為,究竟是讓臺灣少了重要的戰略武器,還是避免了潛在的核戰呢?是功是過,只能留給後人評價。

其四:桃園的輻射外洩事件

在台灣的核武研究中斷後,核能研究所內放置的核燃料棒也被要求運回美國。然而,燃料棒護套因年久劣化,導致水氣進入並與燃料棒作用,產生氫氣。於是,從 1988 年到 1991 年間,當所內人員嘗試把燃料棒從乾式貯存槽取出時,曾多次引起氫氣爆炸,最後一次更發生火災。

遺憾的是,事件發生當下,並沒有什麼人多加留意輻射外洩的可能。要等到 1992 年,核研所從事例行偵測時,才發現事態嚴重,不但核研所排水口附近的泥土,放射性強度大幅超標,下游的土地也受到污染。這起事件是在 6 月 25 日提報原能會,所以被定名為「核研所六二五輻射汙染事件」。

因為氫氣爆炸而污染了乾式貯存場的放射性物質,據推測,很可能就是在工作人員沖水清理以及滅火的過程中,隨著水流進入集水池,再經由排水口被釋放到環境之中,也就是鄰近的大漢溪和下游的國有地。

-----廣告,請繼續往下閱讀-----

事後,國有財產局將2.3公頃的污染區用圍籬圍住,依原能會規定將土地挖除2公尺,再覆蓋新土。在1997年清理完畢後,當地輻射已恢復到正常範圍。而挖除的一萬四千立方公尺污染土壤,則跟一萬多桶低階核廢料,和破損的數十支高階核廢料等等,一同放置於核研所。

這起臺灣有史以來最嚴重的輻射外洩事件,至今已30年,造成了多大影響難以切實評估,卻是臺灣與原子彈的連結中,無法迴避的一段過往,也是對妥善管理核廢料的安全性提醒。

其五:原子與我們同在

原子彈不只威力驚人,其對社會文化的衝擊亦不在話下。因為原子彈在第二次世界大戰中的運用,許多人才首度聽到「原子」這個詞彙。一時之間,原子一詞蔚為風尚,成了時髦的代表、新科技的代稱;許多新發明、新事物,便這麼被冠上「原子」二字,類似現代一堆有著「量子」稱號,但其實跟量子力學沾不上邊的商品。

出生於台北艋舺的著名女畫家謝招治(1929~2014),創作過一幅名為《原子燙》的畫作。她曾表示:

-----廣告,請繼續往下閱讀-----

「以前婦女燙頭髮是用電來燙,後來臺灣光復後才用化學藥劑來燙頭髮,大家也不知道該叫什麼燙,就叫它原子燙吧!『原子』這兩個字是由日本廣島遭美國的原子彈轟炸後第一次聽到的新名詞,在當時是很時髦的形容詞,還有現在的絲襪以前也叫原子襪呢。」

謝招治《原子燙》,直幅、水彩畫,繪於1997年10月29日。(圖片來源:國家文化記憶庫

而謝招治對自己的另一幅作品《補襪》,是這麼解說的:

「玻璃絲襪在光復後才出現,是大家之前都沒見過的新玩意兒,當時常常把沒看過的東西全都加一個「原子」來叫它,所以就叫它『原子絲襪』了。這一種襪子是由船員走私進口,或有親友從國外偷偷帶回來才有的。

我的姑姑出國二十幾年,第一次由日本回臺探親的時候,雙腳套了十幾雙玻璃絲襪,回來送給親友的,我看她一雙雙的脫下來送給我們的時候,覺得很感動,又好笑。在市面上原子襪有人賣,但是價錢很貴,它是新的產品,品質很差,大家穿破了捨不得丟,就拿去給補絲襪的補一補再拿來穿的。」

謝招治《補襪》,直幅、水彩畫,繪於2005年7月(圖片來源:國家文化記憶庫

除了原子燙、原子襪這兩個現在已不怎麼使用的名詞之外,我們常會用到的「原子筆」,其名稱來由的說法之一,就是廠商把原子筆引進香港時,因為尚無中文名稱,故使用「原子」這樣有高科技意象的名詞稱之。雖然原子筆跟原子彈並沒有任何關係,但無論如何,「原子筆」從此成為臺灣人廣泛運用的詞彙,流傳至今。

總結

自1945年原子彈出現在戰場之後,其巨大的威力撼動了全世界,也震懾了人心。從此,原子彈就跟全球政經局勢和個別國家的發展野心脫離不了關係。儘管當年轟炸日本的原子彈和台灣這塊土地並沒有直接關連,但其影響力仍以各樣的方式,留存在臺灣、或臺灣人的歷史和文化裡。不論我們如何看待它,正面或負面,這些連結與時代的記憶都將不會消逝。

-----廣告,請繼續往下閱讀-----
所有討論 2
科學大抖宅_96
36 篇文章 ・ 1865 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/