0

0
0

文字

分享

0
0
0

還在討論保育與開發的平衡?雨林保護方案還包括了改善貧窮與經濟永續發展

活躍星系核_96
・2019/09/05 ・6797字 ・閱讀時間約 14 分鐘 ・SR值 564 ・九年級

  • 文/胖胖樹 王瑞閔

很謝謝大家對〈燃燒中的熱帶雨林〉這篇文章的支持與肯定。文章貼出後,陸續有幾位朋友跟讀者提出了新的問題,主要是關於經濟發展與雨林保育之間是否能達成平衡。

編按:對於近日發燒的熱帶雨林議題很感興趣,可見〈燃燒的雨林,炎上的議題:關於亞馬遜的幾個問題與答案

難道只許先進國家發展經濟,擁有熱帶雨林的國家就只能保護雨林與自然生態,不能開發,不能有經濟發展?這是對雨林保護天大的誤解!科學家設計的雨林保護方案,還包含了改善貧窮以及開發中國家的經濟永續發展

各國對待雨林的態度一致嗎?

以巴西為中心,雨林議題引起全世界關注,然而,巴西總統的發言就等同於所有雨林國家的態度嗎?圖/Pixabay

回顧 2015 年,當時法國巴黎所舉辦的第 21 次氣候變化綱要公約締約國會議 (COP21) 所簽訂的《巴黎協定》 (Paris Agreement) ,除了眾所關心的溫室氣體減量新目標與策略,我特別注意到協定第五條:「締約方應致力於森林保育與碳匯功能,並應提供獎勵誘因 (result-base payment) 。此外,重申森林保育中非碳效益 (non-carbonbenefit) 的重要性。」

條文的意思是,希望藉由提供資金的方式,減少開發而導致的毀林;並強調森林生態系的重要性,除了減緩溫室氣體排放,當然也包含生物多樣性等其他資源與效益。

當年,全世界有195國皆同意並簽屬了《巴黎協定》的所有內容。可見,保護雨林是全球的共識。

巴黎協定認證:保護雨林是全球共識!

保護雨林是國際共識,是關係到經濟、貿易、外交的複雜議題,是減緩氣候變遷重要的策略,跟人類生存息息相關。保護地球環境、保護雨林,從來就不是巴西或其他有雨林國家的責任,而是地球上每個人的責任。先進國家原本就不可以自己一直開發,卻不准開發中國家或低度開發國家發展經濟,畢竟經濟發展是各國的權利,而保護地球則是每個國家都需要共同承擔的責任。巴西或是其他有雨林的開發中國家,對於保護地球環境也都有共識,都有禁止開發原始林的相關法令,當地也有非常多人支持保護雨林。

捍衛地球生態、守護雨林是國際間的共同目標。圖/Pixabay

科學家和世界各國都努力於經濟、環境取得平衡

保護雨林的目的是為了全人類永續發展,不是壓榨開發中國家

經濟發展跟保護雨林如何取得平衡,科學家一直有非常多的研究與策略。科學家對於保護雨林可能造成的影響,考慮得非常深、非常廣。所有個人會想到的影響,全世界頂尖科學家也都想到了,還有非常多我們想不到的點,科學家也都有很深入的規劃。科學家從來沒有打算美化工業革命後帶來的汙染。這世界上最早意識到人類開發破壞地球環境,主張要保護地球環境、保護生態的就是先進國家的科學家們,帶頭開始從事環保的是先進國家。先進國家除了保護自己的國土,也提供技術與大量資金給開發中與低度開發的國家保護雨林、從事雨林研究。臺灣雖然不是聯合國的一員,也一直致力於協助保護邦交國的雨林。

正因為如此重要,每年世界各國的領袖、上千個地方組織都會聚集——臺灣也都有派人參加——召開氣候變化綱要公約締約國會議。這場一年一度的馬拉松式會議,目的就是為了減緩全球氣候變遷、保護雨林。因為保護雨林、保護地球環境是全球的共識,當務之急,所以當出現扯後腿的人與行為,大家才會這麼生氣,包含巴西當地的原住民、生態學者、環境保護團體,甚至一些議員都非常氣憤,不滿巴西現任總統推翻過去的環境保護政策,放任少數人破壞雨林。

去年 12 月,是「聯合國氣候變遷綱要公約」第24屆的締約國大會(COP24)

為熱帶國家抱不平?也許才是一種誤解與傲慢

「自己可以開發土地建立城市,卻不允許這些熱帶國家開發。」這是多麼大的誤解。破壞雨林是要種農作物、放牧或採礦,並不是要興建城市!還有,「憑什麼自己可以在都市裡吹冷氣卻不允人家發展?」──這更是一種傲慢的自我想像

這世界上不是每個人都喜歡住在都市叢林!而且不是熱帶國家就一定很熱。熱帶國家有高山、高原,十分涼爽,熱帶雨林裡晚上通常也都只有二十幾度,根本不需要冷氣。將自己的價值觀與經驗套在別人身上,沒有國際觀又自以為是。擁有大面積熱帶雨林的國家,如巴西、印尼,都有現代化的城市,經濟也持續發展──巴西是金磚四國,印尼是亞洲五虎,當地很多人都十分在乎自己的自然生態,保護雨林的觀念都相當完整。只有部分人短視近利,一直在搞破壞。就如同我國,多數人都支持保護石虎、保護自然生態。

小心!不要落入缺乏國際觀的陷阱,同情心與傲慢也許只有一線之隔。圖/Pixabay

保護雨林,並不只是把雨林圍起來禁止開發,還需要投入非常多的資金進行資源調查、長期監測,也必須各國政府跨部門合作。就我所知,國際公約對於保護雨林、減少溫室氣體排放、協助開發中國家的經濟,都有訂出許多的策略。

各國政府究竟做了哪些實質的努力呢?

以下將列出我所了解的部分。希望有助於大家更了解國際上生態保護的作法與精神。

聯合國環境發展大會:為了永續發展的三項文件

時間還是拉回到 1992 年,世界各國官方與非官方組織,聚集於巴西里約熱內盧舉行的「聯合國環境發展大會」 (United Nations Conference on Environment and Development, UNCED) ——這個會議就是著名的地球高峰會。

當時來自世界各地 172 國、兩千多個非政府組織聚集開會,目的就是希望人類、地球生態、地球環境等各方面,都能夠永續存在

不希望人類因為過度的開發,導致地球生態毀滅。當時各國簽屬的文件,除了有名的「聯合國氣候變化綱要公約」 (The United Nations Framework Convention on Climate Change, UNFCCC) ,還有生物多樣性公約 (Convention on Biological Diversity, CBD) 與里約環境與發展宣言

里約環境與發展宣言中強調,各國都有權利依照自己的資源發展,努力消除貧窮、國際合作保護生態系統、減少不可持續的消費與生產模式、重視各國的原住民與婦女,等等議題,都是本世紀所關注,都是希望人類可以「永續」生活在地球上。而生物多樣性公約,也不只是一味的保護生物,禁止開發,還希望在生態保育的基礎下,永續利用並分享生態與生物資源。

「聯合國氣候變遷綱要公約」是 1992 年簽署的其中一份文件,因此開啟了連續 24 屆的締約國大會(COP1 ~ COP24) ,下文提及的內容,如京都議定書、巴黎協定等等,都是此會議的重要成果。

京都議定書:規範先進國家的三種機制

而最複雜難懂的氣候變化綱要公約,原則上管制《蒙特婁議定書》 (Montreal Protocol) 未管制的所有溫室氣體。但是因為各國沒有認真執行,所以才又在 1997 年氣候變化綱要公約第 3 次締約國會議 (COP3) 通過具有法律約束力的《京都議定書》 (Kyoto Protocol, KP) ,要求議定書附件一的先進國家要達成溫室氣體減量。請注意,這部分規範的是先進國家,不含開發中國家

「碳權」、「賣碳權」等許多人似懂非懂的名詞,正是來自於京都議定書的規定。京都議定書為了可以有效達成溫室氣體減量的目標,從簽署國家的數量、碳排放量、特殊成員的負擔能力、各國的減量標準、減量所需負擔的成本、管制的溫室氣體種類、國際合作的減量機制,都有詳細的規範。這部分主要都是細節說明,可以寫一大篇,有興趣人網路上都可以找到資料,我就先跳過了。

京都議定書所使用的木槌。圖/Jason Riedy [CC BY 2.0] via Flickr
全世界最在意的是三個跨國減量的彈性機制 (Flexible Mechanism) 包括:

  1. 共同減量 (Joint Implementation, JI)
  2. 清潔發展機制 (Clean Development Mechanism, CDM)
  3. 排放交易 (Emission Trading, ET)

共同減量是指國家可以採集團方式,將許多已開發國家視為一個減量整體,如歐盟。排放交易是讓兩個已開發國家之間可以進行排放額度的買賣。讓超額完成任務的國家,將剩餘的碳排放額度直接賣給難以完成削減溫室氣體任務的國家。

針對開發中或低度開發國家的支助,就是清潔發展機制 (CDM) 。

由已開發國家提供資金或技術給開發中或低度開發的國家,協助開發中國家永續發展,並使已開發國家順利履行溫室氣體減量的承諾。由於京都議定書允許公私部門共同參與清潔發展機制,因此這項機制最受各界注目。我國也有一些私人企業參與,甚至曾經有地方政府想要種樹賣碳權——想當然耳,這些縣市首長沒有深入了解種樹賣碳權的細節與困難度,最後沒有實際成果。除了清潔發展機制外,世界上還有許多自願性的碳標準,以及碳交易市場。這些都是國際間,官方與企業致力於溫室氣體減量的具體證明。

清潔發展機制可視為致力「在經濟和環保之間達成平衡」的策略。圖/Pixabay

強制已開發國家上繳每一年的碳排放報告

為督促締約國確實進行溫室氣體減量,並且獲得溫室氣體減量相關數據,氣候變化綱要公約與京都議定書都要求締約國依規定提出國家報告,包含大家可能較為熟悉的「國家溫室氣體年度清冊」。這部分,已開發國家強迫性繳交,開發中國家則鼓勵繳交。中華民國雖不是附件一的已開發國家,但是在我國許許多多科學家的努力下,我們從 2014 年後開始每年繳交國家清冊。網路上也都查得到歷年報告全文《巴黎協定》第 14 條規定 2023 年必須進行第一次全球盤點,因此,未來我國或許也可以藉由協助邦交國製作國家清冊,加強外交關係。

2018年中華民國國家溫室氣體排放清冊報告封面。圖/環保署之推動台灣參與氣候變化綱要公約網站

但是問題來了,碳排放量超級難算的啊!

國家需要列入碳排放計算的項目非常多,這部分締約國可以參考《IPCC溫室氣體統計指南》 (IPCC guidelines for national greenhouse gas inventories) 中的說明,收集活動資料與數據,逐項計算並列出。 IPCC 出過幾版溫室氣體統計指南,目前 2006 年版本修改了之前的內容,將碳排放計算重新區分成:能源、工業製程與產品使用、農林業與其他土地利用、廢棄物以及其他等五大項目。而可以列入清潔發展機制的減排項目,則包含了工業類、排放源之溫室氣體逸散類與農林類,每一項產業下又分成不同的專案類型。

《燃燒中的熱帶雨林》一文中我曾提到,依據京都議定書規定,荒地造林 (afforestation) 、復舊造林 (reforestation) 、毀林 (deforestation) ,還有因加強森林經營管理 (forest management) 所額外增加的二氧化碳吸收或排放淨值,應併入溫室氣體排放或減量值計算。

但是透過森林減碳,計算上困難重重,所以這部分在往後幾次的締約國會議中才陸續通過。

  • 如2001年通過的《馬拉喀什協定》,才將造林與再造林活動 (簡稱 AR ) 併入清潔發展機制。
  • 2005 年於蒙特婁舉辦的第11次締約國會議,進行「後《京都議定書》」的減量談判,減少毀林及森林退化造成的溫室氣體排放 (Reducing Emission from Deforestation and Degradation,REDD) 的概念首先被提出
  • 隔年,第12次締約國會議中,聯合國秘書長安南建議也將 REDD 納入清潔發展機制。由已開發國家提供資金,鼓勵開發中或低度開發的國家保護自己的森林。

重視森林對於減少溫室氣體的貢獻,鼓勵各國減少森林砍伐,是REDD的核心理念之一。

  • 2007年第13次締約國會議中,於峇里島行動計畫 (Bali Action Plan) 又進一步提出了 REDD+ 的概念,將原本REDD的概念,再加上森林復育 (forest restoration) 和永續管理 (sustainable management) 增加的碳吸存。相較於 AR 活動,這部分更難計算,爭議更大。
  • 2009 年第 15 次締約國會議中,美、中、印度、南非、巴西磋商出來的的哥本哈根協定 (Copenhagen Accord) ,計畫成立哥本哈根綠色氣候基金 (Copenhagen Green Climate Fund) ,提供發展 REDD+ 的資源與技術。各國對於發展 REDD+ 雖然有共識,但是細節上還有許多的爭議。往後的會議持續修改並增加其內容,
  • 至 2013 年第 19 次締約國會議,針對許多爭議,已提出完善的配套措施。REDD+ 計畫的目標,除了減緩氣候變遷、保護森林生物多樣性並維持生態系統的健康,更必須有助於降低貧窮率,促進社會及經濟發展的效益。
過去僅考慮造林、再造林與毀林的計算架構,近年來越來越重視土壤碳匯功能、森林永續經營管理、以及森林復育1,因此蛻變為 REDD+。圖/Pixabay

有人反對 REDD+,反對的理由是?正方的看法是?

一開始反對 REDD+ 作為減碳機制的一方認為,國際間的經濟補償措施,有可能只是開發中國家少數政治菁英獲利,一般人民不見得有所助益。而且大量碳額度進入市場,可能會造成碳交易市場價格崩盤。

但是考量到 REDD+ 執行的價格比 AR 來的便宜,而且原始林的生物多樣性也不是人工林所能比擬。如果已開發國家可以大量購入開發中國家保護森林所產生的碳權,將大大有助於保護這些國家境內的原始森林——特別是熱帶雨林。而 AR 與 REDD+ 計畫也可以相輔相成,共同促進溫室氣體減量,並持續提供市場所需的木材。

當然,無論是 AR 活動或 REDD+ 計畫,都要考慮到非常多的面相,特別是外加性 (Additionality) 及洩漏 (Leakage) 的設計,是非常細心的考量。以AR活動而言,所位的外加性包含了環境、資金、投資及政策四個層面。以環境而言,AR活動所產生的減碳效果,必須扣除人為介入前土地本身的碳吸存效果。而洩漏,則是造成AR活動區域以外的地方所產生的碳排放。從這兩項設計可以知道科學家的用心與規劃的周延。

此外, REDD+ 計畫必須遵照 3E 標準 (3E criterion) ——效能 (Effectiveness) 、效率 (Efficiency) 、公平性 (Equity) ——進行設計。其中公平性評估非常的重要,除了二氧化碳減量,也需促進當地居民生活情況與人權,因此事前調查還需要考量當地居民的經濟與文化。因為科學家非常清楚,所有的保育活動,都不能不考慮人類的生存與發展。

不同文化與森林之間也會有不同的互動方式,因此執行計劃時,必須費心針對當地的風俗民情做深入的研究。圖/Pixabay

最重要的,依舊是地球每一位公民的所作所為

只要木材、牛肉、大豆等需求還在,利益的驅使下,即使保護了甲地的雨林,仍會造成乙地森林被砍伐或破壞——這就是一種洩漏。因此,保護雨林最終還是要改變消費者的消費習慣。

除了大國之間相互的援助,企業或地方保育組織的推動,每一個人認知到雨林保護的重要性,才是雨林生物可以持續生存的最大關鍵。

開發雨林,盜伐木材、開闢農場,都不是永續利用土地的方法。雨林除了提供各種生物資源,還可以做為生態旅遊、森林療癒的場所,這些都是不開發雨林但是持續發展經濟的方式。世界上已經有很多已開發與開發中國家證明這樣的經濟模式實際可行。

守衛森林不只是國際組織、各國政府的責任,身為地球的一份子,我們都必須伸出雙手來愛護地球!圖/Pixabay

人類最可惡的地方是,為了自己的利益會幹出很多難以想像的壞事;但是具有高貴情操,願意為了公眾利益,犧牲小我的也是人類。這世界上不是每個人想賺錢想瘋了,這世界上有很多人為了保護地球環境,四處奔走。保護雨林、保護地球環境不是假議題,是全球最重要的目標,必須從每個人日常生活中做起。

我知道這篇文章內容有點硬,比〈燃燒中的熱帶雨林〉多了更多的專有名詞,也多了很多歷史。謝謝把文章看到最後的讀者。衷心希望大家可以更了解國際間雨林保育的精神與方法。

同場加映

參考資料

  1. 附圖說明參考自《REDD緣起與運作機制之分析

本文轉載自 FB專頁 胖胖樹的熱帶雨林,原文為〈經濟發展跟雨林保護能否達成平衡?

文章難易度
活躍星系核_96
752 篇文章 ・ 114 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

7
0

文字

分享

0
7
0
氣候變遷會讓世界變得又熱又病嗎?暖化之下的寄生關係可不簡單
阿咏_96
・2023/05/15 ・3188字 ・閱讀時間約 6 分鐘

近年來,氣候變遷已經變成一個眾所皆知的熱門話題,不僅影響著我們身處的自然環境,以及人類生活,也對生物的繁殖、生長、分布等造成衝擊。不過,今天我們沒有要討論海平面上升、極端天氣等這些巨觀環境的改變,而是要來談談或許你我體內都有的——寄生蟲。

提到寄生蟲,大家比較熟悉的或許是蟯蟲、蛔蟲等,有機會寄生於人類體內的寄生蟲,而自然中許多物種之間也有寄生關係,但這與氣候變遷有什麼關係呢?

有許多研究顯示,氣溫升高會導致寄生蟲爆發事件增加,也有些研究說寄生蟲在高溫下的表現比宿主好,因此暖化可能會造成相關疾病越來越嚴峻,後來也衍生出「地球越溫暖,流行病越多」的假說。

地球越溫暖,流行病越多」的假說近來相當盛行。圖/envatoelements

寄生不是哩想ㄟ那麼簡單

俗話說:魔鬼藏在細節裡。腹肌藏在脂肪裡。

如同在生物課本裡學過的,寄生關係是生物間的交互作用,一種生物寄居在另一種生物的體表或體內,獲取營養得以生存、繁殖,所以也並非只有寄生蟲的事,和宿主的生理也有很大關係。找到溫度升高會影響寄生過程的哪些步驟,以及背後的機制怎麼運作,是了解氣候變遷對寄生關係影響的關鍵。

近期發表在英國皇家學會《自然科學會報》(Philosophical Transactions of the Royal Society B)的一項新研究就發現,溫度能夠調節寄生真菌在宿主水蚤體內的感染機制。

這個研究由臺灣大學氣候變遷與永續發展學程助理教授孫烜駿與美國密西根大學研究團隊合作,利用暖化實驗觀察水蚤和真菌之間的寄生關係。

他們將一種水蚤 Daphnia dentifera 作為實驗物種,水蚤平常吃藻類等浮游植物,然後也會被更大的捕食者吃掉,因此水蚤在淡水食物網中扮演著重要角色。而今天的另一個主角 —— 寄生真菌 Metschnikowia bicuspidata ,則是一種會感染多種水蚤的酵母菌。

那水蚤是怎麼被感染的呢?

宿主與寄生真菌之間的攻防戰

水蚤在濾食水中浮游植物時,寄生真菌的孢子可能會一起被牠吃進去,這時感染過程就開始了(水蚤表示:窩⋯⋯窩不知道QQ)首先,寄生真菌的針狀孢子需要先刺穿水蚤的腸道上皮細胞,才能進到體腔內開始發育、繁殖,感染初期有些水蚤還可能痊癒,否則就會進到最終感染階段,一旦水蚤體腔內充滿寄生真菌的孢子或孢子囊,便不可能康復,最終走向死亡,之後下一代孢子釋放回環境中,再被新宿主吃掉,完成感染週期。

寄生真菌在水蚤中的感染過程。生真菌的針狀孢子會先刺穿水蚤的腸道上皮細胞。圖/英國皇家學會《自然科學會報》

也不是所有被吃進去的孢子都能夠成功感染宿主,必須要經過重重關卡,畢竟水蚤也不是吃素的(好啦水蚤真的吃素沒錯 XD)

而兩道最重要的關卡就是「物理屏障」與「細胞免疫」。

物理屏障是一種常見的防禦形式,例如我們的皮膚和植物的角質層,在水蚤與寄生真菌的感染過程裡,腸道上皮細胞就是抵抗孢子進入體腔的物理屏障,像是一道能夠抵抗外來敵人的城牆。

但如果孢子還是順利進到水蚤的體腔內,細胞免疫就像一支軍隊,免疫細胞士兵們會聚集到被感染的部位,開啟防禦模式,共同抵禦外敵,也就是前面提到的,有些剛被感染的水蚤有機會康復的原因。

健康的 Daphnia dentifera 水蚤(左圖)與被寄生真菌 Metschnikowia bicuspidata 感染的水蚤(右圖)。圖/國立台灣大學

暖化之下,寄生關係會怎麼樣

研究團隊想知道:溫度對物裡屏障和細胞免疫的影響,以及會不會影響最終感染的機率。

因此他們把水蚤放到 20°C 和 24°C 下的環境飼養,為甚麼是這兩個溫度呢?

根據先前研究,20°C 是適合水蚤生長繁殖的溫度,而 24°C 則是來自 2100 年氣候變遷預測下的平均溫度變化,自西元 1985 年起,夏季的湖面溫度以每十年 0.34°C 攀升,到本世紀末預計上升 4°C。

並將不同溫度下飼養的水蚤,分別放入有寄生真菌和沒有寄生真菌的環境,總共四種環境條件的組別。

  1. 實驗組:24°C,沒有寄生真菌
  2. 實驗組:24°C,有寄生真菌
  3. 控制組:20°C,沒有寄生真菌
  4. 控制組:20°C,有寄生真菌

接著,為了知道感染初期的情形,針對有寄生真菌的組別,研究團隊在放入真菌 24 小時後,用複式顯微鏡觀察,檢查水蚤腸道和體腔內是否有孢子,以及孢子的數量。

那要怎麼知道物理屏障和細胞免疫的防禦效果呢?

如同前段提過的,我們將作為物理屏障的腸道上皮細胞想像成城牆,免疫細胞想像成軍隊,而寄生真菌的孢子是試圖入侵的外敵

腸道的防禦力便是用「後來在體腔內的孢子數」與「所有試圖刺穿腸道上皮的孢子數」相除;也就是「進到城牆內的敵人數」除以「所有一開始來城牆外攻擊的敵人數量」。(編按:每一百個攻擊城牆的敵人,會有多少人突破城牆的防禦進到牆內)

除此之外,團隊也觀察在不同溫度下水蚤腸壁上皮的厚度,畢竟城牆的厚度可能是防禦的關鍵。

而細胞免疫則是以「前來支援的免疫細胞數」除以「體腔內的孢子數」計算,可以想像成一個敵人需要幾個士兵一起抵抗

除了兩道關卡的抵禦能力外,為了解水蚤的健康狀態,研究團隊紀錄牠們在感染後的死亡率和繁殖力。

溫度影響的不只是寄生關係

實驗結果發現,較溫暖環境下的水蚤腸壁上皮細胞比控制組厚,但腸壁是越厚越好嗎?

另一個結果顯示,其實較厚和較薄的腸壁上皮細胞,比較能抵抗寄生孢子的攻擊,反而是有中等腸道厚度的水蚤防禦孢子進入體腔的能力較弱。

而關於細胞免疫,則發現隨著成功進入體腔的孢子數量增加,附著在孢子上的免疫細胞總數也跟著增加,但在較溫暖環境下飼養的水蚤召集來的免疫細胞,比控制環境下來得少。也就是說,越多敵人入侵,軍隊會募集越多士兵來共同對抗,但在溫暖環境下召來的士兵較少

那物理屏障和細胞免疫之間有什麼關係呢?

在 20°C 下,腸道上皮細胞越厚,每個寄生孢子所需要的免疫細胞數就越少,這似乎蠻容易理解的,若城牆越厚,軍隊火力就不需要太強,反之亦然。

但在 24°C 卻看不到同樣的趨勢,我們知道的只有在溫暖環境下,同樣腸道厚度免疫細胞仍比控制組少。

最後,不論是繁殖力還是存活率,都是在溫暖環境下被感染的水蚤敬陪末座。

從這個研究,我們可以得知,溫度上升不僅會改變宿主的物理屏障,也會影響細胞免疫,進而改變寄生真菌對水蚤的感染結果。在更了解溫度影響寄生關係中的哪些關鍵特徵和結果後,便能預測在暖化環境中,宿主與寄生蟲之間的交互作用,以及所導致的後果。

參考文獻

  1. Sun, S. J., Dziuba, M. K., Jaye, R. N., & Duffy, M. A. (2023). Temperature modifies trait-mediated infection outcomes in a Daphnia–fungal parasite system. Philosophical Transactions of the Royal Society B, 378(1873), 20220009.
  2. Rohr, J. R., & Cohen, J. M. (2020). Understanding how temperature shifts could impact infectious disease. PLoS biology, 18(11), e3000938.
  3. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162.
  4. Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., & Hairston Jr, N. G. (2012). Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1873-1882.
  5. Ozersky, T., Nakov, T., Hampton, S. E., Rodenhouse, N. L., Woo, K. H., Shchapov, K., … & Moore, M. V. (2020). Hot and sick? Impacts of warming and a parasite on the dominant zooplankter of Lake Baikal. Limnology and Oceanography, 65(11), 2772-2786.
阿咏_96
12 篇文章 ・ 525 位粉絲
You can be the change you want to see in the world.

1

4
0

文字

分享

1
4
0
風調雨順的地區,受災風險比較大?——印度農村的經濟學課
研之有物│中央研究院_96
・2023/04/15 ・4114字 ・閱讀時間約 8 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/呂慧穎
  • 責任編輯/田偲妤
  • 美術設計/蔡宛潔

每到颱風天或寒流來襲,農作物損害的新聞常攻佔各大版面。在極端氣候影響下,農民需承擔的受災風險加劇!我們常羨慕氣候條件相對穩定的地區,但該處的受災風險真的比較小嗎?

中央研究院「研之有物」專訪院內經濟研究所莊雅婷助研究員,以世界糧食出口大國印度作為研究田野,剖析降雨量的變化對不同地區、不同類型農民的生計影響。跟著莊雅婷走一趟印度農村,以經濟學視角探索意想不到的農村經濟樣貌!

中研院經濟研究所莊雅婷助研究員,專長為環境經濟學、行為經濟學、發展經濟學。圖/莊雅婷

聯合國政府間氣候變遷專門委員會(IPCC)於 2022 年發表最新《氣候衝擊、調適與脆弱度報告》(Climate Change 2022: Impacts, Adaptation and Vulnerability),當中指出如在 2030 至 2052 年間失守 1.5°C 溫升防線,世界各地將面臨多重氣候災害,導致自然環境難以修復的局面。

在第 27 屆聯合國氣候變遷大會(COP27)中,多國持續響應 2050 年全球淨零排放目標,聯合國更重申人類社會必須強化面對極端氣候的調適能力,透過跨領域的資訊共享與合作,建立環境、經濟、社會等各面向韌性。

在各類生產者中,看天吃飯的農民最擔心極端氣候影響收成,農產歉收也將導致糧食短缺、物價上漲,並影響民生經濟。因此,了解氣候變遷對農民的影響,有助及早研擬因應對策。

中研院經濟研究所莊雅婷助研究員以環境經濟學為研究方法,選擇印度作為實證區域,研究降雨量的變化對不同地區、不同類型農民的生計影響,從中探索農民因應天災所發展出的生存之道。

印度農民接受莊雅婷訪談,分享面對降雨衝擊時有何生計調整策略。圖/莊雅婷

農業收益的重要指標

印度是世界糧食出口大國,廣大的國土包含熱帶、亞熱帶、溫帶等不同氣候風貌,再加上各省份的風俗民情各異,塑造出多樣的地理環境、天氣型態及文化特色,有利降低研究取樣上的偏差。

此外,印度在 1970、1981 及 1998 年進行了大規模的農業人口普查,對於各種農業及非農業收入有詳細的統計數據。

莊雅婷共採用 230 個村莊、30 年跨度的印度農業人口普查數據,以及美國德拉瓦大學(University of Delaware)氣候研究中心 1900 至 2008 年蒐集的印度月降雨量和月均溫數據,並請益農業氣候科學家後得知:

6 月平均氣溫、6 至 9 月季風降雨(雨季)是影響印度農作收成的關鍵時期,而「溫度」及「降雨量」是科學家了解氣候變遷如何威脅農業收益的重要指標。

經統計 1970、1981、1998 年印度農業普查數據,繪製之印度季風降雨(雨季)情形分布圖,雨季的平均降雨量為 823 毫米,廣大的國土包含不同的天氣型態。圖/研之有物(資料來源|莊雅婷)

其中,美國德拉瓦大學氣候研究中心數據的優點是,能透過經緯度比對地理區位及空間資料,運用當期降雨量與 20 年歷史氣候資料同期平均值之偏差值,來表示當年雨量與歷史趨勢的差異。

此外,為了確定農民收入與氣候條件之間的連動性,排除與其他變因的交互影響,研究中設定的固定變因包括:家庭規模、村莊人口、戶主年齡及教育程度、農業經驗及替代技能等;環境固定變因則包括:種植模式、土壤類型、村莊特性及農村到城市距離。

藉由上述變因設定,控制非農業工作的可及性、不同區域勞動價格的內生變因,降低歷史天氣模式與非農業收入的交互影響。

降雨量如何影響農民

印度研究人員進駐網路不發達的農村後,以土法煉鋼方式測量年降雨量。其中一處農村的年降雨量(1986-1995、2001-2009)最少 248.4 毫米、最多 981 毫米,落差之大不但影響農業收入,也連帶影響農民的生計策略。圖/莊雅婷

臺灣諺語常以「風頭水尾」形容農業條件欠佳的環境,令人好奇的是,對比長年風調雨順的地區,哪類環境下的農民較能調適氣候變遷帶來的威脅?

莊雅婷發現,與以往研究結果類似之處在於,降雨量的變化對印度農民的農業收入有顯著影響,而農民傾向透過收入多樣化來調適降雨衝擊(rainfall shock)。

然而,在分析歷史降雨量變化並實地訪談後卻有意外發現:

歷史降雨量變化較小的地區,雖有氣候穩定優勢,一旦降雨驟變,農業收入與總收入的下降程度卻遠高於降雨量變化大的地區!

莊雅婷進一步根據土地大小及經濟規模,將農民分成:有自耕地的大農、中農、小農,以及無自耕地的農民,並初步分析 4 類農民面對降雨衝擊的收入狀況。

大農與中農通常具備較佳的經營管理能力與資源,例如能建置完善的儲水灌溉系統,因而農業收入雖受到降雨衝擊,但下降程度不大。

小農在一般情況下,靠著耕作小規模農地過著自給自足的生活,但相對缺乏其他替代收入,一旦面臨降雨衝擊,收入反而下降最多。

無自耕地的農民類似臺灣租地耕作的佃農,在農作收入較不穩定的情況下,已習慣兼差非農業工作貼補家用,比方投入村莊附近的建築營造工作。因此,在面對降雨衝擊時,較能迅速調整工作型態,收入下降程度比小農低。

4 類農民面對降雨衝擊的收入狀況。圖/研之有物

以往的農業輔導政策較常聚焦在氣候變遷劇烈、生產條件不佳的地區,但莊雅婷的研究指出:

過去氣候條件穩定、甚少災荒澇旱的地區,反而容易受到氣候變遷的影響,其弱點在於農民缺乏應變經驗,難以在短時間內應對氣候變遷帶來的生計衝擊。

至於歷史降雨量變化較大的地區,多數農民已藉由代代相傳的生活經驗,建立起農業以外的收入來源、工作技能與求職人脈,降低氣候不佳對收入的影響。

該研究點出過往農業政策忽略之處,提醒在強化氣候變遷適應力的準備工作中,應考量農民行為與當地歷史氣候條件的交互影響,引導農民保有居安思危的觀念,及早研擬因應氣候變遷的對策。

現地訪談找真相

莊雅婷不僅從事歷史數據的量化分析,更實際前往田野訪談印度農民、收集第一手資料。圖/莊雅婷

大膽假設、小心求證,向來是做研究應秉持的原則。莊雅婷在進行量化分析時,也輔以工作坊、現地訪談等方法,過程中不僅獲得許多設立假說的靈感,更能得到深入剖析社會現象的觀點。

在印度進行田野調查時,恰巧其他印度研究團隊也在同一區域進行農民收入調查,兩方同時觀察到:當時年不佳時,大農地主通常以低於平時的工資雇用農民。

印度研究團隊認為,這是大農地主趁機剝削受雇農民,但莊雅婷在訪談農民後卻得到完全相反的答案。

原來這是地區社群的互助默契,大農地主在乾旱或澇災時提供工作機會,受雇農民也願意在農作欠收時降低工資,彼此相互體諒、一起度小月。

如何不帶偏見探討現象背後的成因,是莊雅婷走入田野時經常自我提醒的一點。

走進田野的經濟學家

中研院經濟研究所莊雅婷助研究員。圖/研之有物

在偌大的經濟學領域中,莊雅婷選擇環境經濟學、發展經濟學、行為經濟學作為研究領域。在求學過程中了解到環境對人類行為的影響力,藉由分析個人和群體的經濟行為後,能將統計數據回饋到政策執行面上,有助改善環境和社會管理方式。

「經世致用」是經濟學有趣迷人之處,更讓莊雅婷維持源源不絕的研究熱情!

回憶起與印度的不解之緣,源自在印度工作半年多期間,接觸到發展中國家的實際狀況,親眼見到當地貧富差距之大,讓莊雅婷在心中埋下關心貧窮議題的種子。

就讀碩士班期間,在柬埔寨進行農村貧戶家計與微型貸款研究時,更聽聞無力擺脫貧窮的家庭想將女兒送給同行的美國研究人員,此舉讓她深受震撼!「我總會自問:我的研究能為當地人帶來什麼幫助?」

因著生命中的種種機緣,莊雅婷將研究能量聚焦在環境、貧窮及性別等具公益性的議題上,隻身前往東南亞多國農村進行研究,這不僅要抱持不怕困難的勇氣,更培養出因地制宜的反應力。

要在人生地不熟的異國做研究並不容易,需要與熟悉當地生態的「地頭蛇」建立良好關係,再經由他們連結在地人脈,讓農民願意暫時放下手邊工作來配合訪談。

莊雅婷曾遇到一位退休的老先生願意不收分文擔任翻譯,只因得知有遠自臺灣來的朋友,想要傾聽這群無名小農的故事。

一路走來並非總是一帆風順,但喜歡與人交流的莊雅婷牢記每一次與受訪者互動的美好經驗。對研究的熱情、人們釋出的善意,使她面對各種艱難挑戰時,得以發揮超強耐力,更是疲憊至極時「滿血復活」的最佳養分。

2018 年美國耶魯大學經濟學教授諾德豪斯(William D. Nordhaus)、紐約大學經濟學教授羅默(Paul Romer)以總體經濟學模型,找出氣候變遷與經濟成長的關係,同獲諾貝爾經濟學獎。在此之前,誰能料到「環境經濟學」會成為一門顯學。

這讓莊雅婷相信,在研究領域中無需為了追求潮流而惶惶不安,重要的是堅持自己的初衷,盡心耕耘終能有所收穫!

隻身前往印度田調並不容易,莊雅婷憑著對研究的熱情、當地人的支持,從中獲得許多設立假說、剖析社會現象的觀點。圖為拜訪印度當地女性存錢互助會,訪問微型貸款相關政策。圖/莊雅婷

延伸閱讀

  1. 莊雅婷老師個人網站
  2. Yating Chuang (2019). “Climate Variability, Rainfall Shocks, and Farmers’ Income Diversification in India”. Economics Letters, 174: 55-61.
所有討論 1
研之有物│中央研究院_96
287 篇文章 ・ 2914 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

5
2

文字

分享

0
5
2
植物口渴就喊:「啵、啵、啵~」
胡中行_96
・2023/04/06 ・2954字 ・閱讀時間約 6 分鐘

久旱不雨,植物悲鳴,[1, 2]類似教育部《臺灣閩南語常用詞辭典》所謂「因飢餓而吵鬧」的「哭枵」(khàu-iau)。[3]別問為何沒聽過,也不怪天地寡情,人類無義,從來漠不關心。植物叫那種超音波,傳至咱們耳裡就只剩寧靜。幸好靠著以色列科學家幫忙,轉換到常人的聽覺範圍,並分享於 2023 年 3 月底的《細胞》(Cell)期刊,才廣為周知。[1]

轉換到人類聽力範圍的番茄「叫聲」。音/參考資料 1,Audio S1(CC BY 4.0)

傾聽植物的聲音

面臨乾旱或草食動物的威脅,植物會做出多種反應,例如:改變外貌,或是以揮發性有機化合物影響鄰居等。[1]過去的文獻指出,缺水引發空蝕現象(cavitation),使植物負責輸送水份的木質部,因氣泡形成、擴張和破裂而震動。[1, 4]現在科學家想知道,這是否也會產生在特定距離內,能被其他物種聽見的聲音。[1]

受試的對象是番茄菸草,分別拆成乾旱、修剪和對照 3 組。對照組又有常態生長的一般對照、有土卻無植物的盆器,以及每株植物實驗前的自體對照 3 種。實驗大致有幾個階段:首先,在隔音箱裡,距離每個受試對象 10 公分處,各立 2 支麥克風收音。將聲音的紀錄分類後,拿去進行機器學習。接著移駕溫室,讓訓練好的模型,分辨雜音和不同情況下植物的聲音。再來,觀察乾旱程度與植物發聲的關係。最後,也測試其他的植物和狀態。[1]

麥克風對著乾旱、修剪和對照組的植物收音。圖/參考資料 1,Graphical Abstract局部(CC BY 4.0)

植物錄音與機器學習

隔音箱裡常態生長的植物,每小時平均發聲少於一次;而沒植物的盆器當然完全無聲。相對地,遭受乾旱或修剪壓力的實驗組植物,反應則十分劇烈:[1]

 平均值(單位)番茄菸草
乾旱發聲頻率(次/小時)35.4 ± 6.111.0 ± 1.4
 音量(聲壓分貝;dBSPL)61.6 ± 0.165.6 ± 0.4
 聲波頻率(千赫茲;kHz)49.6 ± 0.454.8 ± 1.1
修剪發聲頻率(次/小時)25.2 ± 3.215.2 ± 2.6
 音量(聲壓分貝;dBSPL)65.6 ± 0.263.3 ± 0.2
 聲波頻率(千赫茲;kHz)57.3 ± 0.757.8 ± 0.7

隔音箱中實驗組的錄音,被依照植物品種以及所受的待遇,歸納為 4 個組別,各組別再彼此配對比較,例如:乾旱的番茄對修剪的番茄等。以此資料訓練出來的機器學習模型,判別配對中各組別的準確率為 70%。第二階段在溫室中進行,自然較隔音箱嘈雜。科學家拿空蕩溫室的環境錄音,來教模型分辨並過濾雜訊。訓練後,令其區別乾旱與對照組番茄的聲音,結果 84% 正確。[1]既然能聽得出基本的差別,下一步就是了解水量對番茄發聲的影響。

體積含水量

為了操縱體積含水量(volumetric water content,縮寫VWC),即水份與泥土體積的比值或百分比,[1, 5]科學家狠下心,連續幾天都不給溫室裡的番茄植栽喝水。一邊觀察 VWC 的變化;一邊錄下它們的聲音。起先水份充足,番茄不太吵鬧;4、5 天下來,發聲的次數逐漸增加至高峰;然後應該是快渴死了,有氣無力,所以次數又開始減少。此外,番茄通常都在早上 8 點(圖表較像 7 點)到中午 12 點,以及下午 4 點至晚上 7 點,這兩個時段出聲。[1]科學家覺得這般作息,可能與規律的氣孔導度(stomatal conductance),也就是跟光合作用的換氣以及蒸散作用的水份蒸發,兩個透過氣孔進行的動作有關。[1, 6]

大部份的聲音都是在 VWC < 0.05 時出現;當 VWC > 0.1,水份還足夠,就幾乎無聲。科學家將比較的條件進一步分成 VWC < 0.01 與 VWC > 0.05、VWC < 0.05 跟 VWC > 0.05,以及 VWC < 0.01、VWC > 0.05 和淨空溫室的聲音。機器學習模型分辨起來,都有七、八成的準確率。[1]

縱軸為每日發聲次數;橫軸為缺乏灌溉的天數。圖/參考資料 1,Figure 3A(CC BY 4.0)
乾旱狀態下,番茄發聲的時段。縱軸為每小時發聲次數;橫軸為 24 小時制的時間。圖/參考資料 1,Figure 3B(CC BY 4.0)

植物發聲的原理

實驗觀察所得,都將植物發聲的機制,指向木質部導管中氣體的運動,也就是科學家先前預期的空蝕現象[1]下面為支持這項推論的理由:

  1. 木質部導管的口徑,與植物被錄到的聲波頻率相關:寬的低;而窄的高。[1]
  2. 乾旱與修剪所造成的聲音不同:在木質部導管中,前者氣泡形成緩慢,發聲時數較長;而後者則相當迅速,時數較短。[1]
  3. 聲音是由植物的莖,向四面八方傳播。[1]
  4. 空蝕現象造成的震動,跟記錄到的超音波,部份頻率重疊;而沒有重疊的,其實已經超出其他物種的聽力以及麥克風收音的範圍。[1]
葡萄、菸草和番茄木質部導管的水平橫截面。圖/參考資料 1,Figure S4B(CC BY 4.0)
葡萄(綠色)、菸草(灰色)和番茄(橙色)的差異:縱軸為聲波頻率;橫軸是木質部導管的平均口徑。圖/參考資料 1,Figure S4A(CC BY 4.0)

問誰未發聲

觀察完番茄和菸草之後,科學家不禁好奇,別的植物是否也會為自己的處境發聲?還是它們都默默受苦,無聲地承擔?研究團隊拿小麥玉米卡本內蘇維濃葡萄(Cabernet Sauvignon grapevine)、奇隆丸仙人掌(Mammillaria spinosissima)與寶蓋草(henbit)來測試,發現它們果然有聲音。不過,像杏仁樹之類的木本植物,還有木質化的葡萄藤就沒有了。另外,科學家又監聽感染菸草嵌紋病毒(tobacco mosaic virus)的番茄,並錄到它們的病中呻吟。[1]

你敢有聽著咱的歌

之前有研究指出,海邊月見草(Oenothera drummondii)暴露於蜜蜂的聲音時,會產出較甜的花蜜。[2]若將角色對調過來:植物在乾旱、修剪或感染等壓力下釋出的超音波,頻率約在 20 至 100 kHz 之間,理論上 3 到 5 公尺內的某些哺乳動物或昆蟲,例如:蝙蝠、老鼠和飛蛾,應該聽得到。[1, 2]以色列科學家認為幼蟲會寄住在番茄或菸草上的飛蛾,或許能辨識植物的聲波,並做出某些反應。同理,人類可以用機器學習模型,分辨農作物的聲音,再給予相應的照顧。如此不僅節省水源,精準培育,還能預防氣候變遷所導致的糧食危機。[1]

  

備註

本文最後兩個子標題,借用音樂劇《Les Misérables》歌曲〈Do You Hear the People Sing?〉的粵語和臺語版曲名。[7]

參考資料

  1. Khait I, Lewin-Epstein O, Sharon R. (2023) ‘Sounds emitted by plants under stress are airborne and informative’. Cell, 106(7): 1328-1336.
  2. Marris E. (30 MAR 2023) ‘Stressed plants ‘cry’ — and some animals can probably hear them’. Nature.
  3. 教育部「哭枵」臺灣閩南語常用詞辭典(Accessed on 01 APR 2023)
  4. McElrone A J, Choat B, Gambetta GA, et al. (2013) ‘Water Uptake and Transport in Vascular Plants’. Nature Education Knowledge, 4(5):6.
  5. Datta S, Taghvaeian S, Stivers J. (AUG 2018) ‘Understanding Soil Water Content and Thresholds for Irrigation Management’. OSU Extension of Oklahoma State University.
  6. Murray M, Soh WK, Yiotis C, et al. (2020) ‘Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes’. International Journal of Plant Sciences, 181, 1.
  7. FireRock Music.(16 JUN 2019)「【問誰未發聲】歌詞 Mix全民超長版 粵+國+台+英 口琴+小童+學生+市民 Do you hear the people sing?」YouTube.
胡中行_96
152 篇文章 ・ 54 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。