0

1
0

文字

分享

0
1
0

伊波拉不再是不治之症?兩種抗體藥物取得一線曙光

miss9_96
・2019/08/19 ・1684字 ・閱讀時間約 3 分鐘 ・SR值 572 ・九年級

伊波拉病毒經數位上色後,絲狀外表顯得極為美麗而別緻。圖/wikipedia

如果早期(接受此藥物)治療,感染伊波拉病毒的患者,超過九成能活下來。

-Nature News1

與顯微鏡下極美的外表不同,伊波拉病毒(Ebola Virus)非常致命。它幾乎能感染所有細胞,甚至包含身體免疫系統的哨兵——巨噬細胞(macrophages)和樹突狀細胞(dendritic cells)2;感染了伊波拉,致死率最高可至 90%,幾乎是令人絕望的傳染病 3, 4

感染伊波拉病毒後之症狀。圖/wikipedia,中文部分為本文作者加註

需要「被吃掉」,才能繁殖的病毒

駭人的致死率讓它成為科學家一探究竟的對象。科學家發現伊波拉病毒的生活史中,需要「被免疫細胞吃掉」才能複製、繁殖。

一般而言,微生物被免疫細胞吃掉後,就會被裹入胞器內;胞器內的低 pH 環境和蛋白酶,能將微生物切斷、分解,進而殺死微生物。但伊波拉病毒恰好就是利用我們的防禦機制,反將免疫細胞一軍。

伊波拉病毒對人體的影響。(點圖放大)圖/參考文獻5,中文資訊為本文作者加註。

因為伊波拉病毒的表面布滿了特殊的糖蛋白,當病毒被裹入酸性環境、蛋白酶切斷表面醣蛋白,所剩下的醣蛋白碎片,恰好可誘使胞器的膜和病毒融合,進而使病毒逃脫、釋出RNA 1;參考資料 2, 5, 6。換言之,若能阻止病毒的膜融合,就能遏止伊波拉的繁殖,進而捻熄它的生命之火。

-----廣告,請繼續往下閱讀-----
伊波拉病毒的生活史。步驟2即是病毒從免疫細胞的胞器中逃脫。5

巨大的成功,臨床試驗大步邁進

2018 年 11 月,西非的剛果民主共和國啟動了四種藥物的人體試驗 7, 8。其中 mAb114 和 REGN-EB3 兩種抗體型藥物取得了巨大的成效,使用 mAb114 的存活率達89%,而使用 REGN-EB3 的早期病患更有了高達 94% 的存活率 9, 註2

其中 mAb114 的原理是結合病毒表面的醣蛋白;即使在酸性環境、蛋白酶切除後, mAb114 仍能緊緊地咬住醣蛋白,阻斷了膜融合的步驟,進而困住病毒。

在中性和酸性的環境下,mAb114和對照的抗體(13C6)對於醣蛋白(GP)的結合力。可以觀察到mAb114在酸性環境下,仍對醣蛋白保持結合力註3。From: 參考文獻3

憑藉著如此令人驚艷的成功,監督該臨床試驗的學者們立刻宣布調整實驗方向(原本是以隨機分配,把 4 種藥物分配給受試者),撤換兩款舊藥,讓患者立即改用 mAb114 和 REGN-EB3 以挽救生命。

終於出現特效藥了嗎?

在本次的疫情裡,當地居民對歐美醫療團出現了產生高度反彈,認為病人活著被醫療團帶走,卻成了屍體,爆發居民拒絕治療、甚至殺死醫生的事件,促使相關單位對於新藥試驗更加謹慎。

-----廣告,請繼續往下閱讀-----

因此,儘管本次的臨床試驗獲得如此巨大的成功,世界衛生組織和主要發展 mAb114 的美國國家衛生院仍不敢鬆懈,委婉地使用了「治療方法」,而非「治癒」或「特效藥」,但確實替前線的醫生們打了一劑強心針。

註釋

  1. 絲狀病毒屬於單股、負 RNA 病毒
  2. 此數據是病況較不嚴重、血液中病毒濃度較低的患者
  3. ΔMuc和THL分別代表用不同方法處理過的醣蛋白,並非直接使用原始病毒的醣蛋白

參考文獻

  1. Amy Maxmen (2019) Two Ebola drugs show promise amid ongoing outbreak. Nature News. DOI: 10.1038/d41586-019-02442-6
  2. John Misasi1 and Nancy J. Sullivan (2015) Camouflage and Misdirection: The Full-On Assault of Ebola Virus Disease. Cell. DOI: 10.1016/j.cell.2014.10.006
  3. Davide Corti, John Misasi, Sabue Mulangu. et al. (2016) Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science. DOI: 10.1126/science.aad5224
  4. 中華民國衛生福利部疾病管制署。伊波拉病毒感染疾病介紹
  5. Stephen C Harrison (2008) Viral membrane fusion. Nature Structural & Molecular Biology. DOI: https://doi.org/10.1038/nsmb.1456
  6. Andrea Rivera and Ilhem Messaoudi (2016) Molecular mechanisms of Ebola pathogenesis. Journal of leukocyte biology. DOI: 10.1189/jlb.4RI0316-099RR
  7. National Institutes of Allergy and Infectious Diseases. Independent Monitoring Board Recommends Early Termination of Ebola Therapeutics Trial in DRC Because of Favorable Results with Two of Four Candidates. August 12, 2019
  8. WHO. Update on Ebola drug trial: two strong performers identified. 12 August 2019
  9. BBC News. Ebola drugs show ‘90% survival rate’ in breakthrough trial. 13 August 2019
文章難易度
miss9_96
170 篇文章 ・ 1063 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

5
0

文字

分享

1
5
0
不只抗 COVID-19 還能抗癌!——曾被遺忘的 mRNA 技術如何成為救命療法?
miss9_96
・2021/10/15 ・4606字 ・閱讀時間約 9 分鐘

mRNA 療法的應用,猶如科學家嘗試以凡人之軀、撰寫神意、扭轉命運。這傳說似的幻想,如今卻近在眼前。

以凡人之身,編寫生命的語言

許多治療,都和蛋白質有關,如:若能在心肌梗塞處,提供生長因子,就能恢復心臟生機;若能訓練白血球辨認腫瘤蛋白質,就能抑制癌症。而細胞生產蛋白質的指令,來自 DNA、mRNA,換言之,若能掌握編寫 DNA 或 mRNA 的技術,就能調控蛋白質、治癒疾病 [1]

起源

mRNA 被發現於上世紀的六零年代,「DNA→mRNA→蛋白質」的邏輯因此建立 [2]。而利用 mRNA 和 DNA 治療疾病的基因療法,開始在科學界裡萌芽。再過三十年、九零年代時,科學家首次將 mRNA 或 DNA 直接注入小鼠,並觀察到人工 mRNA 和 DNA 都能操控小鼠肌肉、製造人工蛋白 [3],能發光的小鼠顯示基因療法並非幻想。但很快地,科學家在選擇 DNA 或 mRNA 來編寫指令時,發現 mRNA 在應用上非常困難,事實上,脆弱到不堪使用。

RNA 的物理性質上比 DNA 更脆弱,同時人體組織裡豐富的分解酵素,限制了 mRNA 療法的可用性。更嚴重的是 mRNA 會引起強烈的免疫發炎反應,人工注入的 mRNA 不僅被破壞,更可能引起副作用,危害病人 [4]。在基因治療的道路上,大多數人拋棄 mRNA、轉投 DNA 的領域。

除了少數幾位。

-----廣告,請繼續往下閱讀-----

拯救生命的英雄,並不總是穿著披風

1998 年,來自匈牙利的科學家-卡林柯(Katalin Karikó)和魏斯曼(Drew Weissman),因共用印表機而結識、合作。她們詢問自己,細胞會攻擊人工注射的 RNA,但細胞本體也有豐富的 RNA,為什麼不攻擊自己呢?深研後發現,人體細胞自有的 RNA,其組成的核苷酸常使用 A、U、G、C 以外的特殊核苷酸,如:哺乳動物 rRNA 裡的偽尿苷(pseudouridine, Ψ)比例是細菌 rRNA 的 10 倍。那麼,若模仿自然、使用特殊核苷酸編寫 mRNA,就能逃脫被偵查、破壞的命運嗎?

2005 年,兩人發表了「避開偵查、減少發炎反應」的 mRNA 技術。在細胞實驗中,以偽尿苷取代 U 而製成的人工 mRNA,有效地避開了細胞的偵查、操控細胞分泌人工蛋白質。2008 年,該技術在動物層級上獲得成功 [4]。但此成功未在學術圈引起驚天波瀾,反倒是兩間小公司看到論文後、買下了她們的專利,一間叫莫德納/Moderna、另一間是德國公司-BioNTech,簡稱 BNT。

時光流轉,來到了 2020 年。

莫德納和 BNT 以當年的專利為基礎,光速推出新型冠狀病毒疾病/COVID-19 疫苗、一戰成名。科學家憑著 mRNA 療法的快速、靈活,拯救了千萬生命。mRNA 療法也藉由大規模施打疫苗,證明了安全、有效。這場頃覆一切的瘟疫,同時也開啟了 mRNA 療法的無限可能。

mRNA 療法的優勢 [5]

mRNA 療法屬基因治療,目前僅 COVID-19 疫苗被廣泛使用,其他應用尚在臨床、實驗室階段。但它獨特的優勢,猶如未雕琢的原鑽,令人著迷。

-----廣告,請繼續往下閱讀-----
  • 製程快速:

以 COVID-19 疫苗為例,因為無需細胞培養、病毒養成、純化等繁雜工藝,莫德納從設計到生產 mRNA 疫苗,僅花了 25 天。此等高速的開發優勢,在每日一變的急性傳染病疫苗開發中,科學家擁有了更迅速的反應能力。而在癌症治療上,mRNA 的快速生產、靈活調整的優勢,讓「客製化」的癌症療法成為可能。科學家可以分析每位患者的腫瘤細胞、尋找其獨特的腫瘤蛋白質,進而客製化 mRNA 藥物。

  • 自帶活化免疫細胞的性質:

如前所述,細胞討厭外來的 RNA;細胞內的受體,能偵測外來 RNA,拉響警報、活化免疫系統 [6] [註2]。在傳染病疫苗的領域,科學家故意利用 mRNA 會引起發炎的特性,以修飾核苷酸等技術,調整疫苗活化免疫系統的程度、設計出無需佐劑就能對抗急性傳染病的 mRNA 疫苗

  • 和 DNA 療法相比,mRNA 安全性更高 [註1]

mRNA 不進入細胞核、在細胞質即可作用,因此不存在插入染色體、引起突變意外等風險。且相較於 DNA, mRNA 降解快,也可透過修飾核苷酸、替換投遞載體等方式,調整 mRNA 存在的時間。過往研究曾發現,注射 DNA 疫苗後,DNA 至少會持續 2 週,並可從注射部位擴散到全身組織 [2],從而構成未知的潛在風險。因此 mRNA 較脆弱、分解快的本質,反而讓人比較放心

屬於 mRNA 疫苗的莫德納疫苗。圖/維基百科

而且 mRNA 的製程中,無需培養細胞或病毒,外來物汙染的風險較低。以 COVID-19 疫苗為例,不論是去活化病毒疫苗(如:科興、國藥),亦或腺病毒載體疫苗(如:AZ、嬌生)的製程中,都要讓病毒感染細胞、大量複製,最後再催毀細胞、殺死病毒、除去汙染細胞碎片等。這些製程,難免會殘留細胞屍體、DNA 等汙染物,帶來些許隱憂。

-----廣告,請繼續往下閱讀-----

mRNA 療法的各種應用 [2]

除了 COVID-19 疫苗外,mRNA 療法尚可應用在癌症、多發性硬化症、心肌梗塞,甚至是愛滋病的治療等。

治癒癌症-克雷默的故事 [7]

52 歲的克雷默(Brad Kremer)打了一針 mRNA。不,不是為了預防 COVID-19,是治療黑色素瘤

參與癌症臨床試驗之前,他皮膚的惡性腫瘤已經侵犯到肝臟、脊椎。克雷默的背痛日漸加劇、體重快速被侵蝕,死神即將取得勝利。而打了 mRNA 第一針的數週內,克雷默驚奇的看到,皮膚上硬幣大小的腫瘤硬塊、以肉眼可察的速度縮小、扁平、退色。隨著療程持續,食慾慢慢恢復、背痛消退,並且儀器中的影像顯示腫瘤正在縮小、消失

帶給克雷默希望的疫苗代號是 BNT122,製造商是德國 BioNTech,除了傳染病疫苗外,它們也專注於癌症領域。2017 年,13 名末期黑色素瘤的患者接受特製個人化的 mRNA 療法,依據每位病人的腫瘤細胞設計 mRNA,進而特訓免疫系統,讓免疫細胞辨認、殺死「壞細胞」。試驗取得了階段性成果,治癒癌症的「神諭」又近了一步。

人體的免疫細胞本就能剿滅腫瘤,但可能因老化、腫瘤特性等原因,使免疫系統放任腫瘤生長。因此,若能用 mRNA 療法特訓、直接把「壞細胞」的長相放到免疫細胞的面前,就能特化出專殺腫瘤的特種部隊。

-----廣告,請繼續往下閱讀-----
黑色素瘤。圖/維基百科

mRNA 可應用的腫瘤基因療法有二 [8]

  1. 以樹突細胞為目標:機制仿似 COVID-19 疫苗。將腫瘤細胞特有的蛋白質編入 mRNA,投遞入樹突細胞,再由樹突細胞表現敵人蛋白質、通知 T 細胞
  2. 以 T 細胞為目標:即近期熱門的 CART(chimeric antigen receptors T cell)療法。創造全新的 T 細胞的表面受體,故意設計出可辨認出腫瘤的受體,再將其編碼入 mRNA、投遞入 T 細胞,人工培養出可認出腫瘤的 T 細胞軍團。目前美國已有專門治療淋巴癌的 CART 療法上市。

緩解自體免疫疾病、過敏疫苗-用 T 細胞克制 T 細胞

免疫系統若失控,就會攻擊人體、引發紅斑性狼瘡、多發性硬化症等自體免疫疾病;也會引起過敏性鼻炎等令人不適的過敏反應。因此,系統裡也有內控、抑制免疫的憲兵-調節性T細胞(regulatory T cell/Treg cell)。科學家也試圖利用mRNA療法活化調節性T細胞、調低過度活躍的免疫反應,緩解自體免疫疾病

mRNA 所針對的自體免疫疾病有二:

  1. 預防、緩解自體免疫疾病 [9]:樹突細胞是人體的哨兵,它會不分敵我地到處吞食蛋白質,但只有「同時收到發炎訊號」時,才會驚覺「外敵入侵」、呼叫負責總體戰的 T 細胞。科學家刻意鑽此漏洞、設計了「不引起發炎訊號」的 mRNA 疫苗(不含佐劑、mRNA 使用特殊核苷酸),讓樹突細胞吞食會引起多發性硬化症的自體抗原、但卻不引起發炎訊號。以此方式教育細胞「這是正常的蛋白質,不要隨便攻擊它」
  2. 過敏疫苗 [2]:mRNA 療法在多發性硬化症的小鼠模型上,成功地推遲了發病的年齡、減輕疾病的嚴重度。而且沒有傳統化學藥物、無差別壓制免疫力的副作用。T 細胞會透過許多路徑活化,如:TH1, TH2 等,其中 TH2 會誘發 IgE 等導致過敏的反應。幸好 TH1, TH2 之間是競爭關係,若能提前活化 TH1,就能避免導致過敏的 TH2 出現。因此科學家利用 mRNA 疫苗活化偏向 TH1 的特性,設計了預防過敏的疫苗,在過敏性鼻炎的小鼠模型上,成功地預防了過敏疾病
過敏性鼻炎。圖/Pexels

mRNA操控細胞定位,協助患部組織再生

許多疾病是缺乏適當蛋白質所引起,而 mRNA 能操控細胞分泌人工蛋白質,並具備短時間被分解的安全性優勢,使許多科學家試圖用 mRNA 操控細胞分泌正確的蛋白質、治療疾病。

例如針對心肌梗塞的小鼠,科學家將血管內皮生長因子(Vascular endothelial growth factor, VEGF)編入 mRNA,再注入心臟肌肉後,發現心肌梗塞小鼠的心臟功能提升、並存活期也隨時延長 [2]

而科學家更利用編碼 mRNA 的方式,操控細胞的定位。間質幹細胞(MSC, Mesenchymal stem cell)能協助組織再生、加速傷口癒合。但在應用上,間質幹細胞不會自動、乖巧地跑到發炎的患處。科學家將可導引到發炎區域的蛋白質編碼入 mRNA,再植入幹細胞中。成功地在小鼠模型上,證明了此設計下的間質幹細胞會乖乖地定位、協助患部組織再生 [10]

-----廣告,請繼續往下閱讀-----

結語

mRNA 療法的故事,宛如二次元的幻想真實地發生。突然爆發的瘟疫,讓科學家多年的夢想-以凡人之軀編寫神諭,一夕成真。也使得治癒癌症、預防自體免疫疾病的目標,又真實了一些。也許,在可見的未來裡,罕病不再可懼、癌症終將治癒。

註釋

  1. 在某些應用上,該特點為優勢,但在其他應用裡,mRNA 療法的特點,可能反倒為弱勢。DNA、mRNA 療法並無高下之分,需視使用目的而擇之。
  2. 細胞的類鐸受體(Toll-like receptors, TLRs)負責偵測入侵者或組織被破壞的各種小分子,如:TLR3-偵測雙股 RNA、TLR7, 8-偵測單股 RNA。另也可以偵測細菌鞭毛蛋白、微生物的 DNA 等。

參考文獻

  1. 蔣維倫 (2021) 拯救世界的 mRNA 疫苗——疫苗科學的里程碑(四)。泛科學
  2. Ugur Sahin, Katalin Karikó & Özlem Türeci (2014) mRNA-based therapeutics — developing a new class of drugs. Nature Reviews Drug Discovery. DOI: https://doi.org/10.1038/nrd4278
  3. J A Wolff 1, R W Malone. et. al. (1990) Direct Gene Transfer into Mouse Muscle in Vivo. Science. DOI: 10.1126/science.1690918
  4. 蔣維倫 (2021) 終結疫情、治癒癌症,從魯蛇到英雄!拯救世界的 mRNA 療法和它的母親。科學月刊
  5. Norbert Pardi, Michael J. Hogan, Frederick W. Porter & Drew Weissman (2018) mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery. DOI: https://doi.org/10.1038/nrd.2017.243
  6. Jiskoot W., Kersten G.F.A., Mastrobattista E., Slütter B. (2019) Vaccines. In: Crommelin D., Sindelar R., Meibohm B. (eds) Pharmaceutical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-00710-2_14
  7. Elie Dolgin (2019) Unlocking the potential of vaccines built on messenger RNA. Nature. DOI: https://doi.org/10.1038/d41586-019-03072-8
  8. Khalid A. Hajj & Kathryn A. Whitehead (2017) Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials. DOI: https://doi.org/10.1038/natrevmats.2017.56
  9. Christina Krienke, Laura Kolb. et. al. (2021) A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science. DOI: 10.1126/science.aay3638
  10. OrenLevy, WeianZhao. et. al. (2013) mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. E-Blood. https://doi.org/10.1182/blood-2013-04-495119
所有討論 1
miss9_96
170 篇文章 ・ 1063 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

0
0

文字

分享

0
0
0
伊波拉的藥物Remdesivir,可以用以對抗新型冠狀病毒肺炎(COVID-19)?由美國第一例治療報告談起
miss9_96
・2020/02/14 ・1941字 ・閱讀時間約 4 分鐘 ・SR值 617 ・十年級

中國新型冠狀病毒 (SARS-CoV-2) 來得又急又快,在此困境下,醫生們不得不將手上的藥物打出,期許某支藥物,能夠撂倒死神,挽救命懸一線的患者。

2020 年 1 月 19 日,一名 35 歲的美國男子出現在了華盛頓州的急診室。儘管沒有顯著的病徵(體溫 37.2℃、脈搏 110次 / 分鐘、血氧濃度 96%),胸部 X 光也無異常1

但病人陳述的武漢旅遊史,讓醫護心中敲響了警鈴,立馬向美國疾病管制中心 (US CDC, Centers for Disease Control and Prevention, 以下簡稱美國 CDC) 報告,同時在 48 小時內進行了所有常見呼吸道病毒的測試註1, 2,結果皆呈陰性。

1 月 20 日,美國 CDC 報告出爐,確診為美國第一例 SARS-CoV-2 感染者!於是一場與皇冠死神拉扯的拔河賽正式開始了。

美國第 1 例患者之臨床紀錄。圖/參考文獻 1。(中文資料為本文作者加註)

-----廣告,請繼續往下閱讀-----

由此例可以發現幾個特點(非通例,僅就此例觀察):

  • 患者全程症狀和流感極為類似(咳嗽、乏力等)
  • 患者感到不舒服時,並未有高燒、胸部 X 光無顯著肺部浸潤;直到感染約 6 天後出現高燒;感染第 9 天胸部 X 光出現肺部浸潤。

若非患者誠實告知旅遊史、醫護人員警覺性高、US CDC 慎重以對,則此例武漢肺炎 (COVID-19) 的病例表徵確實和流感極為類似,恐怕送醫的時間會更晚。

一名誠實的患者、一群遵守流程的醫護團隊

醫護們起初僅提供支持性療法,包含退燒、補充液體等。期間生化檢測發現白血球減少、血小板減少、肝功能指數變化等。

儘管入院時病徵不明顯,但隨著病程加速,病毒侵犯全身組織,各處檢體的病毒量開始提高,甚至在糞便中也能採集到病毒(見下圖)。

-----廣告,請繼續往下閱讀-----

不同時間點、不同檢體的病毒RNA檢測結果。圖/參考文獻 1。(中文資料為本文作者加註)

而在胸部 X 光檢測裡,入院時肺部顯示正常;但病毒持續在男子體內肆虐,病況急轉直下。

感染第 9 天(1/24, 入院第 5 天)發現左肺下葉肺炎,同時臨床上出現呼吸困難、血氧飽和度值降至 90%(最低應至少 96%)。隔日被迫使用氧氣呼吸和抗生素減緩感染。

然而病況並沒有因此轉好,雙肺惡化出肺炎。此時如無法取得進展,死神即將擊倒醫護團隊、取得最後的勝利。

-----廣告,請繼續往下閱讀-----

感染第 4 和 10 天之胸部 X 光照片,可發現肺部浸潤產生的白色陰影。圖/參考文獻 1。(中文資料為本文作者加註)

Remdesivir 聽說能搞定RNA病毒?換你上了

Remdesivir 是模仿 DNA、RNA 的藥物,它能鑲入 RNA 的複製酶 (RNA-dependent RNA polymerase),阻礙 RNA 鏈持續地延展,進而阻斷病毒的生命2, 3。Remdesivir目前在治療伊波拉出血熱裡取得臨床第三期的成果註3

Remdesivir 和目標酵素的模擬圖。圖/參考文獻 2。(中文資料為本文作者加註)

由於患者的情況每況愈下,醫護團隊在感染第 11 天起開始靜脈注射 Remdesivir。

-----廣告,請繼續往下閱讀-----

沒想到這個臨場拉來的救援投手展現了強大的壓制力,隔日患者的臨床感受就開始恢復、血氧飽和度值上升到 94-96%,無需額外補充氧氣,直到本研究紀錄截止日 (1/30),各項情況都持續改善,病人逐漸康復中。

從美國第一例中,可以學到啥?

從美國第一例武漢肺炎的案例,從感染、通報到治療,都有值得學習的地方,個人摘要如下:

  • 誠實申報,不因畏懼而隱瞞旅遊史。
  • 團隊提高警覺、完整訓練。儘管 X 光、病徵並無呈現急症,但醫護團隊顯然受過良好訓練,才能第一時間上報 US CDC。
  • 逐日觀察,定量、定性地公佈醫療數據。因此我們才知道原來糞便也藏有病毒、發燒後數天 X 光才有肺部浸潤的表徵、上吐下瀉也可能是武漢肺炎的病徵之一。
  • 大膽使用 Remdesivir,並取得極佳的治療效果,鼓舞了全球。個人建請台灣衛生福利部專案進口該藥物,立即投入實驗。

面對疾病,只有透明、團結、無私才能取得上風。因為病毒是全世界最公平的生物,不因國籍、宗教、性傾向而選擇感染者。

人類會因政治傾向、國籍共識而區分敵我。但病毒對全世界都很公平,只要人類不團結,每個人都是病毒的食物。

註解

  1. 包含腺病毒、副流感、A 和 B 型流感、鼻病毒等。
  2. 台灣決定一旦發現疑似病例,立刻先使用壓制流感的藥物,借此排除流感的可能性。確實是非常高明的做法,值得大力讚美。
  3. Remdesivir 設計上是廣效型的抗 RNA 病毒藥物,並非單純僅抵禦伊波拉病毒。

參考文獻

  1. Michelle L. Holshue, M.P.H., Chas DeBolt, M.P.H., Scott Lindquist, M.D., Kathy H. Lofy, M.D., John Wiesman, Dr. P.H., Hollianne Bruce, M.P.H., Christopher Spitters, M.D., Keith Ericson, P.A.-C., Sara Wilkerson, M.N., Ahmet Tural, M.D., George Diaz, M.D., Amanda Cohn, M.D., LeAnne Fox, M.D., Anita Patel, Pharm. D., Susan I. Gerber, M.D., Lindsay Kim, M.D., Suxiang Tong, Ph.D., Xiaoyan Lu, M.S., Steve Lindstrom, Ph.D., Mark A. Pallansch, Ph.D., William C. Weldon, Ph.D., Holly M. Biggs, M.D., Timothy M. Uyeki, M.D., and Satish K. Pillai, M.D. for the Washington State 2019-nCoV Case Investigation Team (2020) First Case of 2019 Novel Coronavirus in the United States. New England Journal of Medicine. DOI: 10.1056/NEJMoa2001191
  2. Guangdi Li & Erik De Clercq (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery. DOI: 10.1038/d41573-020-00016-0
  3. Ariane J.Brown John, J. Won, Rachel L. Graham, Kenneth H. Dinnon III, Amy C. Sims, Joy Y. Feng, Tomas Cihlar, Mark R. Denison, Ralph S. Baric, Timothy P. Sheahan (2019) Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Research. 169. https://doi.org/10.1016/j.antiviral.2019.104541
miss9_96
170 篇文章 ・ 1063 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9