Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

仿生機器人──小怪獸(運用篇)

馥林文化_96
・2012/05/09 ・2543字 ・閱讀時間約 5 分鐘 ・SR值 517 ・六年級

翻滾吧「小怪獸」!

文/鮑惟聖

讓小怪獸來個伏地挺身

基本上到目前「小怪獸」的硬體算是完成了。原來規劃還有LED與紅外線感測器部分,我們等到「小怪獸」可以行走了之後再來加裝。現在請開啟 InnoBASIC Workshop 2環境,到「動作編輯器」的主畫面(圖A)。機器人最基本的行走原理就類似早期的卡通影片,將許多的靜態畫面連續播放,就形成了動態的畫面。這時候如何正 確而精準地將一個動作拆成幾個分解動作,就是機器人運動能力優劣的關鍵了。現在就先讓「小怪獸」學會暖身來個「伏地挺身」吧。我把「伏地挺身」分成二個分解動作。第一就是標準站姿,第二就是腹部貼近地面。目前畫面上所顯示的初始值都是1500,也正好就是我們所要的標準站姿,注意要先將所有的核取盒打勾, 這樣才有啟動控制功能。接著我們就直接按下「儲存」鍵,將此動作儲存到SC8控制板裡。

-----廣告,請繼續往下閱讀-----

圖A

微調的重要性

通 常這時候就會發現明明每個伺服機都按照要求設成1500的位置,但站姿好像不是很正,左看右看每個伺服機都想給它調整一下,這時候我們就需要做「微調」了 (圖B)。造成這各現象的原因有二:第一,伺服機輸出軸與「搖臂」結合處的齒數是有限的,所以不論如何鎖,一定會有機械性的角度誤差;第二,整體性的機構 偏差,例如支架歪斜,使得我們必須靠「微調」來補償機構上的偏差。動作編輯器主畫面的右上角有「設定微調值」的按鍵,按下後即可進入「設定微調值」的主畫 面。其中可以進行微調的通道,即為剛才所核取的通道。基本操作方式與動作設定相同,只是數值範圍較小從-128到+127。邊微調邊觀察伺服機是否轉動到 要求的位置了。當各通道微調值設定好了之後,記得要按下「儲存到模組」按鍵,目前的設定值才會正式被儲存到SC8控制板,否則下次使用SC8控制板會發現 微調值還是舊的。現在大家了解「微調」的用處之後,我們繼續剛才的動作設定。

圖B

-----廣告,請繼續往下閱讀-----

完成伏地挺身的動作設定

接 著我們要調整出第二個動作,讓身體貼近地面。其實只要轉動外側的四個伺服機就可以了。現在請慢慢拉動CH1、CH3、CH5、CH7的捲軸或填入數值。這 時候就可以觀察是否有符合您的動作要求。這裡我使用的位置是1200與1800,從中心位置前後大約擺動各30度。因為伺服機安裝的方向不同,左前腳與右 後腳會是同一個數值,右前腳與左後腳會是另一個數值。動作若是一致的,就是要降低身體高度。如果覺得姿態沒問題就先將畫面左上方的動作編號改成1(圖 C),然後按下「儲存」鍵,將此動作儲存到SC8控制板裡。

每次儲存新的動作時一定要記得改變動作編號,否則之前所設計的動作就會被覆蓋掉 了。因為你所設計的動作都儲存在SC8控制板裡,如果想檢視某一個編號的動作,只要改按「讀取」鍵,並輸入動作編號,例如編號0。這時候「小怪獸」就會呈 現原先設定的站立姿態了。好了,動作設定完成,現在開始寫程式吧。

圖C

-----廣告,請繼續往下閱讀-----

開始寫程式

首 先從「檔案」/「開新檔案」選單之下開啟一個新檔案,然後輸入下列程式。單引號「’」之後的文字稱之為「註解」,方便自己或他人閱讀程式之用,對程式執行 沒有任何影響。練習的時候如果想省事,「註解」的部份是可以省略。但是正式寫程式的時候可千萬別偷懶,否則現在引以為傲的「武功祕笈」下次在閱讀時,套句 俏皮話,就變成諸葛亮的「出師表」,「臨表涕泣,不知所云」了。

‘==================================================

‘ 小怪獸伏地挺身五次

-----廣告,請繼續往下閱讀-----

‘==================================================

Peripheral mySer As ServoRunner8A @ 0

‘ 預設內建模組ID為0

Sub Main ()

-----廣告,請繼續往下閱讀-----

Dim I As Byte ‘ 宣告變數

For I=1 to 5 ‘ FOR NEXT 迴圈開端,迴圈執行5次

mySer.LoadFrame(0) ‘ 載入編號0動作的資料

mySer.RunAllServo() ‘ 執行編號0之動作

-----廣告,請繼續往下閱讀-----

Pause 1000 ‘ 程式等待一秒,等待伺服機完成動作

mySer.LoadFrame(1) ‘ 載入編號1動作的資料

mySer.RunAllServo() ‘ 執行編號1之動作

Pause 1000 ‘ 程式等待一秒,等待伺服機完成動作

-----廣告,請繼續往下閱讀-----

Next I ‘ FOR NEXT 迴圈末端

End Sub

程 式輸入完畢之後(圖D),請在「建立」選單中選取「建立」功能然後開始進行程式編譯與通過USB線下載編譯後的程式碼至SC8控制板。此時「小怪獸」就會 每秒一次「上」或「下」進行「伏地挺身」,而且因為For…Next指令的指定,「小怪獸」將會執行5次「伏地挺身」。

圖D

好啦!伏地挺身還算是簡單,我們現在開始設計步行的動作。原則上愈多分解動作可以達成較好的平衡性與流暢度。但是既然是「入門 級」的機器人,步態設計還是以簡單易懂為原則。這裡就整理出八個分解動作,經由不同的分解動作組合,可以做出前進、後退、轉彎等動作。下面就是這八個動作 的示意圖。首先大家會注意到每隻腳都有對應到三個圓圈,說明足部是在「前」、「中」、「後」哪個位置,這些位置是由內側伺服機控制。虛線的圓圈只是方便辨 識相對位置,實際落腳會以一個「實心圓」與「空心圓」分別表示不同高度,這些高度是由外側的伺服機控制,圖的上方為頭部的方向(圖E)。

圖E

高度可以有「上」、「中」、「下」三個位置,但是目前為止動作規劃還沒有使用到「上」的位置。所以大家有進一步的動作規劃時,可 以再加入「上」的位置。為了方便動作設定,這裡就一併把設定這些動作所需要的伺服機位置數值,建成一張表給各位參考。各位就依照前面伏地挺身的動作設計方 法(圖F),把剩下的動作2到動作7儲存到SC8控制板裡面。

相關網站連結:
動作編輯器(Motion Editor)使用介紹:http://www.innovati.com.tw/website/down/html/?43.html
BASIC Commander & InnoBASIC Workshop 使用手冊: http://www.innovati.com.tw/website/down/html/?33.html
InnoBASIC Workshop 2 安裝程式: http://www.innovati.com.tw/website/down/html/?113.html

*鮑惟聖
擁有中原大學電機工程學士學位,利基應用科技(www.innovati.com.tw)的創辦人。多年來一直從事微處理器應用與系統工具的開發,並致力於推廣智慧型機器人科普教育。

更多:
仿生機器人──小怪獸(製作篇)
仿生機器人──小怪獸(升級篇)

本文原發表於《Make》國際中文版vol.03

-----廣告,請繼續往下閱讀-----
文章難易度
馥林文化_96
54 篇文章 ・ 5 位粉絲
馥林文化是由泰電電業股份有限公司於2002年成立的出版部門,有鑒於21世紀將是數位、科技、人文融合互動的世代,馥林亦出版科技機械類雜誌及相關書籍。馥林文化出版書籍http://www.fullon.com.tw/

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
1

文字

分享

0
4
1
鑑識故事系列:手錶會「記錄」死亡時間?!
胡中行_96
・2022/08/29 ・2476字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

時年 26 歲[1] 的 Caroline Dela Rose Nilsson 手腳被緊縛,[2] 嘴巴堵塞著,神色極度焦慮,[1]在自家的車道上呻吟。[3, 4] 鄰居見狀快速通報警察。[1]

事情發生在 2016 年 9 月 30 日,[4] 晚間 10 點 10 分,[1] 南澳阿德雷東北市郊的 Valley View 地區。[1, 3] Caroline 的三個孩子當時在家,他們分別為 1、3 和 5 歲;[2] 而她 57 歲的婆婆 Myrna Nilsson 早已被重擊致死,陳屍於洗衣間。[5] 稍後,員警在屋裡的走廊找到眼神渙散,面容哀戚的男孩;他的兩個姊妹則是面部朝下,趴在床上哭泣。員警讓孩子們同自己坐在警車裡,但卻什麼也問不出來。[5]

另一邊,當死者的兒子 Mark ,也就是 Caroline 的丈夫,得知母親死了。 Mark 詢問警方, Caroline 是否受傷,然後平靜地以實事求是的口吻說:「我不懂怎麼會有這種事情,您是說意外嗎?」由於警方不願意透漏細節,在完全不知道來龍去脈的情況下, Mark 又問是不是有人闖入家中。[5][註1]

澳洲國產霍登皮卡車的模型。圖/Andrew Bone on Flickr(CC BY 2.0

根據 Caroline 的說法,當天有 2、3 名開著皮卡車的男性,跟蹤她的婆婆 Myrna 回家。他們與 Myrna 在屋外爭執了約 20 分鐘,但殺害她的時候, Caroline 碰巧在關著門的廚房裡,所以什麼也沒聽到。[1] 這幾個「看起來像粗工」的人,後來也攻擊 Caroline 。[2, 5] 問題是,如果三個孩子徹頭徹尾都在屋裡,為何會安靜到沒被捲進來?

-----廣告,請繼續往下閱讀-----

檢方拿 3 個孩子的頭髮樣本,去做藥物檢測,其中 2 個結果顯示有Tramadol殘留。[2] 在澳洲屬於四級管制藥物的 Tramadol ,需要有處方籤才能取得,是一種會抑制呼吸且具有鎮定作用的止痛劑,一般不得施予 12 歲以下的兒童。[6] 更啟人疑竇的是,屋裡既沒有外人入侵的 DNA 證據,附近的鄰居也沒注意到一輛皮卡車進出。[7] 這令檢警不太採信 Caroline 的說辭。[1]

此外,負債澳幣 4,000 元(時值約新臺幣 10 萬元)的 Caroline ,每半個月還得跟丈夫共同支付婆婆 Myrna 澳幣 1,000 元的房租。[註2]相較之下,Myrna 經濟優渥,不僅擁有汽車,在澳洲和菲律賓置產,曾赴歐洲旅遊,還給年幼的孫子買車買房。Mark 是獨子,若 Myrna 過世,他們夫婦便可順勢繼承財產,謀財害命的動機充足。[8]

檢警因此把 Caroline 列為頭號嫌疑犯,卻始終沒有以謀殺罪名逮捕她。直到 2018 年 3 月,他們取得關鍵證據。[1]

蘋果智慧型手錶示意圖,非當事證物。圖/Adam Kovacs on Unsplash

Myrna Nilsson 慘遭殺害的時候,戴著一只蘋果智慧型手錶。[1]

從智慧型手錶判讀死亡時間

Myrna 的智慧錶記錄到她人生末了的重要數據:她在返抵自家的 47 秒內開始遭受猛烈攻擊,[4]其中有短短 39 秒的長度,出現 65 次倉皇的動作,然後她的心跳就停止了。時間約莫是傍晚 6 點 41、42 分。[2, 4] 15 分鐘後, Caroline 用手機傳訊息給丈夫,還留下在臉書和 eBay 的使用紀錄。[4] 從這個時間點到她的鄰居報案,中間相差三個小時。此情形讓 Caroline 的陳述顯得不合理,因而遭檢察官起訴。[3]

-----廣告,請繼續往下閱讀-----

從傳統手錶推測死亡時間

智慧型手錶進入人類生活已有一段時日,不過有些人仍然會戴其他類型的手錶。它們雖然不會追蹤使用者的生命徵象,但有時也能提供警方估計死亡時間的線索。以下是 2022 年《國際鑑識科學》(Forensic Science International)期刊,介紹的二個例子:

一名八旬老翁俯臥於公寓的地板上,毫無生命跡象。他最後一次被人看見還活著,已經是 5 天前的事情了,對縮小死亡時間範圍的幫助有限。死者左手戴著一只持續運作的自動機械錶,錶面顯示的時間準確無誤。此種手錶仰賴使用者手部的活動帶動發條。老翁戴的這款每次帶動之後,可以撐上 44 至 48 小時,而且它在警方展開調查後 18 小時才停止運轉。所以用 48 減掉 18 ,得知老翁或許在被發現前的 30 小時左右身亡。[9]

期刊介紹的另一起案件,死者右手戴的是太陽能石英錶。某年12月在丹麥的沼澤,有個獵人撞見一具屍骨。當下右手骨頭上的錶還在走,不過時間快了 1 小時,而日期則晚了 3 天。該國的日光節約通常始於 3 月,終於 10 月,也就是說死者的手錶在 10 月之後,沒有被調回標準時間。至於少掉的 3 天,則是因為 6、9 和 11 月都只有 30 天。若未手動跳過 31 日,手錶的日期就會在這段期間,每個月各晚 1 天。由此推估,死者可能是在 5 月 1 日到 6 月 30 日之間身亡。[9]

死亡時間與判決

死者配戴的各種手錶,留給警察辦案的線索。然而是否能破案,並將罪犯繩之以法,仍受到其他因素的影響。2016 年 Myrna Nilsson 被害身亡;2018 年她的媳婦 Caroline ,遭警方以智慧錶的紀錄為證據逮捕。[1] 2020 年在 8 週的審理後,陪審團無法達成共識。 2021 年又經歷 6 週的法律攻防, Caroline 最後被無罪釋放。[3] 而直至 2022 年的今天,警方仍未捕獲她口中,謀殺婆婆的那幾個粗工。

-----廣告,請繼續往下閱讀-----

  

備註

  1. 筆者找到的新聞資料,好像都沒有明確解釋,事發當下 Mark Nilsson 身在何處。
  2. 有一篇報導說 Caroline 跟 Mark 給婆婆房租,一家三代同堂,她卻連自己的房間也沒有。Caroline 得跟兩個女兒睡;兒子則是和婆婆同寢。該文沒提到 Mark 睡哪。[8]
  1. Rebecca Opie. (29 MAR 2018) ‘Smartwatch data helped police make arrest in Adelaide murder case, court hears’. ABC News.
  2. Dillon M, Carter M. (13 DEC 2021) ‘Caroline Nilsson murder trial returns hung jury over death of mother-in-law captured on an Apple Watch’. ABC News.
  3. Mahalia Carter. (26 OCT 2021) ‘Caroline Nilsson found not guilty of murdering mother-in-law after smart watch case retrial’. ABC News.
  4. Kathryn Bermingham. (15 OCT 2020) ‘Prosecutors close case against woman charged with murdering her mother-in-law in 2016’. The Weekend Australian.
  5. Mahalia Carter. (13 DEC 2021) ‘Alleged murder victim’s son was ‘matter-of-fact’ when told of death, court hears.’ ABC News.
  6. APO-Tramadol’. (01 March 2022) NPS MedicineWise
  7. Rebecca Opie. (3 MAY 2018) ‘Son of alleged murder victim Myrna Nilsson urges court to release wife on bail’. ABC News.
  8. Meagan Dillon. (13 DEC 2021) ‘Alleged killer Caroline Dela Rose Nilsson had ‘no motive’ to kill, despite financial pressures, court hears.’ ABC News.
  9. Busch JR, Hansen SH. (2022) ‘The wristwatch – A supplemental tool for determining time of death’. Forensic Science International, 335, 111283.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
0

文字

分享

0
1
0
大象你的鼻子怎麼伸得這麼長?因為多功能皮膚也能伸展!
Peggy Sha/沙珮琦
・2022/08/24 ・1627字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

「大象~大象~你的鼻子怎麼那麼長?」

在象鼻皺皺的皮膚下面,隱藏著超強伸展力。 圖/envatoelements

喬治亞理工學院(Georgia Institute of Technology)最新的研究發現,大象皺巴巴的「皮膚」竟然隱藏著超強的「伸展之力」,跟肌肉簡直就是完美搭檔。有了隱藏的伸展力,大象就能夠加倍發揮象鼻的各種功能,還能將象鼻伸得更長、更遠!

又硬又軟的萬用工具!象鼻究竟有多強?

象鼻實在是非常神奇的存在,它擁有超過四萬條肌肉,既能柔軟靈活地捲起水果和樹葉,又能強悍地打斷樹幹、抵禦攻擊。究竟它為何能這樣「又硬又軟」靈活切換呢?

神奇的象鼻,靈活地就像大象的手一樣。 圖/GIPHY

為了深入探索象鼻的秘密,研究團隊特別跑去亞特蘭大動物園(Zoo Atlanta),設置了高速攝影機,紀錄下非洲大象用象鼻拿取食物的過程。

乍看之下,軟軟的象鼻似乎就像我們的舌頭一樣,是充滿肌肉的無骨組織。然而,它真正派上用場時,可一點兒也不像舌頭呢!透過鏡頭,研究人員發現:象鼻頂部底部的運動狀況完全不一樣。當大象伸長象鼻時,象鼻外側的延伸能力比內側強多了。仔細看看畫面,就能發現外側的象鼻其實伸得更長!

-----廣告,請繼續往下閱讀-----
非洲象用象鼻拿取食物的過程。影/Georgia Tech College of Engineering

秘密就在皮膚裡!打開皺紋發揮伸展之力吧!

至於兩邊的長度為何會有如此大的差距呢?秘密原來就藏在象鼻的皺褶中!研究團隊解剖了大象屍體,發現象鼻外側與內側的皮膚非常不同——象鼻外側那摺疊起來的皮膚,比另一側的皮膚多出了約 15% 的彈性。

更有趣的是,大象移動象鼻的方式,跟章魚觸手這種軟趴趴器官常用的「平均伸展大法」十分不同,象鼻伸展時就像是打開了一把折疊傘,內部是固定的,而傘面則可以向外變寬、延伸。不只如此,大象們還會如同開折傘一樣「分批運動」象鼻喔!

怎麼說呢?牠們運用象鼻時,會先探出頂端,然後視需求一節一節依序運用後面的肌肉,不到萬不得已,絕對不會動到靠近身體這側的肌肉群!學者們表示,大象之所以會這樣動,是因為象鼻前端部分的肌肉量較少,動起來也比較不費勁,而大象其實就跟人類一樣懶,當然是追求越省力越好囉!

在拿取東西時,象鼻會由前往後一節節伸展。圖/envatoelements

借我學一下啦!皺褶象皮竟能應用在機器人身上?

另一方面,象鼻上這些皺巴巴的皮膚其實也十分堅硬,能起到重要的保護作用。比如說,在關節部分,一般肌肉容易拉伸,甚至拉傷,但如果有了皺褶,則需要花上整整 13 倍的力量才能拉伸。

-----廣告,請繼續往下閱讀-----

這樣的保護力有什麼用呢?在未來,或許可以應用在仿生機器人身上喔!許多仿生機器人都會設計液壓系統,雖然十分靈活,但施力時卻也非常容易斷裂。如果我們能在機器人身上添加一些皺巴巴的皮膚,不僅能提供更強大的保護力,也讓機器人在運用上出現更多不同的可能性。

  1. Skin: An additional tool for the versatile elephant trunk
  2. Schulz, A. K., Boyle, M., Boyle, C., Sordilla, S., Rincon, C., Hooper, S., Aubuchon, C., Reidenberg, J. S., Higgins, C., & Hu, D. L. (2022). Skin wrinkles and folds enable asymmetric stretch in the elephant trunkProceedings of the National Academy of Sciences of the United States of America119(31), e2122563119. https://doi.org/10.1073/pnas.2122563119
  3. How Skin Helps Elephants Move and Twist Their Trunks
  4. 動物奇門功夫.象鼻神奇構造
-----廣告,請繼續往下閱讀-----
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。