0

0
0

文字

分享

0
0
0

《真的假不了,假的真不了──數據造假前請考慮『機率』》————2019數感盃/高中職組專題報導類佳作

數感實驗室_96
・2019/05/25 ・2600字 ・閱讀時間約 5 分鐘 ・SR值 553 ・八年級

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。
本文為 2019數感盃青少年寫作競賽 / 高中職組專題報導類佳作之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

  • 作者:陳宥諼、林昱佑/國立科學工業園區實驗高級中學
圖/flickr

最近在網路上看到了一則去年的新聞:一名在學術期刊等公共平台發表了高達 200 多篇論文的日本麻醉醫師──藤井善隆,被抓到長期偽造數據,並有高達 183 篇論文遭到撤稿,且數量仍持續增加。引起學界注意的投訴信中說道:「藤井的研究數據完美到難以置信。」

最早開始懷疑藤井數據造假的人之一,英國麻醉師 John Carlisle 觀察了藤井一百多批藥物實驗的數據,並計算了那些數據的隨機分佈,結果發現藤井的數據在統計分析下其實「發生機率極低」。也就是說,藤井的數據雖然看起來漂亮,但實際上卻是「不自然的」。

這使我們產生了興趣:我們所認定「正常」、「隨機」的數據,會不會只是我們主觀直覺思考時所產生的假象?然而事實上卻不符合真實機率?讓我們看一個簡單的例子:

假設老師出了一項作業,請學生每人投擲一枚公正硬幣1000次,並記下每一次的結果;但是,這項作業實在是太繁瑣了,學生們都想直接自己編數據交差了事──「反正,本來得到的結果就是『隨機』的啊!我只要在記錄表上隨便填上「正」或「反」就好了!」於是,大部分的人會編出類似這樣的數據「正反反正反正正反正反反反正……」看起來真的「很隨機」呢!

可是,收作業當天,老師卻一眼就找出了所有偷懶的同學(絕對不是因為有內鬼!)──「你們還太嫩了!實際去丟銅板要丟出這種結果,機率還真的不是一般的低啊……」老師一臉不屑的說。

「機率」?!終於有同學抓到關鍵字了。

其實,如果真的自己丟銅板的話,會發現可能出現這樣的結果:「……正反正正正正正正正正正正反正正正正……」怎麼連續這麼多的「正」啊!不過,如果反過來想,要是丟很多很多次,卻沒出現連續好幾個相同面朝上才奇怪呢!

什麼意思呢?以機率的角度來看──

假設丟一個公正銅板 n 次,求至少出現 1 組連續 y 個以上正面朝上的機率。

則機率 f(n)=(令擲出結果正面朝上為「+」、背面朝上為「-」;連續y個以上「+」為串列S)

1.若 0<=n<y

因為擲的次數不滿 y 次,所以就算全部擲出正面,也無法滿足條件。故,f(n) = 0

2.若 n=y

必須保證每一次都擲出正面,而每一次擲出正面的機率都是 1/2 ,所以:

f(n) = (1/2)^y

3.若  y<n<(2y+1)

最多只可能出現1組S,且要擲出S只有兩種方法:

(1) 在前 n-1 次就已經擲出 S (令機率=g(n)):如果前 n-1 次已經擲出 S,不管最後一次(第n次)擲出「+」或「-」,都不會影響結果。故

g(n) = f(n-1)

(2) 前 n-1 項未出現 S,擲出最後一項為「+」,和前面的「+」合併後恰形成一個S (令機率=h(n))

此即保證最後的至少 y 項皆擲出「+」(即  (i)第n-y+1項到第n項一定為「+」)。然而,若 S 的長度 >y (即第n-y, n-y-1, …項也為正),那麼在前 n-1 項時,就已經形成 S 了,機率就又回到 g(n)。所以,可以保證  (ii)此種方式的第n-y項絕對不為「+」。

另外,還須確保前n-y-1項未出現S:由於n< (2y+1),已經確定第n-y項為「-」的情況下,第1項到第n-y-1項最多只有2y(全部)-y(最後湊出的S)-1(為「-」的第n-y項)= (y-1) 項,就算全部擲出「+」也無法湊出 S (即  (iii)欲使該區間內未出現S的機率為100%)。

考慮(i)、(ii)與(iii),可求出機率為:

h(n) = (1/2)^(y+1)*100%

由 (1) 和 (2) 兩種方法可得出,y< n< (2y+1)時:

f(n) = g(n)+h(n) = f(n-1)+(1/2)^(y+1)

4.若 n>= (2y+1)

想要達成條件同樣有 2 種方法,且要注意可能出現 2 組以上的 S:

(1) 在前 n-1 項就已經出現 S (令機率為g(n))

同3.(1):如果在前n-1項就已經符合條件(即至少有一個S),那麼不管最後一項擲出「+」或「-」都不影響,故得:

g(n) = f(n-1)

(2) 前n-1項未出現S,擲出最後一項為「+」,和前面的「+」合併後恰形成一個S (令機率=h(n))

加上最後一次(第n次)的「+」恰形成一個S,即第 (n-y+1)項到第n項都必須保證為「+」,且第n-y項為「-」,  (i)此機率為(1/2)^(y+1)。同時,還要考慮第1項到第n-y-1項中不能出現S:由於n>= (2y+1),該區間是有可能存在另一個S的,因此要避免其的機率為  (ii) 1-f(n-y-1)。

綜合與(i)與(ii),得出:

h(n) = [1-f(n-y-1)] / [2^(y+1)]

故,若n>=(2y+1),則機率等於:

f(n) = g(n)+h(n) = f(n-1)+ [1-f(n-y-1)] / [2^(y+1)]

所以,由上述討論,可推出其遞迴關係式為:

回到銅板問題:若取 y=10,以程式執行計算後——當擲銅板次數 n=1421 時,

f(1421)=7, 255, 778, 711, 927, 407, 617, 380, 544, 769, 173, 867, 806, 169, 361, 486, 522, 866, 802, 980, 651, 539, 660, 838, 223, 377, 066, 752, 145, 420, 755, 231, 929, 187, 093, 761, 722, 303, 645, 267, 912, 580, 455, 689, 572, 071, 800, 452, 693, 464, 700, 240, 325, 620, 941, 411, 943, 308, 843, 940, 722, 468, 017, 918, 536, 598, 081, 098, 266, 744, 747, 888, 440, 887, 321, 884, 634, 359, 498, 815, 523, 739, 396, 906, 549, 246, 415, 109, 283, 793, 846, 209, 720, 465, 402, 081, 202, 745, 609, 492, 452, 509, 025, 795, 069, 716, 361, 505, 310, 397, 746, 161, 836, 302, 227, 941, 580, 885, 870, 210, 044, 773, 666, 072, 022, 038, 700, 421, 605, 273, 419, 973, 038, 879, 144, 857, 154, 157, 912, 879, 478, 392, 261  14, 5 06, 540, 244, 799, 649, 295, 363, 967, 385, 272, 259, 250, 661, 462, 164, 996, 145, 242, 670, 971, 396, 368, 427, 928, 550, 752, 333, 318, 302, 269, 391, 954, 931, 996, 110, 373, 344, 247, 437, 783, 405, 976, 812, 508, 208, 014, 387, 645, 084, 573, 461, 084, 331, 611, 962, 071, 030, 245, 089, 177, 219, 397, 347, 545, 783, 897, 084, 779, 561, 785, 928, 834, 057, 620, 352, 012, 602, 971, 900, 896, 382, 103, 058, 767, 619, 551, 583, 898, 875, 428, 087, 721, 830, 150, 897, 600, 890, 899, 165, 970, 697, 060, 836, 381, 274, 022, 825, 694, 219, 432, 474, 834, 063, 680, 015, 967, 772, 773, 093, 077, 100, 779, 252, 371, 658, 190, 278, 159, 625, 450, 473, 401, 620, 223, 010, 779, 161, 044, 426, 883, 596, 288

(這是一個分數,並且是精確數字,由此可見計算的繁雜度!)

總之,f(1421)≒0.5001729281748267≒50%。也就是說,當擲 1421 次銅板時,出現至少一組連續 10 個以上正面的機率就已經略超過 1/2。另外,當擲 3288 次時,機率會再近一步提升至 80%;甚至擲 9391 次,機率已經達到 99%。換句話說,假設擲 1 萬次,幾乎可以保證一定會看到至少一組連續 10 個以上的正面。

然而,一般人在編造數據時,很少會連續寫下很多個正面(或反面),因為直覺上要連續擲出那麼多次相同的結果機率應該很低。正是利用這點,所以,光憑「是否出現連續多次相同結果」這個事件,就足以初步判斷數據的真實性,更遑論除此之外,還有更多事件的真實發生機率也有待計算。想要得出符合真實機率的「完美」數據,與其絞盡腦汁、分析各種事件的機率(而且不太可能分析的完),倒不如穩扎穩打的完成,或許還快些。

再者,在學校偽造作業數據頂多受到老師的批評或輕微的懲罰;但出社會後,要面對的可能是正式的論文、一份財報、甚至是一份關乎人命的實驗報告!造假的後果除了損失聲譽、失去工作,更有可能因此遭受牢獄之災。與其耗費大量精力試圖求出「毫無破綻」的造假方法,卻還要冒著被拆穿的風險苟且偷生,還不如腳踏實地,安分地完成任務,才是正道!

更多2019數感盃青少年寫作競賽內容,歡迎參考 2019數感盃特輯、數感實驗室官網粉絲頁喔。

文章難易度
數感實驗室_96
46 篇文章 ・ 18 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/


3

9
3

文字

分享

3
9
3

從數學、邏輯到審美,演算法的極限是何處?——《再.創世》專題

再・創世 Cybernetic_96
・2021/09/27 ・5256字 ・閱讀時間約 10 分鐘
  • 作者/魏澤人|陽明交通大學 智慧計算與科技研究所

在一般印象中,”美” 是與藝術、哲學、文學、音樂這些人文領域相連的。受到教育制度的影響,理工與人文,在普遍認知中是二元對立的。而數學,是理工科目中最硬核的部分。物理、化學實驗中,各種顏色的液體、晃動的單擺或本生燈的火焰,也許還隱隱約約帶有一絲美的影子,但冷冰冰的數學公式,在許多人的求學經驗中,與美根本就是互斥的概念。

但是,懂數學的人都知道,數學是美的。甚至可以說,美是數學中不可或缺的部分。

圖/Pexels

著名的英國數學家哈代(Godfrey Harold Hardy)說:”數學家的創造形式,與畫家及詩人一樣,必須是美的: 將概念(就像顏色及詞語)以和諧的方式組合起來。美是最重要的條件,醜陋無法長存於數學之中。”。哈代的著作 “一個數學家的辯白”(A Mathematician’s Apology),在數學圈外有一定的名氣,前面的那段話也出自本書。但讓他”出圈”的主要原因,是他發掘了傳奇數學天才拉馬努金(Srinivasa Ramanujan)。這個故事在 2015 年被拍成了電影 “天才無限家” The Man Who Knew Infinity)。

這也不是哈代獨創之見解,法國最偉大的數學家之一龐加萊(Henri Poincare)說:”研究自然不是因為有用,而是因為喜悅。而喜悅是因為美。”。其他比方像是羅素(Bertrand Russell)、艾狄胥(Paul Erdos)也留下不少關於數學與美的金句。

數學的美,不只是許多偉大的數學家的共同體驗。絕大多數的數學愛好者、數學工作者都有相同的體驗,只是比較不容易留下知名金句。Danica McKellar 也許不是能和羅素、龐加萊、艾狄胥比肩齊名的數學家,但她說過一句很有意思的話: “數學是唯一一個真與美是同義詞的世界”。

McKellar 是一位有知名度的美國演員,她曾演出過白宮風雲(The West Wing),也曾在 NCIS、宅男行不行(The Big Bang Theory)及追愛總動員(How I Met Your Mother)中客串。但真正讓她出名的,是 80 末、90 初的影集兩小無猜(The Wonder Years),故事主軸是主角凱文回憶少年成長的過程,而 McKellar 飾演主角的鄰居溫妮,兩人發展出分分合合的戀愛關係。用現代的話來講, McKellar 可以說是當時少年界的國民女友。另外 2010 開始,她也在動畫影集少年正義聯盟中為火星小姐配音。

Danica McKellar ,攝於2018。圖/WIKIPEDIA

演員什麼會與數學扯上關係呢?其實她大學就是學數學的,而且學得很好,在 1998 年以最傑出的成績取得加州大學洛杉磯分校的數學學士學位。不只如此,大學時期與教授 Chayes 及同學 Winn 發表了一篇統計力學的論文,其中的主要結果被稱為 Chayes-McKellar-Winn theorem. 在 2008 年,她出了一本針對中學女孩的數學書 “Math Doesn’t Suck: How to Survive Middle School Math without Losing Your Mind or Breaking a Nail.” ,頗受好評也很暢銷,之後也接續出版了許多書。她表示,她想讓女孩們覺得數學是「可親、有意義、甚至有點迷人」,用來對抗這個社會傳達「女孩不適合數學」的這類負面訊息。除此之外,她也參與影集 Project Mc2 的演出。 這部影節的目標是向全球的青少女們證明,科學、科技、STEAM(Science, Technology, Engineering, Arts, Mathematics)是有趣且平易近人的。

回到前面那句”數學是唯一一個真與美是同義詞的世界”。追求美是人之天性,但很多情境下,美或者美化這些詞,常常帶了一點隱藏真實的意味。像是修圖軟體、美顏相機、化妝(與素顏對比)、醫美、Autotune。當然明顯太假也不符合多數人的審美觀,真正美之極致,往往也需要展現事物的本質與真實特色。但現實是資源有限,平庸普通還是多數,不然,也不會有”這裡的風景美得像幅畫”一樣的形容詞方式了。一般日常中,美的實際執行過程還是得靠挑選和遮掩。「真」與「美」是需要取捨的。這也就是這句話耐人尋味的地方了,因為這句話如果成立,那在數學,也許就提供了現實世界中「真」與「美」之間內在衝突的解法了。

但問題是,數學家們感受到的美感是否真的是美?定理與證明真的可以用美或不美來形容呢?還是只是數學家們普遍缺乏人文薰陶產生的代償性錯覺呢?

2019 年時,英國巴斯大學管理學院的 Samuel G.B. Johnson 及美國耶魯大學數學系的 Stefan Steinerberger 發表了一篇論文 “Intuitions about mathematical beauty: A case study in the aesthetic experience of ideas”,其中的研究證據,支持一般人可能也跟數學家一樣,能感受到數學論證的美感。在其研究中發現,人們對數學的「美感」,就跟對古典鋼琴樂曲及風景畫產生的美感相似,有其內在的一致性。另外也發現這種數學美感的評判,跟與音樂、畫作美感一樣,和優雅性、深度、清楚性有關。

就像十九世紀英國數學家 James Joseph Sylvester 說的:「數學就是論證的音樂」。愛因斯坦也說:「純數學是一首以其自有方式將邏輯概念寫成的詩」。這句話出自他寫給 Emmy Noether 的訃聞。 Noether 是有名的德國數學家,對抽象代數有極大的貢獻,巧妙的利用升鏈條件來研究代數性質,此後符合這個條件的數學物件我們都會冠以 Noetherian 來稱呼,以紀念 Noether 的貢獻。此外,她的 Noether Theorem 也被稱之為影響物理學最重要的定理之一。

Noether 與兄弟們的合照。圖/WIKIPEDIA

除了主觀上對於美的感受外,數學與藝術之間,也有很多直接的關聯性。以音樂來說,音律就與數學上的對數(也就是大家所認識的 \(\log\))有關。人類發展音律有很長的歷史,因為這不是一個簡單的問題。我們現在知道,和弦時,不同音階的頻率要接近簡單的有理數倍聲音才會悅耳。傳說畢達哥拉斯經過一家鐵店,聽到鐵鎚打鐵的聲音,覺得很悅耳,他走入店裡,發現四個鐵鎚的重量比為 12:9:8:6,其中 9 是 6 與 12 的算術平均,8 是 6 與 12的調和平均, 9, 8 與 6, 12 的幾何平均相等這些巧妙的關係。這些鐵鎚之間的聲音配合起來非常悅耳。他進一步用弦樂器實驗驗證,得到的結論是,弦長為一些簡單有理數比的時候,會得到和諧的聲音。而後來更進一步改進而成的十二平均律,也反映出中國及歐洲在計算 \(\sqrt[12]{\frac{1}{2}}\) 的歷史進展。這背後還有更深刻的問題,因為很容易可以發現,\(\sqrt[12]{\frac{1}{2}}\) 並不是個有理數。對音樂或數學有興趣的朋友,可以繼續深入了解一下背後的學問。

另一個大家也觀察到的現象是,數學能力和藝術能力之間似乎有一些相關性,特別是音樂能力。常被拿來說的是愛因斯坦喜愛音樂且從小學習小提琴。可能你認識的人中,應該也有許多同時精通數理及音樂的人。過去一些研究也發現發現了數理能力及音樂能力中的相關性。但是,這個相關性會不會與能力本身無關呢?比方顯而易見,學科能力與學習音樂的條件,都與家庭背景與社經地位有關。

音樂教育學者 Martin J. Bergee 原本也是這樣認為的。他覺得只要能控制相關的根本性變因,如種族、收入、教育背景,就能夠破除音樂與數學能力相關性的迷思。於是他就設計並展開了研究。結果讓他非常震驚,兩者的關聯性不但沒有消失,而且還非常強。在 2021 年他的研究團隊發表了一篇名為 “Multilevel Models of the Relationship Between Music Achievement and Reading and Math Achievement” 的論文。他們調查了不同學區背景的一千多位中學生,在盡可能排除其他因素的干擾下,他們不得不承認音樂及數學能力之間的有統計上顯著的關聯。

音樂與數學能力被證實有很高的相關性。圖/Pixabay

他表示很抱歉實驗設計得非常複雜,”因為排除所有的相關影響並不容易,可能從個人、教室、學校、學區等等不同層級來產生影響。”。雖然他原本是支持相反的結論,但這個結果讓他思考了很多,”微觀技術來說,可能在音樂中的音準、音程、節拍,可能語言認知的基礎相關,而巨觀技術上的調式與調性,可能在心理學或神經學上與數學認知有關。”

除此之外,還有非常多的例證。比方 2015 年神經科學家 Semir Zeki 及艾提亞爵士(Michael Atiyah 當代最偉大數學家之一,費爾茲獎得主)發表的論文指出,經由 fMRI 掃描 15 名數學家的腦部,發現數學家在評斷數學式子美感時,動用到眼額皮質外側的 A1 區域,與察覺其他來源美感所動用到的區域一樣。而前面比較沒有提到數學與視覺藝術的關聯,因為這部分更為大家所熟知。像是從古希臘幾何就知道的黃金分割比,繪畫中的用到的透視原理、對稱性。可以說,美與數學並不是感性與理性的對立,而是互相包含。就像浪漫派詩人約翰濟慈所說:”美即是真,真即是美。這就是你在世上所知道和需要知道的一切”,而數學以及其背後的邏輯,就是人類對於”真”的具像。

評斷數學式子美感或觀察其他美感事物時,數學家大腦活耀的區域相同。圖/Pexels

可以說在知識份子階層中,數學即美是個主流觀點。當然主流不一定代表唯一或正確,像前述 Bergee 也試圖證明相關的主流看法是個迷思。但一旦理解了這種切入點,人工智慧是否能創造藝術作品這個問題,至少在心理層面就不是太大問題了。人工智慧遵照一些演算法運作,可以說就是數學及邏輯的程式碼實作。以近幾年最主流的深度學習神經網路來說,就是許多線性映射與激活函數的合成函數,藉由梯度下降法,收斂到的穩定數學解。既然數學即美,那由數學建構的人工智慧,能產生美的事物,也不是太不能接受的事。

生成模型也是近幾年深度學習熱門的領域之一。常見的生成任務就是藉由觀察抽樣的樣本,設法模仿出一樣的機率分佈。白話一點來講,就是給電腦看一些李白的詩,希望電腦能創造出新的李白風格的詩。給電腦聽一些貝多芬的音樂,希望電腦能創造出新的貝多芬音樂。現在的深度學習技術,已經能讓人工智慧能藉由學習,”創造”出視覺、音訊及語言的”作品”。

Inception 網路是一個有名的深度學習模型,其名稱取自於同名的電影(全面啟動),當時主要是在圖片辨識任務上,取得很好的成果。2015 年時, Google 工程師 Alexander Mordvintsev 巧妙的利用事先訓練好 Inception 模型,讓他將圖片變成夢一般的迷幻風格。他把這種方法取名叫 DeepDream。不久後,Leon Gatys 等人用類似的方法,設計一套演算法,能將畫家的畫風轉移到照片上,典型的例子是將風景、建築照片,轉成梵谷的星空風格。後面有很多後續的研究,一般稱為 Neural Style Transfer. 2016 年 Google 利用 AI 生出的畫作,拍賣得到進十萬美元。而其實早在 2014 年時, Ian Goodfellow 等人就提出了生成對抗網路(Generative Adversarial Network),是一個更廣泛而通用的生成模型。這個模型後續開啟了極大量的相關研究,現在的深度學習模型,在一些領域中,已經能生出非常高品質的成品。比方 Nvidia 研究的 StyleGAN 系列模型,能生出幾可亂真的人臉。現在,在手機上,能使用 APP,將你的照片轉成迪士尼的畫風。

讓生成模型想像生氣的亞洲人老醫生(自行 CLIP, StyleGAN2 生成)

2021 年時, OpenAI 釋出了 CLIP 模型,這是一個能整合圖片視覺及文字語意的模型。很多人嘗試利用 CLIP 和文字控制,來產生獨特和有創意的畫作。舉例來說,如果你畫了一張畫,或者拿到一張照片,你可以利用文字”更有喜感一點,更有亞洲風味一點”,來修改這張圖片讓人感受到”喜感”和”亞洲風”。在眾多嘗試中,大家試出了許多像”咒語”般的技巧,比方有個著名的 “unreal engine trick”,就是當你在控制產生圖片的句子中,加入 “unreal engine” 這個詞(unreal engine 是一個遊戲引擎),常常會讓產生品質更高的圖片。 乍看之下有點不明所以,但仔細一想,因為網路上會特別標明 unreal engine 的圖片,往往是強調其遊戲高畫質,久而久之, CLIP 看到這個詞,很自然就與高品質的含意產生連結。除了圖片外,人工智慧也能產生其他具有美的形式的作品,特別是文字作品。Open AI 開發的 GPT-3,已經能在用戶給出簡單的指示後,產生非常複雜的文字作品,除了詩、笑話、故事外,甚至連食譜、程式碼都可以。

讓生成模型想像亞洲的小甜甜布蘭妮(自行 CLIP, StyleGAN2 生成)

但這些,真的算是人工智慧的創作嗎?

在 2018 年時,由生成對抗網路生成的畫作 Edmond de Belamy,以美金 432,500 元賣出。這幅畫是誰創作的?這幅畫是由巴黎藝術集體 Obvious 生成的。而名稱 Belamy 的法語意思為”好朋友”,以致敬提出生成對抗網路的學者 Ian Goodfellow。而圖片右下角的簽名則是

\(\min_{\mathcal {G}}\max_{\mathcal {D}}E_{x}\left[\log({\mathcal {D}}(x))\right]+E_{z}\left[\log(1-{\mathcal {D}}({\mathcal {G}}(z)))\right]\) 這個數學式子,這個式子是生成對抗網路使用的目標函數,也就是引導模型訓練的數學式。而讓問題更複雜的是,生成這幅圖片的程式碼,是由與 Obvious 毫無關係的另外一位 AI 藝術家 Robbie Barrat 所寫的。甚至有人(如 AICAN)認為這個連創作都算不上。

人工智慧的創作《 Edmond de Belamy 》。圖/WIKIPEDIA

所以,這幅畫到底是誰的創作?物理學家海森堡曾說,即使在沒有足夠證據的支持下,”當自然引導我們得到極簡與美的數學式時”,”我們會不由自主的感受到,這就是自然真相被揭露的一角”。也許,真正創作者不是人工智慧,也不是人類,我們只是自然的一部分,有幸釋放了,並且有幸感受到了自然散發出的美之一角。

所有討論 3
再・創世 Cybernetic_96
1 篇文章 ・ 3 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策