化學家的夢幻反應清單:合成出這些化學反應就出運啦!

  • 文/陳磬揚│泛科學新手實習生,化學系畢業但不想待實驗室或科技廠,但看到什麼知識都想一頭栽進去。希望能從跳出來的視角看科學,翻譯引介更多科學界的趣聞給讀者。

新反應很少見,是化學家太偷懶了嗎?

你好奇過世界上這麼多化學實驗室,到底存在多少種化學反應嗎?其實我們在高中甚至大學課本裡所學到的反應,很多年紀都比我們還大。在 2014 年一篇名為〈那些新反應都消失去哪了?1的期刊文章中,作者統計了 30 年來的藥物化學研究,發現了在最常用的合成反應中,沒有任何一個是 1994 年後新發現的;而僅僅兩個反應就涵蓋了超過半數的藥物合成反應。

為什麼會這樣?其中一個解釋是:藥物研發者在化學的大空間裡受限於一個小小範圍,我們只能透過已知的反應和可取得的組構元件(就像用有限的方式組合固定類型的積木)。當然還包括原本就存在的限制,來自於生物方面或是試劑穩定性,例如接觸到空氣就會起火的試劑,被使用的頻率就會比較低,因為大部分實驗室並不會配有隔絕氧氣的手套箱。(而且大多數的化學家都希望留住自己的頭髮跟眉毛

Image by chiara tiberti from Pixabay

此外統計也指出,眾多化學家所研究出的分子,都偏向特定的形狀。太多人研究相近的分子結構,可能造成我們對化學世界的理解偏誤,因此作者呼籲化學家們多嘗試一些沒做過的反應。

然而,化學家真的是偷懶嗎?或者這樣的現象代表著,其實眾多的合成化學實驗家都面臨了一樣的難題,而忍不住嘆口氣說:「唉,如果某某反應真的存在這世間,我就不用卡關在這裡了」呢?

夢幻反應許願池,原來卡關在這裡

從最簡單的反應,到可能登上諾貝爾獎的重大發現,讓我們來看看藥物化學家的「夢幻反應許願池」:

  1. 氟化:在具有多個官能基的分子中,把特定的氫置換成氟。
  2. 異原子的烷化:在有多個異原子(除了碳氫以外的原子,常見為氧、氮、硫)的環上,能夠選擇其中一個來接上烷基。
  3. 碳-碳耦合:希望能有更多方法,能把兩個脂肪烴類的碳接在一起,使得適用的反應物更廣泛。
  4. 製作或修飾雜環:能在雜環上連接新的官能基;若能從頭製作出全新的雜環分子就更好了。
  5. 交換原子:選擇特定的兩個原子交換位置,例如把一個環上的碳、氮原子交換。

隨心所欲的氟化

將 C-H 轉換成 C-F 的反應排在清單上的第一名,並不讓人意外。

超過 20% 的商業藥品含有氟,抗憂鬱藥百憂解(Prozac)就是一例。只要加上一個氟原子,就可能增加藥品在代謝上的穩定性或是親脂性,讓藥物更容易直接穿透細胞膜。2然而,這個反應沒有方法可以一步到位完成。如果在得到先導化合物後,才想要多加上一個氟,通常都需要從頭開始,改用含氟的起始物

抗憂鬱藥百憂解結構中的氟(圖左黃綠色的原子)讓藥品更容易穿透細胞膜。圖/wiki commons

目前有幾種氟化的方法,但都需要安裝上另一個具反應性的基團,如錫或硼的片段(芳香類),或是雙鍵、環氧基(脂肪類),再進行取代反應換上氟。所以藥物化學家非常希望能有可靠的方法直接把氫換成氟。但即使能直接從碳氫鍵氟化,仍然會面對到選擇性的問題。可能會得到氟接在不同位置的產物混合在一起,或是過度氟化的產物(利用自由基氟化的連鎖反應並不易控制)。又因為分子上多出一個氟,並不會顯著改變反應性和物理性質,所以也很難在事後將副產物或過量的起始物分離去除。

在有多個異原子時烷化

要在吡啶酮 (pyridone) 的氮或氧上接上官能基,感覺似乎不困難,(相較於要修飾有數十個官能基的巨大分子)理論上在藥物化學界也很常出現。但讓人訝異的是,這件事目前難以實現,如果我們嘗試如此,最後也只能得到氮取代、氧取代兩種產物的混合物。

圖說:2-pyridone,官能基可以接在氮或氧上。

有化學家嘗試理解吡啶酮兩面的反應性,但這當中牽涉了太多個別的因素:取代基的種類、烷化的試劑、用來移去氫離子的鹼、溫度甚至溶劑等等,因此仍然很難去預測或控制產物。在藥物研發中有許多雜環分子都面臨類似的問題。例如吡唑 (pyrazole) 和三唑 (triazole) 的環上分別有 2 個和 3 個氮原子,但沒有任何試劑的組合可以選擇性地只修飾其中一個氮,因為這幾個氮的反應性都太相近了。 因此,能任意控制取代基接到想要的位置,也排上了化學家的許願清單。

碳-碳耦合

有機化合物的骨架由碳組成,但要讓碳跟碳發生反應接在一起卻是非常困難的。在小分子的反應,可以用一些官能基讓碳更有反應性,但要將兩個複雜的分子接在一起,卻因為複雜的分子上有太多可能發生反應的位點,最後產生我們不想要的副產物。

因此,交叉耦合反應(cross-coupling)就顯得非常重要。2010 年諾貝爾化學獎就是頒給三位研究出以鈀催化交叉耦合的化學家。這三人的研究,都是利用鈀催化,把兩個 sp2 (平面三角形)或芳香性的碳連接在一起,進而製造出一些重要的有機化合物骨架。但這還不夠,科學家希望能發展出針對 sp3(正四面體)的碳也能適用的耦合反應。這在藥物化學中很重要,因為 sp3 的飽和碳上做一些微調,可以減輕藥物副作用,但不會大幅影響其它藥物特性。

然而,不論選用什麼金屬來催化,所有的交叉耦合反應反應,都需要在前驅物預先接上官能基,催化用的金屬才找得到要在哪個位置反應。要做出這樣的前驅物,有時原本就困難重重。所以,化學家最大的心願,仍然是找到直接把飽和而穩定的 C-H 鍵轉換成 C-C 鍵的方法。

製作和修改雜環

大約 60% 的小分子藥物具有雜環的核心。許多小的雜環可以商業取得,但買不到的分子經常讓人頭痛。如果你手邊有容易取得又便宜的原料例如吡啶(pyridine;把苯的一個碳換成氮的分子),想要接上一些取代基,這看似簡單,但你有時會發現只是要做出合成的起始物就需要七八個步驟。當然不是直接把取代基一個個接上去就好──這件事還在許願清單上而不是課本裡。

雜環主要指的是在碳環中有其他分子存在的環,如圖為吡啶,苯中的一個碳替換為氮。圖/wiki commons

雜環之所以棘手,是因為許多設計給碳氫芳香環類的反應,並不能適用於雜環。例如氟化反應的試劑可能會直接把雜環分子氧化破壞掉,而不是接上氟原子;原本可以連接碳原子來在催化交叉耦合的金屬原子,也可能被雜環上的氧、氮原子抓住,反而沒辦法順利完成反應。

對於芳香性的雜環分子,確實有接上官能基的方法,但就像前面所說的,立體效應和電子效應等等各種複雜因素,讓化學家很難預測產物。若要製作脂肪性的雜環,則需要從非環類的前驅物出發,經過漫長痛苦的合環反應,而一旦合環失敗就得重來。種種困難使得許多可能很重要的分子遲遲沒有被研究、製作。

2009年,英國生技公司的化學家們發表了一篇文章〈屬於未來的異原子芳香環〉,用電腦學習的程式,列出了超過3000種在合成上可行,卻從來沒被做出來的分子(目前已經合成出來的約是1700個左右,而每年新合成出來的大約是10個),希望能帶給化學界新的刺激。

最夢幻的項目:任意原子交換

來到這份許願清單的最後一項,也是最夢幻的一項:把一個結構裡的碳,直接交換成想要的原子。

這就像是基因編輯的化學版,可以鎖定特定的碳原子,直接換成氮、氧或硫。目前已知的反應中最接近這個的,是兩個都已經被發現超過一百年的反應:拜耳-維立格氧化反應(Baeyer-Villinger oxidation)和貝克曼重排反應(Beckmann Rearrangement),分別能在環狀的酮上插入一個氧或氮。但它們並不是真的取代原本環上的碳原子,最後環上的原子數會多出一個。

圖:拜耳-維立格氧化反應,可以看到反應前是六碳環,反應後環中多插進了一個氧原子。

如果真的能做到這件事,化學家將不需要再像前面提到的一樣,煩惱如何在雜環分子上修飾官能基這類的問題。這當然是沒有先例的,也有些人認為這不切實際。但其實在 Crispr–Cas9 基因剔除技術4問世之前,人們也不認為基因編輯是可行的,所以或許只要化學家不偷懶(?),發現這個反應也是遲早的事呢。

參考資料:

  1. Brown, D. G., & Bostrom, J. (2015). Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? Miniperspective. Journal of medicinal chemistry59(10), 4443-4458.
  2. Drug Lipophilicity and Absorption: The Continuous Challenge in Drug Discovery
  3. Heteroaromatic rings of the future
  4. 科學月刊:物種基因剔除技術爆炸性的新突破─CRISPR/Cas9技術淺談

泛科幻獎主題講座——科幻類型在台灣影視產業的未來

第二屆泛科幻獎來啦!為了更深入探索科幻文化,本次科幻獎舉辦了一系列講座活動,12/14 將以「科幻類型在台灣影視產業的未來」為題,邀約瀚草影視的湯昇榮總經理與知名小說家高翊峰出席,分享如何透過不同影視概念,將科幻原創內容推廣至大眾。詳細資訊請點擊圖片或者這個連結,到活動頁面查詢!

關於作者

活躍星系核

活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策