網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

5

0
0

文字

分享

5
0
0

吃大魚放過小魚? 亦是吃小魚饒了大魚呢?

大海子
・2012/04/13 ・1346字 ・閱讀時間約 2 分鐘 ・SR值 565 ・九年級
生態系調控機制可透過食物鍊由上而下或由下而上進行,觀點與方向雖不同,但能達成維持生態系的平衡的目的。

最近一群美國科學提出要放過海洋中最初級的消費者-餌料魚,以免整體海洋生態系受到重大的衝擊;另有一群科學家卻呼籲選海鮮的時候要參考底食的原則,儘量以食物鏈底層的魚類為優先考慮物種,前者說要減少對於海洋初級消費者的捕獲量,然而海洋初級消費者大都就是出現在食物鏈底層的魚類,如沙丁魚之類的小型魚類,因為數量較多,且這些小魚是次級消費者的餌料魚,少了他們經濟價值高的大型魚類(如鮪魚)就會因為食物量不足,生存受到威脅,導致漁獲量隨之降低。然而後者卻說這些魚類因為族群量龐大,生命週期短,所以較能忍受漁業所帶來的衝擊。同樣的魚類,在不同的科學家眼中,卻有迥然不同的看法,兩者之間的理論觀點是否存有矛盾之處呢?

因天敵大法螺受到濫捕,促成棘冠海星數量大爆發,導致珊瑚礁受到傷害
因天敵大法螺受到濫捕,促成棘冠海星數量大爆發,導致珊瑚礁受到傷害

答案是否定的。其實這兩群科學家其實是殊途同歸,其目的都在希望能兼顧漁業的利用與生態系的永續性,只是彼此觀點與策略不同而已,一則是由食物鏈頂端大型掠食物種的觀點出發,希望透過多加選用食物鏈底部的小型魚類,減少食用大型魚類,達到保育的目的,讓受到濫補的大型魚類如鯊魚鮪魚等等,得以獲得養生休息的空間,免得大型掠食者魚類大量減少之後,整個生態系因為調控機制失控,造成生態系物種之間相對比例失衡,引發一連串的生態浩劫。近年來,海洋中特定生物族群突然大量出現,就是其天敵量大幅減少,結果因為獵物受到的威脅降低,使得族群量存活率突然大增,造成生態系物種之間比例失衡,結果就是引發一場生態浩劫。舉例來說,大法螺因遭受到濫捕之故,使得棘冠海星族群失去原有天然的調控機制,族群量爆增,導致珊瑚大量受到過海星的致命性的啃蝕與打擊,幾乎造成珊瑚礁崩解的厄運,而這就是就是由上而下(Top-Down)的生態調控機制理論觀點的案例。

另一群科學家的觀點則正好相反則是由下往上(Bottom-Up)的調控機制,簡單來說,就是透過最底層族群量的調整,以便透過食物鏈層層相扣、相互影響的機制,進而達到調整食物網最上層族群數量的目的,最終仍是維持整個食物鏈的穩定狀態,而這就是主張放過小型的餌料魚(如限制漁獲量),以便能維持食物網上層族群量維持在相對的穩定量,進而讓整體食物網能處於動態平衡的狀態。舉例來說,當海洋處於特殊情況如聖嬰年或反聖嬰年時,異常的海流狀態就會影響沙丁魚族群數量的高低,進而帶動以沙丁魚為食物掠食性魚類族群量的大幅的上下震盪。

科學家從食物鏈不同角度提出調控的策略,其實兩者無非都是希望海洋生態系能透過食物鏈自身制衡的能力,來達到動態平衡的穩定狀態,兩者理論之間並無矛盾,只是觀點不同而已。但若有關當局拿不出具體有效的漁業管理政策與措施,讓濫捕行為受到有效的約制,光有完善的科學證據與理論,而卻無法應用在實際的管理政策上,那再好的科學理論對於海洋生態永續的發展都將是枉然的。

參考文獻:

文章難易度
所有討論 5
大海子
53 篇文章 ・ 0 位粉絲
希望以人文關懷的觀點,將海洋生物世界中的驚奇與奧妙, 透過多媒體的設計與展現,分享個人心得給社會大眾, 期望能引起更多人關心海洋的公共議題, 為保護海洋略盡一份心力。


0

12
5

文字

分享

0
12
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》