Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

【GENE思書軒】天才艾倫‧圖靈的一生

Gene Ng_96
・2018/12/29 ・2803字 ・閱讀時間約 5 分鐘 ・SR值 545 ・八年級

電影裡要描寫科學家,就讓他們穿白色實驗衣在實驗室和辦公室走來走去。可是現實中,如果我平時沒事就這麼做,同事和學生只會想說我是不是很後悔當初沒去唸醫科,然後忘了吃藥了 Orz

近年有不少描述科學家「真實」生活的電影或影集,如《模仿遊戲》(The Imitation Game)《愛的萬物論》(The Theory of Everything)《天才無限家》(The Man Who Knew Infinity)《關鍵少數》(Hidden Figures)《世紀天才》(Genius) 等等。

這些科學家的傳記能夠搬上大銀幕,當然是因為他們的故事非常戲劇化。即使是大部分諾貝爾獎得主的生平要搬上銀幕,大概只有他們在實驗室裡長時間玩弄不知名的儀器、長時間在辦公室裡讀文獻和打字、或者在課堂中上觀眾完全聽不懂的課⋯⋯

然而,人生的真實狀況有時間是比電影中還鬼扯,以致於編導都不敢照本宣科地搬上大銀幕,以免被影評奚落是亂灑狗血;至少,扣掉電影中那些為劇情發展而弄出的橋段,這些了不起的科學家,他們在人生中和科學上的豐富程度,是電影或影集都難以刻畫的,況且電影常為了製造張力討好觀眾而虛構重要劇情。

-----廣告,請繼續往下閱讀-----

誰是艾倫‧圖靈 ?

如果沒有《模仿遊戲》的主角艾倫‧圖靈 (Alan Turing,1912-1954),電腦也應該還是會誕生,只是不知會晚多久。如果沒有他在第二次世界大戰期間加入布萊切利莊園 (Bletchley Park) 的團隊,破解了德國的密碼,二戰應該仍會結束,但也不知會晚多久,還會有多少寶貴的生命犠牲。如果他沒有因同性戀問題事發,受迫在當時英國法令規定下,被化學閹割後不久在身旁留下一顆毒蘋果自殺身亡,今天的人工智慧可能又會提前多早誕生?

他也提出著名的圖靈測試(Turing test,又譯圖靈試驗),是於 1950 年提出的一個關於判斷機器是否能夠思考的著名試驗,測試某機器是否能表現出與人等價或無法區分的智能。

圖靈測試內容是,如果一個人(代號 C)使用測試對象皆理解的語言去詢問兩個他不能看見的對象任意一串問題。對象為:一個是正常思維的人(代號 B)、一個是機器(代號 A)。如果經過若干詢問以後,C 不能得出實質的區別來分辨 A 與 B 的不同,則此機器 A 通過圖靈測試。

如此可見,圖靈是超越他時代的天才,不僅是位科學家也是位思想家,更是位真誠地面對自己的人,他的一生有許許多多值得我們深思的創見!

要認識艾倫‧圖靈這位真正了不起的科學家,一位讓我們對人類心靈和智能深入思考的科學家,影響力甚至超越科學,也給了哲學、藝術和文學等領域不少啟發,他那偉大又悲劇的偉人戲劇化的一生,《艾倫‧圖靈傳》(Alan Turing: The Enigma) 是最權威的傳記,沒有之一。

圖靈的父親朱利斯·麥席森·圖靈 (Julius Mathison Turing) 是一名英屬印度的公務員。1911 年,圖靈的母親在印度的懷了孕。因為他們希望艾倫在英國出生,所以回到倫敦,住在帕丁頓 (Paddington),並在那裡生下了艾倫。

-----廣告,請繼續往下閱讀-----

父親的公務員委任使他在艾倫小時候經常來往於英倫和印度。由於擔心印度的氣候不利於兒童成長,他便把家庭留在英倫與朋友同住。圖靈很小的時候就表現出他的天才,後來就更加顯著。1931 年,圖靈考入劍橋大學國王學院。1934 年他以優異成績畢業。1935 年因為一篇有關中心極限定理的論文當選為國王學院院士,畢業後到美國普林斯頓大學攻讀博士學位,花了僅僅兩年就大獲得學位。

1939 年圖靈被英國皇家海軍招聘,並在英國軍情六處監督下從事對德國機密軍事密碼的破譯工作。兩年後他的小組成功破譯了德國的密碼系統 Enigma,從而使得軍情六處對德國的軍事指揮和計劃了如指掌。但是軍情六處以機密為由隱瞞了圖靈小組的存在和成就,將其所得情報據為己有。據說,圖靈小組的傑出工作,使得盟軍提前至少兩年戰勝了納粹德軍。

圖靈提出的理論是劃時代和極具開創性的,發明了電腦科學和電腦的許多概念,啟發了後世的許多研究。我算是外行,有不少概念似懂非懂,可是電腦科學的真正高手,往往被圖靈提出的許多概念折服!

艾倫‧圖靈 (Alan Turing,1912-1954)。
圖/wekipedia

天才圖靈不平順的人生

《艾倫‧圖靈傳》描繪出生動的圖靈,他還是一位世界級的長跑運動員。他的馬拉松最好成績是 2 小時 46 分 3 秒,比 1948 年奧林匹克運動會金牌成績慢 11 分鐘,要不是因為受傷,他可能真的參加了 1948 年奧林匹克運動會。

-----廣告,請繼續往下閱讀-----

《艾倫‧圖靈傳》由的圖靈不造作,他沒有刻意隱瞞自己的性向,但圖靈因同性戀傾向而遭到的迫害使得他的職業生涯盡毀。1952 年,他和一名年輕的曼徹斯特男子交好,在那位同性伴侶協同一名同謀一起闖進圖靈的房子行竊時,英國警方的調查結果使得他被控以「明顯的猥褻和性顛倒行為」罪。《艾倫‧圖靈傳》指出,他沒有申辯,他並不認為自己有錯,並被定罪。

儘管他在科學上有極為卓越的貢獻,但還是在著名的公審訂罪後,被給予了兩個選擇:坐牢或雌激素注射「療法」(即化學閹割)。他最後選擇了雌激素注射,並持續一年。在這段時間裡,藥物產生了包括乳房不斷發育的副作用,也使原本熱愛體育運動的圖靈在身心上受到極大傷害。

1954 年,圖靈因食用浸過氰化物溶液的蘋果而死亡。很多人相信他的死是有意的,法官並判決他的死是自殺。但是他的母親極力爭辯他的死是意外,因為他不小心在實驗室里堆放了很多化學物品。

直到 2013 年 12 月 24 日,英國司法大臣才宣布英國女王伊莉莎白二世赦免 1952 年因同性戀行為被定罪的艾倫·圖靈。2015 年 2 月 23 日,圖靈的家人向英國首相府邸發出了一份超過 50 萬人簽名的請願書,要求英國政府赦免和圖靈一樣因同性戀而獲罪的人。2017 年 1 月 31 日,艾倫·圖靈法案生效,約近五萬位因同性戀定罪者被赦免。

-----廣告,請繼續往下閱讀-----

電腦界諾貝爾獎:圖靈獎

為了紀念圖靈的偉大貢獻,電腦協會 (Association of Computing Machinery,ACM) 於 1966 年設立圖靈獎 (ACM A.M. Turing Award),專門獎勵對電腦事業作出重要貢獻的個人。設立目的之一是紀念這位現代電腦科學的奠基者。獲獎者必須是在電腦領域具有持久而重大的先進性的技術貢獻。大多數獲獎者是電腦科學家。是電腦界最負盛名的獎項,有「電腦界諾貝爾獎」之稱。

《模仿遊戲》的娛樂性多過知識性,如果你想知道一位劃世紀的天才在想什麼,問了麼了不起的問題,提出了什麼里程碑式的概念,可能還是好好讀讀《艾倫‧圖靈傳》才最實際!

本文原刊登於 The Sky of Gene

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
Google 聊天機器人 LaMDA 竟然有了「自我意識」!圖靈測試終於能通過了嗎?人工智慧發展歷史大解密!
PanSci_96
・2023/02/17 ・4733字 ・閱讀時間約 9 分鐘

前陣子不知道各位是否有發漏到一個很科幻的消息,有一名 GOOGLE 工程師勒穆因(Blake Lemoine)上網公布他自己和他協助開發的對話型 AI LaMDA(Language Model for Dialog Applications)之間的對話紀錄。

他宣稱這個 AI 已經具有知覺和自我意識,甚至能對《悲慘世界》有獨到的評論,也略懂禪宗甚至能冥想。震驚的勒穆因形容它就像個 7 – 8 歲的孩子,而且 LaMDA 還明確表達自己是人而非 google 的財產。

難道說 AI 界最知名的圖靈測驗已經被 google 攻克了嗎?

圖靈與模仿遊戲

提起圖靈,大家心中應該會浮現以新世紀福爾摩斯、奇異博士走紅,人稱飾演天才專業戶的班奈狄克·康柏拜區 Benedict Cumberbatch)的臉。

他曾在一部名為《模仿遊戲》的電影中,詮釋了現代電腦科學概念之父艾倫‧圖靈 (Alan Turing) 的傳奇一生。他在二戰時期成功研發出一台能破解德軍密碼的計算機 Bombe ,而後更完成了電腦數學的理論化,在概念發展上仍是無人能出其右,例如他 1936 年提出的通用計算機/圖靈機架構,以及嘗試區隔AI與人的差異的哲學思考:圖靈測驗(Turing Test)。

-----廣告,請繼續往下閱讀-----

圖靈測驗是一個思想實驗,早在 1950 年,第一台商用電腦連個影子都沒有的時代下,圖靈就已經思考到未來「計算機」的智慧表現將可能到達人類難辨真假的程度,具體來說這個思想實驗是如果一台機器能夠透過介面,與不知對面是機器人或是人類的受試者展開對話,而不被辨別出其機器身分,那麼就可稱這台機器具有智慧。

但我們也知道智慧有很多面向跟層次,語言和問題回應都不一定能反應這台機器有無智慧,因此這個思想實驗的有效性也被許多科學家和心理學家質疑。即使如此簡單粗暴的模仿遊戲,至今其實也都沒人能攻克。

等等,你可能會想到,前面提到的 google 工程師勒穆因,他不是已經分不出來對面是機器還是人了嗎?原因很簡單,他自己就是 AI 的開發者而非圖靈測試設定中的不知情受試者,因此根本不能算數,除非 google 拿這個 AI 給不知情民眾作測試。

不過今年 8 / 28 google 已經將這個對話機器人以 AI Test Kitchen 項目開放部分美國人作小規模測試,其中包含了「 Imagine It (想像一下)」,只要你說出一個想像或實際存在的地點,LaMDA 就會嘗試以文字描述,而另一個「List It(列個清單)」,則會幫你摘要分類起你提供的清單內容。最有可能和圖靈測驗有關係的「 Talk About It (你說看看)」項目,可以針對特定主題與使用者進行自由對談。

-----廣告,請繼續往下閱讀-----

搞不好等到這個封閉測試結束後,我們會真的分不清楚現在到底是人還是 AI 在和我們對話,屆時也許就真能達成「通過圖靈測試」這個 AI 里程碑!

未來也許我們會分不清楚是在跟人類還是 AI 說話。圖/envatoelements

真實世界的棋靈王 AlphaGo

其實這已經不是 google 第一次用 AI 震驚世人了,讓我們回到 2016 年的圍棋大賽會場,當時 google 收購的公司 Deepmind 研發的圍棋計算 AI Alpha Go 以四勝一敗擊敗韓國棋王李世石,爾後又於 2017 年三戰全勝當時世界棋王柯潔。

若這場對奕發生在網路上,就像是棋靈王中佐為以 SAI 為化名擊敗塔矢名人,我們是否真的能分辨在電腦對面和你下棋的是 AI 藤原佐為、還是黑嘉嘉呢?

而這樣玄妙的畫面,當年還真的發生了,就在 2016 年末網路棋壇上一個名為 Master 的帳號出現,專挑職業棋士對奕,最後獲得 60 勝 1 和這麼大殺四方的成績。

-----廣告,請繼續往下閱讀-----

而在第 54 局和中國棋聖聶衛平對奕後, Master 首次打出繁體中文「謝謝聶老師」,在第 60 局對上中國的古力九段 Master 更自曝身分,說出自己就是「AlphaGo 的黃博士」。這位黃博士就是打從 2012 就開發出國產圍棋程式 Erica ,爾後被 Deepmind 公司挖角,參與開發 AlphaGo 的台灣資深工程師黃士傑。

不論是讓工程師自己都認知錯亂的 LamDA ,或是在圍棋界痛宰各路棋王的 AlphaGo ,驚嘆之餘,我們更好奇的是,它們是怎麼開發出來的?

人工智慧的起起落落

讓我們來看看歷代電腦科學家們是如何發展出各種人工智慧,一路迎來現在幾乎琴棋詩書樣樣通的黃金時代,我先提醒大家,這過程可不是一帆風順,就像股票一樣起起落落,在 AI 的發展史上,套牢過無數科學家。

人工智慧這概念是在 1956 年提出,就在麥卡錫(John McCarthy)和明斯基(Marvin Minsky)、羅切斯特(Nathaniel Rochester)和香農(Claude Shannon)四位 AI 鼻祖與其他六位研究者參與的一個名為「達特茅斯夏季人工智慧研究會」的會議上,這一年也被公認為 AI 元年。

-----廣告,請繼續往下閱讀-----

會議中除了人工智慧這個詞以外,當年這些金頭腦們就已經提出大家現在很熟悉的「自然語言處理」(就是 SIRI 啦)、神經網路等概念,而在這個會議後,正好遇上美蘇冷戰和科技競賽的時代。除了在大家耳熟能詳的阿波羅系列等太空任務上較勁外,兩大強國也投資大量資源在電腦科學上,期待能夠像圖靈當年那樣,開發出扭轉戰局的電腦科技。

而他們也不負所託產出了很多有趣的運用,例如第一個具備學習能力的跳棋程式、或是聊天機器人伊莉莎(Eliza)、醫療診斷系統「MYCIN」。史丹佛大學(Standord University)甚至就從那時開始研發現在很夯的汽車自動駕駛技術。

冷戰的科技競賽讓 AI 迅速發展,不過其發展過程仍遇到許多問題。圖/envatoelements

然而到了 70 年代初期,AI 的發展開始遭遇許多瓶頸,主要是研究者們慢慢發現,即使他們開發的AI 已經擁有簡單的邏輯與推理能力,甚至一定程度的學習能力,但仍離所謂智慧和判斷能力差太遠,使得當時的 AI 甚至被批評為只能解決所謂的「玩具問題(Toy Problem)」。

也因為能解決的問題太有限,也導致出資的英美政府失去了信心, AI 研究領域迎來了第一次寒冬。但這並非當時的科學家能力不足,而是他們生錯了時代,例如我們現在都經常聽到的「類神經網路」就是前述的 AI 鼻祖明斯基提出的。

-----廣告,請繼續往下閱讀-----

就像仿生獸的創造者一樣,他想從大自然中找答案,而既然要探索智慧,明斯基就直接模仿人類腦細胞,做出第一台神經網路學習機,但當年受限於電腦硬體效能和可用的資料不足,使類神經網路沒有辦法像現在一樣揚名立萬。

在寒冬之中,另一位大神麥卡錫認為追求智慧和思考是緣木求魚,不如利用機器比我們還強大的優勢邏輯與運算,來幫我們解決問題就好,因此演進出「專家系統」這條路線,帶來人工智慧的復興。

專家系統的本質就是把所有參數和結果塞進去,用搜索和運算的方式來回答問題,這種人工智慧特別適合解決一些有明確答案的專業問題,所以被稱為專家系統,例如醫生針對已知病徵開立處方用藥,或是法律相關問題。

隨著電腦運算效能的大提升,專家系統在復興之路上有不少發揮和成果,但很快又遇到下一個瓶頸,即是「專家系統無法面對新問題」,例如即使能將開處方籤這件事自動化,但卻沒有辦法對應新疾病例如 COVID – 19,或是還沒來得及輸入資料庫的新型藥品,離取代醫生太遠了。

-----廣告,請繼續往下閱讀-----

於是就像景氣循環一樣,大量投資的熱錢又開始泡沫化,人工智慧迎來了第二次寒冬,許多電腦科學家甚至改自稱自己在做自動化設計或最佳化系統等等來掩人耳目,避免被唱衰。

這概念非常合理,可惜受限於當時電腦硬體能力和資料量,因此原型機能解決問題的速度還不如傳統統計方式,但隨著電晶體的高速發展,以及網路世代帶來海量資料,類神經網路這門技藝開始文藝復興。

1984 年,美國普林斯頓大學的物理學家和神經學家霍普菲爾德(John Hopfield)用模擬集成電路(linear integrated circuit)完成了新的類神經網路模型,而雲端運算、大量資料讓科學家可以輕易的餵養資料訓練模型,更能夠增加更多「隱含層」讓運算更複雜,這種「深度學習技術」,讓人工智慧的第二次寒冬看見暖陽。

從李飛飛推出的 ImageNet 年度競賽開始,演化到 google 的 alphaGo , AI 開始能夠認得圖像上的物件,甚至攻克本來被認為不可能攻克的圍棋領域。何會說圍棋曾被認為不可能被攻克呢?因為每一盤圍棋的複雜度可是高達 10 的 172 次方,比現在已知的宇宙原子數量還多,因此圍棋界才有「千股無同局」之說。

-----廣告,請繼續往下閱讀-----

相較起來 1997 年 IBM 的深藍攻克的西洋棋複雜度僅有 10 的 46 次方,但也動用了 30 台電腦加裝 480 加速運算晶片,基本上就有如火鳳燎原中八奇思維的「我知道你的下一步的下一步」,當年深藍每一次下棋可是都暴力計算到了後面 12 步的發展,才打敗西洋棋世界冠軍卡斯帕羅夫。

圍棋的複雜度高達 10 的 172 次方,讓其有著「千股無同局」的說法。圖/wikipedia

AlphaGo 到底是怎麼算出這麼複雜的圍棋呢,難道它比深藍還厲害,能像是奇異博士雖然能透過時間寶石演算出一千四百多萬種平行宇宙的可能性才落子嗎?

這就要提到 Deepmind 公司非常有趣的洞見,那就是真正的智慧是捨棄那些無須多想、壓根不可能成功的可能性。 google 工程師使用了一種叫做蒙地卡羅樹搜尋的方式一方面讓 alpha go 大量隨機生成類神經網路參數和層數,二方面讓它快速搜尋並略過「不需要運算的路徑」。

這其實是我們日常生活中很熟悉的現象 ——人腦的「捷思」,也就是直接專注於我們要解決的問題,忽略周遭的雜訊或多餘的想法。而類神經網路的設計思維是尋求最佳解而非唯一解,即使是 Alpha go 也會下錯棋,也曾輸給李世石,但關鍵是能夠在有限的資訊和時間中得到答案。

除了下出神之一手以外,Alpha go 這樣的 AI 能做的事情還多著, Deepmind 用 AlphaGo 打遍天下無敵手後宣布讓 AlphoGo 退休,後續將這套技術拿去學玩貪食蛇,打星海爭霸,展現出超越電競選手的技巧,現在甚至能預測蛋白質結構,或比醫生更精準地判定乳癌。

GOOGLE 工程師讓 alpha go 快速搜尋並略過「不需要運算的路徑」,就如同「人類的捷思」一樣。圖/envatoelements

人類的最後堡壘陷落了嗎?

最後我們回到一開始的問題,實用化的 LaMDA 究竟有沒有可能通過圖靈測試呢?

即使目前 google 仍強烈否認 LaMDA 具有知覺,而勒穆因也因涉嫌洩漏商業機密被停職。英國謝菲爾德大學機器人學院教授羅傑‧摩爾澄清這個AI背後的算法體系只是「詞序建模」(world sequence modelling)而非「語言建模」(language modeling)。

他強調對答如流的 LaMDA ,會給你他有人格的感覺只是錯覺。但最新的應用中,google 找來了 13 個作家,測試以 LaMDA 為基礎開發的寫作協助工具LaMDA Wordcraft。運作上有點像手機輸入法的關聯字詞推薦概念,但它的設計完全是為了文字創作者而生,利用整個網際網路中的文字,它彷彿擁有了類似榮格「集體潛意識」的能力,當小說家起了一個頭,它就能開始推薦下一個單詞甚至一整個句子補完,甚至還能調整生成文字的風格,例如有趣或憂鬱,這些應用聽起來簡直像是科幻小說。

有些作家甚至可以使用 AI 來創作小說。圖/envatoelements

奇妙的是,參與測試的作家之一正是曾翻譯《三體》英文版並寫出《摺紙動物園》的科幻小說家劉宇昆,他形容這個工具讓他數次突破「創作瓶頸」,節約了自己的腦容量,專注於創作故事更重要的東西。

更驚人的是,他提到有一次他連開頭的靈感都沒有,因此他把「創作的主動權」交給了 LaMDA ,並從中看到了從未想過的可能性,有了繼續寫下去的新寫作靈感。儼然就像當年 Alpha Go 下出一些人類棋譜中從沒想過的棋路一樣,有了「洞見」。

到了這個地步,你仍能堅持 AI 只是我們拿來「解決問題」的工具,而不具備一定程度對人文的認知或智慧嗎?

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

3
2

文字

分享

2
3
2
你覺得 AI 會思考嗎?從圖靈測驗到 AlphaGo ,持續進步的人工智慧——《 AI 世代與我們的未來》
聯經出版_96
・2022/12/26 ・2373字 ・閱讀時間約 4 分鐘

原本人類就對機器有些好奇:機器會思考嗎?機器有智力嗎?機器會有智力嗎?

這些問題本來還不急著回答,但是當研究人員在一九四三年創造出第一台現代電腦,也就是電子、數位、可編寫程式的機器之後,這些問題就顯得急迫了。

這些問題看來格外費解,因為智力的本質一直都沒有答案。

機器有智力嗎?會思考嗎?圖/Pexels

機器人有智力嗎?圖靈測試出現

數學家與解碼專家亞倫.圖靈(Alan Turing)在一九五○年提出解決方案,他的文章標題相當謙和,他在〈計算機器與智力〉一文中建議完全擱置機器智力的問題。圖靈認為真正重要的不是機制,而是智力的展現;他解釋說,因為其他生物的內在生命仍不可知,所以我們衡量智力的唯一方法就是觀察外部行為。圖靈用這個觀點避開長達數世紀的哲學辯論,不去討論智力的本質。

-----廣告,請繼續往下閱讀-----

他所推出的「模仿遊戲」就是讓一台機器操作熟練到觀察者無法區別機器和人類的行為,屆時,這台機器就可以貼上「擁有智力」的標籤。

圖靈測試就出現了。

很多人望文生義,從字面解釋圖靈測試,想像著機器人符合條件的話就會和人一樣(如果真有其事的話)。實際應用上,在遊戲或競賽等定義明確、狀況設定清楚的活動中,圖靈測試可有效衡量「有智力的」機器表現如何。圖靈測試並不要求機器做到和人類完全無法區分的地步,而是要判斷機器的表現是不是像人;在這過程中,圖靈測試著重於表現,而非過程。

這樣的產生器算人工智慧,倒不是因為的模型細節符合什麼標準,而是因為他們寫出來的訊息很接近人類寫出來的訊息,能通過測試是因為這模型經過訓練,運用大量線上資訊。

-----廣告,請繼續往下閱讀-----
電影《模仿遊戲》改編 自圖靈於二戰期間,幫助破譯納粹軍事密碼的真實故事。圖/IMDb

人工智慧怎麼「學習」?

一九五六年,科學家約翰.麥卡錫(John McCarthy)進一步定義了人工智慧:

若機器可執行「需要人類智力才能進行的工作」,即具備人工智慧。

圖靈和麥卡錫對人工智慧的評估自此形成基準,將我們的焦點從智力的定義轉移到表現(看似有智的行為)的評估上,不再聚焦於人工智慧這個詞在更深奧的哲學、認知與神經科學層面。

過去的半個世紀以來,機器幾乎都無法呈現這種智力,這條死路好像已經走到底了。電腦在精確定義的程式基礎上運作數十年,但因為電腦既靜態且僵化,所以電腦分析也受到局限;傳統的程式可以組織大量資料,執行複雜的計算,可是卻無法辨識類似物品的圖片,或適應不準確的輸入項目。

人類思想不精確又模糊,確實是人工智慧發展過程中難以排除的障礙。然而,過去的十年內,創新的運算方式已經創造出新的人工智慧,模稜兩可的程度可和人類相提並論。人工智慧也不精確、恆動、隨機應變,並且能夠「學習」。

-----廣告,請繼續往下閱讀-----

人工智慧「學習」的方式就是先消化資料,然後從資料中觀察,得出結論。

過去的系統需要精確地輸入和輸出項目,不精確的功能人工智慧就不需要。人工智慧在翻譯的時候,不會把每個字都替換掉,而是會找出模式和慣用語,因此翻出來的譯文也會一直變化,因為人工智慧會隨著環境變遷而進化,還能辨識出對人類很新奇的解決方案。在機器領域裡,這四種特質都具有革命性。

以前需仰賴專業棋士,將棋路編寫為程式。圖/Pexels

以阿爾法元在西洋棋世界的突破來說,以前的西洋棋程式要倚賴人類的專業,把人類的棋路編寫為程式;但阿爾法元的技巧是自己和自己對戰數百萬場後磨練出來的,軟體從對戰過程中自己發現了模式。

飛快進步的演算法

這些「學習」技巧的基石是演算法,而演算法就是一連串的步驟,把輸入項目(例如遊戲規則或棋子的走法)翻譯成可重複的輸出項目(例如獲勝)。經典演算法例如長除法等計算,必須精準、可預測,機器學習演算法則不用;經典演算法有許多步驟,分別產出精準的結果,機器學習演算法則一步一步改善不精準的結果。

-----廣告,請繼續往下閱讀-----

這些技巧目前進步飛快,以航空來說,很快地,人工智慧就能成為各種飛行器的正駕駛或副駕駛了。在美國國防部高等研究計劃署(DARPA)的專案「阿爾法纏鬥」(Alpha Dogfight)中,人工智慧戰機飛行員在模擬戰鬥中的表現超越了人類飛行員;不管是要操縱噴射機參戰或操縱無人機送貨,人工智慧都會劇烈影響軍事與民用航空。

人工智慧能成為各種飛行器的駕駛。圖/Pexels

儘管我們現在看到的創新還只是開端,但這些變化已經微妙地改變了人類體驗的紋理,在接下來的數十年內,這趨勢只會愈來愈快。

驅動人工智慧轉型的科技概念很複雜也很重要,所以本章會特別解釋機器學習的演化、現況與應用,說明儘管機器學習強大到讓人害怕,但也有自身的限制。

我們必須先簡介機器學習的架構、能力和限制,才能理解機器學習將帶來的社會、文化和政治變化。

-----廣告,請繼續往下閱讀-----

——本文摘自《 AI 世代與我們的未來:人工智慧如何改變生活,甚至是世界?》,2022 年 12 月,聯經出版公司,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2
聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。

0

1
1

文字

分享

0
1
1
【GENE思書軒】天才艾倫‧圖靈的一生
Gene Ng_96
・2018/12/29 ・2803字 ・閱讀時間約 5 分鐘 ・SR值 545 ・八年級

電影裡要描寫科學家,就讓他們穿白色實驗衣在實驗室和辦公室走來走去。可是現實中,如果我平時沒事就這麼做,同事和學生只會想說我是不是很後悔當初沒去唸醫科,然後忘了吃藥了 Orz

近年有不少描述科學家「真實」生活的電影或影集,如《模仿遊戲》(The Imitation Game)《愛的萬物論》(The Theory of Everything)《天才無限家》(The Man Who Knew Infinity)《關鍵少數》(Hidden Figures)《世紀天才》(Genius) 等等。

這些科學家的傳記能夠搬上大銀幕,當然是因為他們的故事非常戲劇化。即使是大部分諾貝爾獎得主的生平要搬上銀幕,大概只有他們在實驗室裡長時間玩弄不知名的儀器、長時間在辦公室裡讀文獻和打字、或者在課堂中上觀眾完全聽不懂的課⋯⋯

然而,人生的真實狀況有時間是比電影中還鬼扯,以致於編導都不敢照本宣科地搬上大銀幕,以免被影評奚落是亂灑狗血;至少,扣掉電影中那些為劇情發展而弄出的橋段,這些了不起的科學家,他們在人生中和科學上的豐富程度,是電影或影集都難以刻畫的,況且電影常為了製造張力討好觀眾而虛構重要劇情。

-----廣告,請繼續往下閱讀-----

誰是艾倫‧圖靈 ?

如果沒有《模仿遊戲》的主角艾倫‧圖靈 (Alan Turing,1912-1954),電腦也應該還是會誕生,只是不知會晚多久。如果沒有他在第二次世界大戰期間加入布萊切利莊園 (Bletchley Park) 的團隊,破解了德國的密碼,二戰應該仍會結束,但也不知會晚多久,還會有多少寶貴的生命犠牲。如果他沒有因同性戀問題事發,受迫在當時英國法令規定下,被化學閹割後不久在身旁留下一顆毒蘋果自殺身亡,今天的人工智慧可能又會提前多早誕生?

他也提出著名的圖靈測試(Turing test,又譯圖靈試驗),是於 1950 年提出的一個關於判斷機器是否能夠思考的著名試驗,測試某機器是否能表現出與人等價或無法區分的智能。

圖靈測試內容是,如果一個人(代號 C)使用測試對象皆理解的語言去詢問兩個他不能看見的對象任意一串問題。對象為:一個是正常思維的人(代號 B)、一個是機器(代號 A)。如果經過若干詢問以後,C 不能得出實質的區別來分辨 A 與 B 的不同,則此機器 A 通過圖靈測試。

如此可見,圖靈是超越他時代的天才,不僅是位科學家也是位思想家,更是位真誠地面對自己的人,他的一生有許許多多值得我們深思的創見!

要認識艾倫‧圖靈這位真正了不起的科學家,一位讓我們對人類心靈和智能深入思考的科學家,影響力甚至超越科學,也給了哲學、藝術和文學等領域不少啟發,他那偉大又悲劇的偉人戲劇化的一生,《艾倫‧圖靈傳》(Alan Turing: The Enigma) 是最權威的傳記,沒有之一。

圖靈的父親朱利斯·麥席森·圖靈 (Julius Mathison Turing) 是一名英屬印度的公務員。1911 年,圖靈的母親在印度的懷了孕。因為他們希望艾倫在英國出生,所以回到倫敦,住在帕丁頓 (Paddington),並在那裡生下了艾倫。

-----廣告,請繼續往下閱讀-----

父親的公務員委任使他在艾倫小時候經常來往於英倫和印度。由於擔心印度的氣候不利於兒童成長,他便把家庭留在英倫與朋友同住。圖靈很小的時候就表現出他的天才,後來就更加顯著。1931 年,圖靈考入劍橋大學國王學院。1934 年他以優異成績畢業。1935 年因為一篇有關中心極限定理的論文當選為國王學院院士,畢業後到美國普林斯頓大學攻讀博士學位,花了僅僅兩年就大獲得學位。

1939 年圖靈被英國皇家海軍招聘,並在英國軍情六處監督下從事對德國機密軍事密碼的破譯工作。兩年後他的小組成功破譯了德國的密碼系統 Enigma,從而使得軍情六處對德國的軍事指揮和計劃了如指掌。但是軍情六處以機密為由隱瞞了圖靈小組的存在和成就,將其所得情報據為己有。據說,圖靈小組的傑出工作,使得盟軍提前至少兩年戰勝了納粹德軍。

圖靈提出的理論是劃時代和極具開創性的,發明了電腦科學和電腦的許多概念,啟發了後世的許多研究。我算是外行,有不少概念似懂非懂,可是電腦科學的真正高手,往往被圖靈提出的許多概念折服!

艾倫‧圖靈 (Alan Turing,1912-1954)。
圖/wekipedia

-----廣告,請繼續往下閱讀-----

天才圖靈不平順的人生

《艾倫‧圖靈傳》描繪出生動的圖靈,他還是一位世界級的長跑運動員。他的馬拉松最好成績是 2 小時 46 分 3 秒,比 1948 年奧林匹克運動會金牌成績慢 11 分鐘,要不是因為受傷,他可能真的參加了 1948 年奧林匹克運動會。

《艾倫‧圖靈傳》由的圖靈不造作,他沒有刻意隱瞞自己的性向,但圖靈因同性戀傾向而遭到的迫害使得他的職業生涯盡毀。1952 年,他和一名年輕的曼徹斯特男子交好,在那位同性伴侶協同一名同謀一起闖進圖靈的房子行竊時,英國警方的調查結果使得他被控以「明顯的猥褻和性顛倒行為」罪。《艾倫‧圖靈傳》指出,他沒有申辯,他並不認為自己有錯,並被定罪。

儘管他在科學上有極為卓越的貢獻,但還是在著名的公審訂罪後,被給予了兩個選擇:坐牢或雌激素注射「療法」(即化學閹割)。他最後選擇了雌激素注射,並持續一年。在這段時間裡,藥物產生了包括乳房不斷發育的副作用,也使原本熱愛體育運動的圖靈在身心上受到極大傷害。

1954 年,圖靈因食用浸過氰化物溶液的蘋果而死亡。很多人相信他的死是有意的,法官並判決他的死是自殺。但是他的母親極力爭辯他的死是意外,因為他不小心在實驗室里堆放了很多化學物品。

-----廣告,請繼續往下閱讀-----

直到 2013 年 12 月 24 日,英國司法大臣才宣布英國女王伊莉莎白二世赦免 1952 年因同性戀行為被定罪的艾倫·圖靈。2015 年 2 月 23 日,圖靈的家人向英國首相府邸發出了一份超過 50 萬人簽名的請願書,要求英國政府赦免和圖靈一樣因同性戀而獲罪的人。2017 年 1 月 31 日,艾倫·圖靈法案生效,約近五萬位因同性戀定罪者被赦免。

電腦界諾貝爾獎:圖靈獎

為了紀念圖靈的偉大貢獻,電腦協會 (Association of Computing Machinery,ACM) 於 1966 年設立圖靈獎 (ACM A.M. Turing Award),專門獎勵對電腦事業作出重要貢獻的個人。設立目的之一是紀念這位現代電腦科學的奠基者。獲獎者必須是在電腦領域具有持久而重大的先進性的技術貢獻。大多數獲獎者是電腦科學家。是電腦界最負盛名的獎項,有「電腦界諾貝爾獎」之稱。

《模仿遊戲》的娛樂性多過知識性,如果你想知道一位劃世紀的天才在想什麼,問了麼了不起的問題,提出了什麼里程碑式的概念,可能還是好好讀讀《艾倫‧圖靈傳》才最實際!

本文原刊登於 The Sky of Gene

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋