0

0
0

文字

分享

0
0
0

蓋爾曼生日|科學史上的今天:9/15

張瑞棋_96
・2015/09/15 ・1108字 ・閱讀時間約 2 分鐘 ・SR值 574 ・九年級

「統治基本粒子領域20年的皇帝」、「夸克之父」、「活的百科全書」、「最具語言天才的物理學家」,這些稱譽都是形容一個人──美國物理學家蓋爾曼。

 

曾經,物理學家以為他們終於搞清楚原子的內部結構了:電子圍繞著由質子和中子組成的原子核。宇宙所有物質就由這幾個基本粒子構成。不料當他們自1930年代開始利用宇宙射線研究粒子碰撞時,竟陸續發現還有新的粒子,更別提後來有加速器可用時,撞出的更多新粒子了!

這是怎麼一回事?!科學的進展一直是循著「簡單就是美」的原則,而今面對這十幾種不同的粒子,該如何解釋呢?事實上,別說解釋了,光是想要從中找出某種規律或模式,就讓物理學家傷透了腦筋。難怪費米要說:「如果我有辦法記住這些粒子的名字,那我應該去當植物學家。」就在大家焦頭爛額之際,套句廣告詞:好險有蓋爾曼。

蓋爾曼從小就是天才兒童。他15歲進耶魯大學,21歲取得MIT博士學位,24歲主張在自旋之外還有新的量子數──奇異數(引用自培根名言:「凡絕美之物,必帶著幾許奇異」),成功解釋了為什麼某些粒子總是成對出現,而且發生衰變的時間遠比生成時間還久的奇特現象。27歲他成為加州理工學院有史以來最年輕的正教授。

-----廣告,請繼續往下閱讀-----

1961年,蓋爾曼以數學中SU(3)對稱群的八維表示為基礎,將這些看似一團混亂的粒子一一擺到適當的位置,他將這個方法稱為「八重道」(取自佛家的「八正道」)。就像門得列夫制定元素週期表一樣,蓋爾曼不但為當時已發現的基本粒子找出模式,並且預測介子中的一個空格必定存在尚未發現的新粒子,幾個月後果然發現了這個η粒子。

模式找到了,但背後的基本解釋是什麼?蓋爾曼認為8這個數字絕對有其意義,經過計算後,他於1964年大膽主張質子與中子都不是基本粒子,而是由三個更小的夸克(出自喬伊斯《芬尼根守靈夜》中的海鳥叫聲)所組成。夸克模型優雅簡潔,即使後來又有更多新粒子出現,再據以擴充就可納入。蓋爾曼成了粒子標準模型的奠基者之一,而於1969年獲頒諾貝爾物理獎。

蓋爾曼雖然儼然是粒子標準模型的掌門人,他卻不墨守既有領域,反而不斷吸收新知,提攜年輕學者。70年代,他把一群得不到支持的弦論學者聚集到加州理工學院;1984年他藉由自己的聲望創立聖塔非研究院,作為「複雜系統」這個全新領域的研究中心。

從基本粒子這種化約論,跨到探索整體面貌的複雜理論;而其人文素養更是從他創造的那些名詞皆有典故可見一斑。蓋爾曼真是史上少見擁有全面觀點與開闊心靈的科學家。

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
1

文字

分享

1
2
1
身在臺灣也不能阻止他進行核分裂實驗,日本高能物理學奠基者——荒勝文策
PanSci_96
・2023/03/10 ・4147字 ・閱讀時間約 8 分鐘

  • 文/陳立欣

你知道亞洲第一次成功的核分裂實驗是在臺灣完成的嗎 ?

1934 年 7 月 25 日晚間,就在今天的臺灣大學二號館 101 室,舉行了一項令人興奮的偉大實驗。科學家用高壓直線型加速器使質子加速前進,撞擊鋰原子而得到了兩個 α 粒子!這是亞洲第一次,也是世界第二次成功分裂原子核的實驗。而進行這項實驗的科學家,就是時任臺北帝大物理學講座首任教授——荒勝文策(Bunsaku Arakatsu)

醉心物理學研究,歐洲行開啟高能物理之路

荒勝文策出生於 1890 年 3 月 25 日,日本兵庫縣印南郡的一個小漁村。他從御影師範學校與東京高等師範學校畢業後,一度曾在佐賀縣擔任教職。後來在興趣的推動下,1915 年進入京都帝國大學物理學系就讀。1918 年他從京都帝國大學物理學系畢業,並旋即擔任該校講師。其後陸續擔任京都帝國大學物理學系助理教授、甲南高等學校教授、臺灣總督府高等農林學校教授。

從事教職之後,他還是對研究比較感興趣,後來因緣際會之下,他以臺灣總督府在外研究員的身分前往歐洲留學,正式開啟了他與高能物理學的淵源。

荒勝到了歐洲之後,曾經短暫留學於德國的柏林大學(今柏林洪堡大學),跟隨物理學巨擘阿爾伯特・愛因斯坦(Albert Einstein)作研究,當時也正是哥本哈根詮釋風靡全世界的時候。荒勝在自傳中表示,無論在物理或是思考面,都受到愛因斯坦相當大的影響,使得原本矢志攻讀理論物理學的他,轉而對原子核實驗產生了相當大的興趣。

1900 年的德國柏林大學(今洪堡大學)。圖/wiki

因此,一年後他到瑞士蘇黎世聯邦理工學院師從保羅・謝樂(Paul Hermann Scherrer),並進行有關鋰原子中自由電子分布的研究。緊接著他到英國劍橋大學卡文迪西實驗室,師從約瑟夫.湯姆森(Sir Joseph John Thomson)歐尼斯特・拉塞福(Ernest Rutherford)詹姆士.查兌克(Sir James Chadwick)等人共二年半的時間。(編按:此三人正是中學物理課本中介紹近代物理中,對原子核構造發現有重大貢獻的三位物理學家。湯姆森以陰極射線實驗發現了電子、拉塞福以金箔實驗確立了原子核的存在、查兌克則發現了中子。)

-----廣告,請繼續往下閱讀-----

他於 1928 年 8 月獲得京都帝國大學理學博士學位,而畢業論文的主題,就是運用愛因斯坦狹義相對理論裡的「質能互換公式」理論,撰寫出以原子釋出巨能的理論公式。他從事高能物理學研究之路,自此開啟。

臺灣首任物理學教授,完成亞洲首次核分裂實驗

1928 年 12 月,荒勝來到了臺灣總督府轄下的臺北帝國大學,擔任物理學講座的首任教授,並開設普通物理與原子論等相關課程,也是臺北帝國大學首次開設物理學相關課程。荒勝趁著在歐洲進修的機會,大肆採購了許多教學研究相關的圖書與器具,為臺北帝國大學的物理學發展帶來很大的幫助。

1932 年 4 月《自然》雜誌裏有一篇論文,描述英國劍橋大學卡文迪西實驗室怎樣用 Cockcroft-Walton 的加速器,製造快速質子,打入鋰(Lithium)原子核後引發核反應,產生一對 α 粒子來促成鋰蛻變。

經典的核反應之一——鋰同位素的 α 衰變示意圖。此一核反應示意圖中,Li-6()與氘()反應,形成高度激發狀態的中間產物 原子核,並立即再衰變為兩個 α 粒子()。圖中的紅色球體代表質子,藍色球體則代表中子。圖/wiki

在瞭解了這個過程內容後,荒勝就對助手木村毅一說:「這是個大變動之事,我們也來試看看吧!」

-----廣告,請繼續往下閱讀-----

荒勝決定在臺北帝大二號館 101 室建造 Cockcroft-Walton 型加速器。當時臺灣設備簡陋資源不足,有許多問題需要克服。除了器材需要打造,實驗室裡面也沒有天然的放射線源,荒勝借鑑臺北帝國大學理農學部無機化學講座的研究,嘗試從北投石中提煉釙充當 α 線源。此外實驗中需要的重水,也自行設計器材提煉取得。

最後就是電力的問題,Cockcroft-Walton 型加速器需要穩定而充沛的直流電力,進行實驗電壓不足將無法擊碎原子核。幸虧當時臺北工業職業學校提供器材奧援,才解決了直流電的問題。在萬事皆須重頭準備的臺北帝大也能完成此一實驗,由此可見荒勝文策不屈的意志。

1934 年 7 月 25 日夜裡,荒勝成功完成人工撞擊原子核(Li(p, α)He)的實驗。該次實驗重現並證實了 的反應,並發現用高速「氘離子」撞擊「鋰」,也能使鋰同位素產生 的反應。

這次實驗在當時轟動整個日本的物理學界。這是日本史上第一個加速器(全世界第二座這一型的加速器),而這一次追試成功,距離《自然》雜誌刊登論文也只不過經過 2 年。

-----廣告,請繼續往下閱讀-----

與原子彈無法迴避的淵源 二戰未能成功的 F 計畫

1941 年,荒勝成功使鈾原子與釷原子產生核分裂反應,這使得荒勝註定要在原子彈計畫的篇章中留下身影。二戰後期,大日本帝國海軍招集荒勝進行研究,成立了一個研發小組,成員也包含了湯川秀樹

荒勝一開始就決定採用離心機來提煉鈾 235,而不是世界上普及的熱擴散法。他的研究成果,也曾被美國研究原子彈的曼哈頓計劃作為數據計算參考。

鈾-235()的核分裂反應示意圖。鈾-235 受到中子(n)撞擊後,形成極度不穩定的鈾-236,此不穩定的鈾隨後分裂為兩個較輕的原子(Ba-144 與 Kr-89)、產生三個新的中子,並伴隨能量釋放。這些新的中子會再去撞擊周圍其他的鈾-235,如此不斷重複進行,產生連鎖反應,引發巨大的能量。圖/wiki

荒勝文策曾自言:

我自小喜歡旋轉的東西,也許這是我選擇離心機的真正原因。我一輩子喜歡的研究,就是轉動體。

然而,由於當時日本政府內部的混亂以及資源的相對缺乏,致使日本核計畫未能如美國、英國與納粹德國一樣發展迅速。以至於在荒勝的 F 計畫先從日本遷到朝鮮,後因大戰結束也被迫中止了 F 計畫。

-----廣告,請繼續往下閱讀-----

1945 年 8 月 6 日,美軍在廣島投下原子彈,驚人的爆炸力與毀滅性的災難,引起了日本學界的重視。日本陸軍動員了東京理化研究所的仁科芳雄前往觀察研究,而日本海軍則是委任京都帝國大學的荒勝文策,並組織「京都帝國大學原爆災害調查班」進行調查。

荒勝與仁科皆震驚於爆炸威力之強悍,且不斷進行爆炸的計算分析,兩人共同的結論就是「這應該就是原子彈」,經過計算荒勝精確指出爆炸時的高度與位置,並得出閃光時間約在五分之一秒和二分之一秒之間,其調查報告數據計算之精確,震驚世界。

可惜的是,雖然有著最頂尖的相關學識,卻因戰爭的局勢而不得不被迫放棄研究。

戰後,聯合國軍最高司令官總司令部(GHQ)於 1945 年 9 月 28 日下令禁止日本進行有關原子物理與航空學的研究,並拆除京都大學荒勝研究室的迴旋加速器,將之傾倒入琵琶湖。荒勝文策的大量報告與研究筆記也遭到沒收,該次拆除行動也引來了國際間的一陣撻伐。甚至引發了包含美國麻省理工學院在內的科學家們對美國陸軍的抗議,美國陸軍長官並因此引咎道歉,承認拆除行動的錯誤。

-----廣告,請繼續往下閱讀-----

雖然在戰後無法持續相關的研究,荒勝文策仍影響了日本高能物理學的發展。無論是在京都大學發展的 Cockcroft-Walton 型加速器,或是發表在《自然》雜誌與木村和植村一同利用宇宙射線進行的研究。甚至是湯川秀樹,也在畢業後特地回母校旁聽其課程,並深受其影響。荒勝的努力為日本高能物理學在荒野中展開了道路,也讓原子能科學在日本持續發展。

荒勝文策與他在京都大學研究室的迴旋加速器。圖/wiki

在 1949 年湯川秀樹獲得諾貝爾物理學獎後,荒勝感嘆到道:

晚輩得了諾貝爾獎一切都值得了(後輩がノーベル賞を受賞したことで全てが埋め合わされた)。

雖然是欣慰之語,或許也透露出這位奠基者心中仍有所遺憾。

角落也無法掩蓋裡的光芒,開創日本高能物理的荒野道路

鑽石即使擺放在角落,也會發出迷人的光芒。我想,用這句話來形容荒勝文策再適合也不過了。身處日本學術邊陲的臺北帝國大學開設理科講座,在講座成員只有 4 個人的情況下,在不到兩年的時間內就完成了 Cockcroft-Walton 型加速器的設置;甚至完成了全球第二次、亞洲第一次的核分裂實驗,真的非常的不容易。在人手不足、資源不足、連放射線源都沒有的狀態下,還能使用北投石完成實驗,荒勝的堅持態度也為科學研究鍥而不捨的精神立下標竿。

-----廣告,請繼續往下閱讀-----

荒勝文策在臺北帝國大學物理科講座的原子核加速實驗,在物理史上的意義是多重的。對臺灣而言,這是臺灣的名字第一次在物理學學術論文期刊。而遺留在臺灣的加速器殘骸與相關器材,成為戰後臺灣成立物理系、發展核子物理實驗的契機。雖然荒勝藉著這次的實驗重返日本,就未再返回臺灣,但他對於臺灣高能物理學發展,仍舊猶如荒野中的第一道腳印,留下了不可磨滅的痕跡。

參考文獻

  1. 鄭伯昆,〈台大核子物理實驗室 (四)有關的日本科學家〉,《物理雙月刊》,卅卷五期,2008 年 1 月,頁 574-580。
  2. 松本巍著,蒯通林譯《臺北帝國大學沿革史》,頁 7-11。
  3. 張幸真,〈臺灣知識社群的轉變——以臺北帝國大學物理講座到臺灣大學物理系為例〉,2003 年 7 月 31 日,頁 101。
  4. 轉引木村毅一,〈廣島原爆後日譚〉,《神陵文庫》第五卷,1988 年 2 月 29 日,京都三高自昭會,頁 14。
  5. 張幸真,〈臺灣知識社群的轉變-以臺北帝國大學物理講座到臺灣大學物理系為例〉,2003 年 7 月 31 日,頁 106。
  6. Info,(阿文開講——F計畫〉,《臺灣物理學會雙月刊》,2016 年 9 月 7 號。
-----廣告,請繼續往下閱讀-----
PanSci_96
1256 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。