0

1
1

文字

分享

0
1
1

物質世界和生活問題的解答,都藏在低溫世界裡!──專訪中研院物理所陳洋元

研之有物│中央研究院_96
・2018/11/28 ・6383字 ・閱讀時間約 13 分鐘 ・SR值 540 ・八年級

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|廖英凱、美術編輯|張語辰

為什麼要研究「低溫物理」?

低溫領域不只是比較冷的世界而已,接近絕對零度的低溫,可以讓科學家觀察到電子的特性而了解物質世界。而將液態氮用於工程與生物,更能設計出能解決湧水地質工程難題的解法、與對生態無毒無害的紅火蟻防治方法。

中研院物理所的陳洋元研究員,絕招像是《ONE PIECE》漫畫中,青雉的冷冷果實能力。從打造臺灣第一台低溫比熱系統開始、配合稀冷機,為低溫物理研究奠定了良好環境,更利用低溫的特性解決生活問題。
攝影│廖英凱

冰凍時刻:挖隧道工程

低溫的運用,可不只有在微觀世界的物理研究而已,陳洋元與團隊將他們對低溫技術的理解,運用到真實世界,解決生活中所發生的問題。

1988 年起,臺灣開始興建雪山隧道,由於隧道施工路徑,行經了多數斷層、剪裂帶與地下湧泉,導致施工過程中的全斷面隧道鑽掘機 (潛盾機) 多次遭遇大量湧水而受阻。1997 年 12 月,更有一部機組因隧道崩塌而損毀報廢,因此,在湧水環境下依然能有效率地施工,即成雪山隧道工程的關鍵。

在雪隧豎井開挖前,陳洋元團隊先在中研院區試驗。此時液態氮正由冷凍管(白色)在冷凍地盤中。 圖片來源│陳洋元提供

陳洋元得知施工過程的湧水阻礙後,想到百年前英國開挖海底隧道、以及俄國會特別利用冬天結冰期來施工的冰凍工法,便主動寫信建議當時的交通部部長,並提出構想簡報。1999 年,負責雪隧施工的榮工處,也提供了一個研究計畫,讓陳洋元與實驗室團隊利用液態氮試驗冰凍工法,在雪隧的豎井施工地點嘗試施工,並取得了成功凍土開挖的成果。

用液態氮將土壤整塊結凍後,就能順利開挖出坑道,環形為冷凍後開挖出之冰牆。
圖片來源│陳洋元提供

冰凍工法的原理相當簡單直觀,就是利用溫度僅 77 K (−195.79 °C)的液態氮,使土壤中的水分結冰。土壤結冰後變得如岩石一般堅硬,開挖的過程中就能避免土壤因含水量過多、土質鬆軟而坍塌。

但是,如何讓低溫的液態氮,可以準確冷凍到需要開挖的部位,並確保冷凍的強度,則是實踐冷凍工法的困難之處。對此,陳洋元自行設計了液態氮冷卻、排氣與監測的工程系統,並透過電腦模擬估算液態氮的冷凍時間,成功開發出能開挖豎井的冷凍工法。

 

陳洋元設計的土壤冷凍實驗配置圖。
圖片來源│陳洋元提供   圖說重製│張語辰

但很可惜的,由於雪隧施工過程的工程考量、工期壓力與學科分野後的本位主義,陳洋元團隊的冷凍工法,最終仍未被雪隧的施工單位所採用。陳洋元認為,這代表了學術研究和技術落實的差異。

學術研究雖然可以驗證新技術是否有成功的機會,但要讓技術開發完成,仍需要實務單位投入組織團隊與資源。

不過很快地,冷凍工法又得到了來自工地現場的呼喚。2006 年台北市開始大規模建設與更新地下汙水道,在地下汙水道的豎井興建工程中,遇到例如華江橋一帶地下水位較高的地方,豎井深處會有湧水而完全無法開挖。若停下來抽水排除障礙會嚴重延誤工期,而造成施工廠商的重大負擔。因此,陳洋元老師接受了施工廠商的委託,設計出能在豎井底層使用的冰凍工法,解決了地底水平開挖工程的湧水問題。

(左)在豎井內透過推進機,水平開挖出汙水下水道
(右)利用液態氮冰凍工法,將豎井周圍的土壤結凍,改善開挖過程的湧水問題
圖片來源│陳洋元提供

 回顧起運用知識投入解決工程問題的經驗,陳洋元認為臺灣的產學合作與技術轉移,仍有相當多傳統思維需要突破。像是中研院雖有開發冰凍工法的經驗,但近幾年一些政府重大工程施工時,寧可高價雇用日本冰凍工法的團隊,也不願學習並採用中研院的技術。

兩棘矛:紅火蟻防治

不只是工程上,陳洋元團隊也將液態氮運用於紅火蟻防治。2001 至 2002 年間,紅火蟻透過運輸的貨櫃入侵到臺灣,成為影響農業、生態與人類安全的外來入侵種。利用熱水、化學藥劑等防治方法效果均有限,且須留意藥劑對生態的副作用。2004 年,當時的中研院李遠哲院長在立法院備詢與記者提問時,提出可利用液態氮消滅紅火蟻的構想。會後,李遠哲院長委託陳洋元開發液態氮撲滅紅火蟻的技術。

陳洋元與中研院生物多樣性中心的馬堪津研究員合作,發現紅火蟻在低於 -17°C 的環境會完全死亡;陳洋元同時也委由中研院物理所精工室的技師,打造在紅火蟻巢灌注液態氮的金屬管路。試驗結果發現,撲滅成效可完全根除蟻巢內的紅火蟻群與蟻后,也毫無任何汙染與副作用。

利用液態氮冷凍紅火蟻蟻巢。
圖片來源│陳洋元提供 圖說重製│張語辰

除了進一步技轉、推廣液態氮防治技術,陳洋元也研究如何有效定位紅火蟻蟻巢的位置。團隊曾利用軍用級紅外線偵測儀,企圖偵測紅火蟻蟻巢的溫度來定位,原本想法是蟻巢的溫度可能高於一般土壤,但實際上因為蟻巢通風良好、溫度反而較低。由於紅外線偵測儀不易偵測出剛形成的較小蟻巢,陳洋元因而進一步開發更有效的「紅火蟻偵測犬」。

陳洋元後續將紅火蟻屍體樣本寄至屏科大與祁偉廉獸醫師合作,訓練出能有效定位紅火蟻位置的偵測犬。偵測犬搭配液態氮與其他防治工法,近年來持續套用到大學校園、桃園機場、松山機場、淡水輕軌、台北花博等地的紅火蟻防治,以免紅火蟻破壞重要的電線或飛航線路,並需搭配定期觀測追蹤。近年來,日韓等國也因有紅火蟻防治的需求,而尋求陳洋元團隊的技術協助。

自製低溫比熱系統,探究低溫世界

無論是冰凍工法、液態氮防治紅火蟻,這些應用都是基於對「低溫物理」的成熟了解。但時間回溯到更早之前,最初發展低溫物理的科學家,其實有他們好奇、想探究的現象。

例如,今日對於低溫超導體的興盛研究,肇始於 1911 年時,荷蘭科學家海克.卡末林.昂內斯 (Heike Kamerlingh Onnes) 發現水銀在溫度 4.2K 時,電阻會完全消失、成為超導體。伴隨著低溫環境與低溫技術的出現,科學家開始發現在低溫狀態中,物質的特性有了超乎預期的現象。

從材料研究的觀點來看,微觀尺度的物質世界,其實就是原子與電子的交互作用。物質藉由不同的原子組成、排列,決定了物質的特性;藉由原子的震動,呈現出熱的現象;藉由電子的流動,則呈現出了電流。

伴隨量子力學的發展,物理學家利用「聲子」的概念,來理解原子的排列與震動,在過去七十年來,已累積了大量理論與實驗的成果,而造就了今日科學對晶體的理解。然而,對於「電子」性質的理解,卻因為聲子振動時的現象,會掩蓋電子的物理現象,使得對電子的研究明顯晚於聲子的研究進展。直到低溫技術的出現與變革:低溫環境不斷地改善、不斷地下探人類能創造的最低溫。

在低溫環境中,聲子如同結凍般,大幅減少了聲子振動所帶來的影響,而使得電子的特性,終於能開始被觀察研究。

1980 年代,正值低溫物理發展的高峰。1989 年,陳洋元從加州大學回到中研院物理所,建立了奈米材料與低溫物理實驗室,開始積極發展低溫技術。環顧當時臺灣沒有一台自製的比熱儀,而比熱的量測在凝態物理研究中是相當重要的元素,可以提供聲子、電子、磁性、相變等訊息,像是比熱對於超導材料的研究便不可或缺。

因此陳洋元決定發展臺灣自己的低溫比熱系統,此系統最關鍵的就是量測晶片、電子系統、與電腦程式。

陳洋元自行開發的低溫比熱系統。
圖片來源│陳洋元提供
2010 年開發的第五代比熱量測晶片,Ni-Cr 與 RuO2 薄膜由無塵室半導體製程完成。晶片由四條金線懸於真空中,與控溫之銅座相連接。
圖片來源│陳洋元提供
比熱量測晶片,中間的銀色方塊為樣品(重量約 1~15 mg)。
圖片來源│陳洋元提供

如上方的圖片所示,量測晶片上有加熱與溫度感測薄膜,懸吊於真空中,利用加熱、放熱時產生的溫度變化,可於溫度 0.3-300K、高壓、磁場的環境下,測量微小樣品的比熱,例如二鋁化鈰 (CeAl2) 在奈米尺寸會呈現與塊材不同的比熱。過去 30 多年運用此低溫比熱系統發表之論文含 Physical Review Letters (PRL)、Physical Review B (PRB)、Applied Physics Letters (APL) 等計 70 餘篇。

比熱量測案例:二鋁化鈰 (CeAl2) 80 nm 奈米樣品的低溫比熱與塊材截然不同,凸顯了奈米科技的獨特性。
圖片來源│陳洋元提供,取自 Size Dependence of Heavy Fermion Behavior in CeAl2

設置「稀冷機」,讓低溫更低溫

進行低溫物理研究時,若單純只使用液態氦,會受限於液態氦的沸點,難以繼續降至更低的溫度。對此,中研院於 1995-1996 年間,設置了臺灣第一台稀釋致冷機 (dilution refrigerator),利用不同比例 4He 與 3He 的蒸發,最終能達到 0.035K 的超低溫度。

我們可以簡單想像,在單純熱交換的世界中,例如將冰水與溫水混合,所能得到的最低溫,一定會高於冰水的溫度。因此,若無法取得比 4He 與 3He 沸點更低的物質,則實驗環境勢必無法低於 4He 與 3He 的沸點溫度。

因此,科學家運用「蒸氣壓」能影響「沸點」的特性,來取得更低的溫度。就像在高山上,氣壓較低時,水的沸點也會降低、而更容易煮沸。若將 4He 與 3He 置於更低表面蒸氣壓的環境中,則可以使兩者的沸點分別降至 1.5K 與 0.3K。

稀冷機,則更進一步運用物質在「相轉變」時,會帶走熱量的特性來降溫。

如下圖所示,稀冷機中的混合室 (mixing chamber)內有兩種由不同比例 4He 與 3He 所組成的液態相,形成相界 (phase boundary)明顯的兩相分離。混合室中 4He 較多、 3He 較少的部分,以管路連接一以 4He 為主的混合物容器 (still) ,當對 still 抽氣時,會使混合室中的 3He,先從 3He 較多的液相,跨越第一個相界至 3He 較少的液相,再跨越第二個相界至 still。

  1. mixing chamber 中有兩個不同 3HE 和 4HE 組成的液態相。
  2. 當對 still 抽氣時,mixing chamber 中濃相區(深藍色區塊)的 3HE 會被抽走,下層中稀相區(淺藍色區塊)中的 3HE 會穿越過兩相間的界面,補充上層濃相區被抽走的 3HE,此種類似蒸發的作用會帶走熱量。
  3. 3HE 再穿越至 still 區蒸發、將熱量帶走,而能降低溫度。
稀冷機的裝置示意圖。 資料來源│陳洋元 圖說重製│廖英凱、張語辰

兩次相界的跨越,就如同兩次蒸發帶走熱量一般,可使混合室的溫度降低至 10-3K 的溫度狀態。以此技術,目前的世界紀錄,更可達到 10-12K 的程度。

陳洋元笑稱,當年由於稀冷機技術相對複雜而多數學校無法設置,中研院的稀冷機與良好的低溫環境,就像是一個創造了一個「dilution 俱樂部」,吸引了許多低溫物理的人才來此研究。

不過,雖然可利用液態氦來達到低溫,但液態氦無法人工合成、所費不貲,是低溫研究的重大花費。因此,陳洋元在中研院物理所旁,建立了「氦氣液化系統」,此系統能回收物理所實驗室本來排放到大氣中的氦氣,並重新壓縮降溫與液化,從而回收氦氣循環使用,節省資源並降低研究花費。

氦氣液化系統:從物理所回收的氦氣,會先儲存在上方的氣球,再壓縮分裝到鋼瓶中儲存備用。
攝影│廖英凱 圖說重製│張語辰
氦液化機室:回收的氦氣,經過這台機器液化後,再次用於物理所的低溫實驗。
攝影│廖英凱 圖說重製│張語辰

這幾間實驗室啊,還有隔壁的那兩間工廠……是當年我規畫蓋出來的啊

走在中研院物理所建物之間,陳洋元悠悠地這麼說。從低溫儀器的開發,到低溫物理的基礎研究;從實驗室裡的學術環境,到工地與蟲害的實際應用,陳洋元是少數投入如此廣泛與多樣領域的研究者。

回顧過往,這也許和陳洋元與團隊從 1989 年開始,長期耕耘中研院物理所的基礎建設有關,包含建立氦氣液化系統,協助建立精工室、以及位於物理所地下室的磁性實驗室和 X 光實驗室。

如同基礎研究之於整體學術發展的重要,基礎研究環境的興建與營運,可以帶來前端研究的成果;而立於基礎知識之上,我們更能發現複雜生活問題的解決方法。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3568 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

2
1

文字

分享

2
2
1
奠定現代通信基礎的克勞德.香農(Claude Shannon)
數感實驗室_96
・2024/06/06 ・743字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

以前小時候如果調皮不聽話,就會被大人叫去跪算盤,現在的家長家裡沒算盤了,反而會拿出電路板讓小孩跪。

咦?為什麼總是拿算數工具來懲罰小孩呢?

電路板上看似複雜電路板密密麻麻的,是電腦進行邏輯計算的關鍵。這小小的薄片能執行驚人的運算功能,背後的奧秘離不開一位傳奇科學家的貢獻。他不僅奠定了現代通信的基礎,還開創了人工智慧研究,這可不是一般人一生能做到的成就,但克勞德.香農(Claude Shannon)卻一次搞定。

-----廣告,請繼續往下閱讀-----

這位非凡的科學家是如何改變了我們的時代?

他讓我們今天能享受高效的通訊技術和智慧生活。如果你也覺得現在生活離不開手機和電腦,那你應該感謝這位數學和電機工程的天才。

對於 2000 年後出生的人而言,或許覺得用手機傳訊息、用電腦看影片再平常不過。但在 Shannon 出現之前,沒有人能系統性地定義「資訊」和「通訊」。他以其對動手實驗的熱忱,將這些看似無形的概念轉化為實際的理論,為世界帶來了一場資訊革命。

正是因為 Shannon 的卓越貢獻,我們才能享受如此便捷的現代通信技術。他不僅改變了科學的面貌,還深刻地影響了我們的日常生活。

Shannon 的故事也提醒我們,熱愛與好奇心是推動進步的核心力量。他用智慧和創造力,為我們打造現代通信的基礎,並開啟未來的無限可能。

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

所有討論 2
數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

0
0

文字

分享

0
0
0
古人用的超大型手機?從烽火臺到智能手機:通信科技的演進
數感實驗室_96
・2024/05/13 ・883字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

現代人手機普及率極高,你可能正在用手機閱讀這篇文章。

仔細想想,我們每天使用的手機真的很厲害。只需幾下操作,就能傳訊息、視訊通話,還能上網看影片、玩遊戲、使用社群網路等。

你可能知道全世界的第一支手機是 Motorola 在 1973 年 4 月 3 日推出的黑金剛,重達 2 公斤的程度。不過,早在幾千年前,其實已經有「手機」存在了。

-----廣告,請繼續往下閱讀-----

當時的手機不只兩公斤重或兩公升水壺大,甚至是有好幾層樓那麼高,那這些手機的傳輸速率也超級慢,看影片一定是不可能,連打電話聊天都辦不到。超級陽春,基本上只能傳遞「有」或「沒有」這樣的是非題。

應該有些人猜到了,其實就是「烽火臺」。

烽火臺是中國古代為了傳遞軍情所設計的通信系統。一座烽火臺上有幾位士兵,備有大量的稻草與木柴,如果看到敵人侵犯,或是前後的烽火臺燃起狼煙,士兵們就會立刻燃燒乾柴,釋放狼煙,傳遞攸關國家存亡的重要資訊。雖然,烽火臺的尺寸大小與現今我們常用的手機差很多,傳輸能力也差很多,但烽火臺還真是上古時代標準的通信設施哦!

接下來還會推出一系列「通信科技」相關的節目,內容囊括了通信發展的歷史故事、重要的通信科學家、通信相關的技術知識。

-----廣告,請繼續往下閱讀-----

讓你認識新聞報導中,常聽到的一些通信專有名詞,什麼是頻帶、頻寬?現代通信技術如此厲害的關鍵又在哪裡?甚至,這些技術跟我們平常在學校裡學到的各科知識,又有怎樣的連結呢?

這系列將用影片帶領大家進入這個有趣、改變全人類生活的通信世界,敬請期待哦!有更多想法也可以留言分享喔!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/