Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

物質世界和生活問題的解答,都藏在低溫世界裡!──專訪中研院物理所陳洋元

研之有物│中央研究院_96
・2018/11/28 ・6383字 ・閱讀時間約 13 分鐘 ・SR值 540 ・八年級

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|廖英凱、美術編輯|張語辰

為什麼要研究「低溫物理」?

低溫領域不只是比較冷的世界而已,接近絕對零度的低溫,可以讓科學家觀察到電子的特性而了解物質世界。而將液態氮用於工程與生物,更能設計出能解決湧水地質工程難題的解法、與對生態無毒無害的紅火蟻防治方法。

中研院物理所的陳洋元研究員,絕招像是《ONE PIECE》漫畫中,青雉的冷冷果實能力。從打造臺灣第一台低溫比熱系統開始、配合稀冷機,為低溫物理研究奠定了良好環境,更利用低溫的特性解決生活問題。
攝影│廖英凱

冰凍時刻:挖隧道工程

低溫的運用,可不只有在微觀世界的物理研究而已,陳洋元與團隊將他們對低溫技術的理解,運用到真實世界,解決生活中所發生的問題。

1988 年起,臺灣開始興建雪山隧道,由於隧道施工路徑,行經了多數斷層、剪裂帶與地下湧泉,導致施工過程中的全斷面隧道鑽掘機 (潛盾機) 多次遭遇大量湧水而受阻。1997 年 12 月,更有一部機組因隧道崩塌而損毀報廢,因此,在湧水環境下依然能有效率地施工,即成雪山隧道工程的關鍵。

在雪隧豎井開挖前,陳洋元團隊先在中研院區試驗。此時液態氮正由冷凍管(白色)在冷凍地盤中。 圖片來源│陳洋元提供

陳洋元得知施工過程的湧水阻礙後,想到百年前英國開挖海底隧道、以及俄國會特別利用冬天結冰期來施工的冰凍工法,便主動寫信建議當時的交通部部長,並提出構想簡報。1999 年,負責雪隧施工的榮工處,也提供了一個研究計畫,讓陳洋元與實驗室團隊利用液態氮試驗冰凍工法,在雪隧的豎井施工地點嘗試施工,並取得了成功凍土開挖的成果。

用液態氮將土壤整塊結凍後,就能順利開挖出坑道,環形為冷凍後開挖出之冰牆。
圖片來源│陳洋元提供

冰凍工法的原理相當簡單直觀,就是利用溫度僅 77 K (−195.79 °C)的液態氮,使土壤中的水分結冰。土壤結冰後變得如岩石一般堅硬,開挖的過程中就能避免土壤因含水量過多、土質鬆軟而坍塌。

但是,如何讓低溫的液態氮,可以準確冷凍到需要開挖的部位,並確保冷凍的強度,則是實踐冷凍工法的困難之處。對此,陳洋元自行設計了液態氮冷卻、排氣與監測的工程系統,並透過電腦模擬估算液態氮的冷凍時間,成功開發出能開挖豎井的冷凍工法。

 

陳洋元設計的土壤冷凍實驗配置圖。
圖片來源│陳洋元提供   圖說重製│張語辰

但很可惜的,由於雪隧施工過程的工程考量、工期壓力與學科分野後的本位主義,陳洋元團隊的冷凍工法,最終仍未被雪隧的施工單位所採用。陳洋元認為,這代表了學術研究和技術落實的差異。

學術研究雖然可以驗證新技術是否有成功的機會,但要讓技術開發完成,仍需要實務單位投入組織團隊與資源。

不過很快地,冷凍工法又得到了來自工地現場的呼喚。2006 年台北市開始大規模建設與更新地下汙水道,在地下汙水道的豎井興建工程中,遇到例如華江橋一帶地下水位較高的地方,豎井深處會有湧水而完全無法開挖。若停下來抽水排除障礙會嚴重延誤工期,而造成施工廠商的重大負擔。因此,陳洋元老師接受了施工廠商的委託,設計出能在豎井底層使用的冰凍工法,解決了地底水平開挖工程的湧水問題。

(左)在豎井內透過推進機,水平開挖出汙水下水道
(右)利用液態氮冰凍工法,將豎井周圍的土壤結凍,改善開挖過程的湧水問題
圖片來源│陳洋元提供

 回顧起運用知識投入解決工程問題的經驗,陳洋元認為臺灣的產學合作與技術轉移,仍有相當多傳統思維需要突破。像是中研院雖有開發冰凍工法的經驗,但近幾年一些政府重大工程施工時,寧可高價雇用日本冰凍工法的團隊,也不願學習並採用中研院的技術。

兩棘矛:紅火蟻防治

不只是工程上,陳洋元團隊也將液態氮運用於紅火蟻防治。2001 至 2002 年間,紅火蟻透過運輸的貨櫃入侵到臺灣,成為影響農業、生態與人類安全的外來入侵種。利用熱水、化學藥劑等防治方法效果均有限,且須留意藥劑對生態的副作用。2004 年,當時的中研院李遠哲院長在立法院備詢與記者提問時,提出可利用液態氮消滅紅火蟻的構想。會後,李遠哲院長委託陳洋元開發液態氮撲滅紅火蟻的技術。

陳洋元與中研院生物多樣性中心的馬堪津研究員合作,發現紅火蟻在低於 -17°C 的環境會完全死亡;陳洋元同時也委由中研院物理所精工室的技師,打造在紅火蟻巢灌注液態氮的金屬管路。試驗結果發現,撲滅成效可完全根除蟻巢內的紅火蟻群與蟻后,也毫無任何汙染與副作用。

利用液態氮冷凍紅火蟻蟻巢。
圖片來源│陳洋元提供 圖說重製│張語辰

除了進一步技轉、推廣液態氮防治技術,陳洋元也研究如何有效定位紅火蟻蟻巢的位置。團隊曾利用軍用級紅外線偵測儀,企圖偵測紅火蟻蟻巢的溫度來定位,原本想法是蟻巢的溫度可能高於一般土壤,但實際上因為蟻巢通風良好、溫度反而較低。由於紅外線偵測儀不易偵測出剛形成的較小蟻巢,陳洋元因而進一步開發更有效的「紅火蟻偵測犬」。

陳洋元後續將紅火蟻屍體樣本寄至屏科大與祁偉廉獸醫師合作,訓練出能有效定位紅火蟻位置的偵測犬。偵測犬搭配液態氮與其他防治工法,近年來持續套用到大學校園、桃園機場、松山機場、淡水輕軌、台北花博等地的紅火蟻防治,以免紅火蟻破壞重要的電線或飛航線路,並需搭配定期觀測追蹤。近年來,日韓等國也因有紅火蟻防治的需求,而尋求陳洋元團隊的技術協助。

自製低溫比熱系統,探究低溫世界

無論是冰凍工法、液態氮防治紅火蟻,這些應用都是基於對「低溫物理」的成熟了解。但時間回溯到更早之前,最初發展低溫物理的科學家,其實有他們好奇、想探究的現象。

例如,今日對於低溫超導體的興盛研究,肇始於 1911 年時,荷蘭科學家海克.卡末林.昂內斯 (Heike Kamerlingh Onnes) 發現水銀在溫度 4.2K 時,電阻會完全消失、成為超導體。伴隨著低溫環境與低溫技術的出現,科學家開始發現在低溫狀態中,物質的特性有了超乎預期的現象。

從材料研究的觀點來看,微觀尺度的物質世界,其實就是原子與電子的交互作用。物質藉由不同的原子組成、排列,決定了物質的特性;藉由原子的震動,呈現出熱的現象;藉由電子的流動,則呈現出了電流。

伴隨量子力學的發展,物理學家利用「聲子」的概念,來理解原子的排列與震動,在過去七十年來,已累積了大量理論與實驗的成果,而造就了今日科學對晶體的理解。然而,對於「電子」性質的理解,卻因為聲子振動時的現象,會掩蓋電子的物理現象,使得對電子的研究明顯晚於聲子的研究進展。直到低溫技術的出現與變革:低溫環境不斷地改善、不斷地下探人類能創造的最低溫。

在低溫環境中,聲子如同結凍般,大幅減少了聲子振動所帶來的影響,而使得電子的特性,終於能開始被觀察研究。

1980 年代,正值低溫物理發展的高峰。1989 年,陳洋元從加州大學回到中研院物理所,建立了奈米材料與低溫物理實驗室,開始積極發展低溫技術。環顧當時臺灣沒有一台自製的比熱儀,而比熱的量測在凝態物理研究中是相當重要的元素,可以提供聲子、電子、磁性、相變等訊息,像是比熱對於超導材料的研究便不可或缺。

因此陳洋元決定發展臺灣自己的低溫比熱系統,此系統最關鍵的就是量測晶片、電子系統、與電腦程式。

陳洋元自行開發的低溫比熱系統。
圖片來源│陳洋元提供
2010 年開發的第五代比熱量測晶片,Ni-Cr 與 RuO2 薄膜由無塵室半導體製程完成。晶片由四條金線懸於真空中,與控溫之銅座相連接。
圖片來源│陳洋元提供
比熱量測晶片,中間的銀色方塊為樣品(重量約 1~15 mg)。
圖片來源│陳洋元提供

如上方的圖片所示,量測晶片上有加熱與溫度感測薄膜,懸吊於真空中,利用加熱、放熱時產生的溫度變化,可於溫度 0.3-300K、高壓、磁場的環境下,測量微小樣品的比熱,例如二鋁化鈰 (CeAl2) 在奈米尺寸會呈現與塊材不同的比熱。過去 30 多年運用此低溫比熱系統發表之論文含 Physical Review Letters (PRL)、Physical Review B (PRB)、Applied Physics Letters (APL) 等計 70 餘篇。

比熱量測案例:二鋁化鈰 (CeAl2) 80 nm 奈米樣品的低溫比熱與塊材截然不同,凸顯了奈米科技的獨特性。
圖片來源│陳洋元提供,取自 Size Dependence of Heavy Fermion Behavior in CeAl2

設置「稀冷機」,讓低溫更低溫

進行低溫物理研究時,若單純只使用液態氦,會受限於液態氦的沸點,難以繼續降至更低的溫度。對此,中研院於 1995-1996 年間,設置了臺灣第一台稀釋致冷機 (dilution refrigerator),利用不同比例 4He 與 3He 的蒸發,最終能達到 0.035K 的超低溫度。

我們可以簡單想像,在單純熱交換的世界中,例如將冰水與溫水混合,所能得到的最低溫,一定會高於冰水的溫度。因此,若無法取得比 4He 與 3He 沸點更低的物質,則實驗環境勢必無法低於 4He 與 3He 的沸點溫度。

因此,科學家運用「蒸氣壓」能影響「沸點」的特性,來取得更低的溫度。就像在高山上,氣壓較低時,水的沸點也會降低、而更容易煮沸。若將 4He 與 3He 置於更低表面蒸氣壓的環境中,則可以使兩者的沸點分別降至 1.5K 與 0.3K。

稀冷機,則更進一步運用物質在「相轉變」時,會帶走熱量的特性來降溫。

如下圖所示,稀冷機中的混合室 (mixing chamber)內有兩種由不同比例 4He 與 3He 所組成的液態相,形成相界 (phase boundary)明顯的兩相分離。混合室中 4He 較多、 3He 較少的部分,以管路連接一以 4He 為主的混合物容器 (still) ,當對 still 抽氣時,會使混合室中的 3He,先從 3He 較多的液相,跨越第一個相界至 3He 較少的液相,再跨越第二個相界至 still。

  1. mixing chamber 中有兩個不同 3HE 和 4HE 組成的液態相。
  2. 當對 still 抽氣時,mixing chamber 中濃相區(深藍色區塊)的 3HE 會被抽走,下層中稀相區(淺藍色區塊)中的 3HE 會穿越過兩相間的界面,補充上層濃相區被抽走的 3HE,此種類似蒸發的作用會帶走熱量。
  3. 3HE 再穿越至 still 區蒸發、將熱量帶走,而能降低溫度。
稀冷機的裝置示意圖。 資料來源│陳洋元 圖說重製│廖英凱、張語辰

兩次相界的跨越,就如同兩次蒸發帶走熱量一般,可使混合室的溫度降低至 10-3K 的溫度狀態。以此技術,目前的世界紀錄,更可達到 10-12K 的程度。

陳洋元笑稱,當年由於稀冷機技術相對複雜而多數學校無法設置,中研院的稀冷機與良好的低溫環境,就像是一個創造了一個「dilution 俱樂部」,吸引了許多低溫物理的人才來此研究。

不過,雖然可利用液態氦來達到低溫,但液態氦無法人工合成、所費不貲,是低溫研究的重大花費。因此,陳洋元在中研院物理所旁,建立了「氦氣液化系統」,此系統能回收物理所實驗室本來排放到大氣中的氦氣,並重新壓縮降溫與液化,從而回收氦氣循環使用,節省資源並降低研究花費。

氦氣液化系統:從物理所回收的氦氣,會先儲存在上方的氣球,再壓縮分裝到鋼瓶中儲存備用。
攝影│廖英凱 圖說重製│張語辰
氦液化機室:回收的氦氣,經過這台機器液化後,再次用於物理所的低溫實驗。
攝影│廖英凱 圖說重製│張語辰

這幾間實驗室啊,還有隔壁的那兩間工廠……是當年我規畫蓋出來的啊

走在中研院物理所建物之間,陳洋元悠悠地這麼說。從低溫儀器的開發,到低溫物理的基礎研究;從實驗室裡的學術環境,到工地與蟲害的實際應用,陳洋元是少數投入如此廣泛與多樣領域的研究者。

回顧過往,這也許和陳洋元與團隊從 1989 年開始,長期耕耘中研院物理所的基礎建設有關,包含建立氦氣液化系統,協助建立精工室、以及位於物理所地下室的磁性實驗室和 X 光實驗室。

如同基礎研究之於整體學術發展的重要,基礎研究環境的興建與營運,可以帶來前端研究的成果;而立於基礎知識之上,我們更能發現複雜生活問題的解決方法。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3665 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
32 篇文章 ・ 6 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
腸道與聽力的神秘連結:你的聽覺健康可能藏在腸胃裡?
雅文兒童聽語文教基金會_96
・2025/02/20 ・3665字 ・閱讀時間約 7 分鐘

  • 作者 / 雅文基金會聽語科學研究中心 研究員|羅明

腸道的狀態會影響身體的健康,是現代人熟悉的保健觀念,就像廣告台詞所說的:胃腸顧好,人就快好。腸道狀態的影響力,可能比我們想像的多更多。已經有愈來愈多的研究報告指出,腸道狀態與聽覺系統之間,其實也有某種關聯。聽的好不好跟肚子好不好,究竟有什麼關係?讓我們繼續看下去。

腸腦軸線是什麼

開始之前,要先介紹「腸腦軸線」(gut-brain axis)的概念。研究證實,大腦的運作與腸道中的微生物群有所關聯。腸道若出現微生態失調(gut dysbiosis),除了生活品質水準降低 [1],大腦功能與外在行為也會受到影響。例如:容易無法集中精神 [2] [3]、睡眠品質不佳 [4],甚至是心理功能失調 [5] 等種種情況。

同時也有研究發現,某些大腦方面的失序和疾病,會伴隨腸道微生態失調的情況 [6]。例如:認知功能方面出現障礙的阿茲海默症(Alzheimer’s disease; [7] [8]),以及在疾病早期常先出現行動功能障礙的帕金森症 (Parkinson’s disease; [9] )。

大腦的運作與腸道中的微生物群有所關聯。圖/AI 創建

至於腸道與大腦是如何互相影響彼此,目前的研究告訴我們,大致上是透過幾條途徑:
1. 迷走神經(vagus nerve)
2. 下視丘-腦垂體-腎上腺系統(hypothalamic-pituitary-adrenal axis,簡稱 HPA 軸)
3. 免疫系統(immune system)
4. 神經傳導素(neurotransmitters)
5. 細菌代謝物(bacterial metabolites)

-----廣告,請繼續往下閱讀-----

總之,腸道菌相與身心健康之間,不論是在生理或心理的層面,都息息相關。而有另一批研究的結果指出,不只是大腦所在的中樞系統,這種關聯性還擴及到了「聽覺」所在的感官系統。尤其是迷走神經與免疫系統,我們將會提到它們在聽覺系統運作中的角色。

近年研究新發現:耳腸腦軸線

聽的好不好,也就是聽覺系統是否功能良好,同樣是身心健康重要的一環。聽覺系統本身可再分為周邊(含外耳、中耳、內耳)與中樞(含延腦、橋腦、中腦、大腦)等兩個子系統,而聲音一開始從外界進入聽覺系統,到最後能否解讀成功,取決於兩個子系統是否都能順利運作。

直到最近,種種間接顯示腸道狀態影響聽覺功能的資訊,引起了一些研究者的注意。例如,有一種基因同時與腸道和耳朵的發育有關,而先天性巨結腸症(或稱赫司朋氏症,Hirschsprung disease)的動物研究發現,這種基因的突變可能導致聽力損失 [10]

由於相關的資訊愈來愈多,近來有研究者進行了系統性的回顧,並根據得到的結果指出,人體中很可能還有一種可稱之為「耳腸腦軸線」(ear-gut-brain axis)的系統 [11] [12] [13] [14]。接下來,讓我們看看有哪些研究,支持著人體存在耳腸腦軸線的想法。

-----廣告,請繼續往下閱讀-----

人體中很可能存在一種「耳腸腦軸線」系統。圖/AI創建

迷走神經串接耳與腸

人類的腦神經中,迷走神經最長也分布最廣。這組神經起於延腦,而後下行至頸、胸、腹等部位。它在自主神經系統(autonomic nervous system)有著重要的角色,其中之一是自動調節消化系統的活動。觸及腸道與大腦的神經纖維中,訊息是雙向往返的,約有 10% 至 20% 的部分是從大腦往腸道傳送,而有 80% 至 90% 的部分則是從腸道送往大腦 [15]

迷走神經有許多分支,其中一支延伸到外耳之上,稱爲迷走神經耳分支(auricular branch)。有一個對象是成年女性的研究發現,如果在迷走神經耳分支施予刺激,會有助於消解發炎性腸道疾病(inflammatory bowel disease,簡稱 IBD)的疼痛感,以及減低症狀的嚴重程度 [16]。而這一類刺激方法,用於治療耳鳴(tinnitus)似乎也有效果,例如:減少耳鳴相關的症狀,以及舒緩耳鳴帶來的壓力感 [17] [18]

發炎性腸道疾病除了引發疼痛感,也可能伴隨耳鳴相關症狀。圖/AI 創建

發炎也會讓人聽的不好

我們在文章開頭時提到,由於腸腦軸線的存在,腸道失調與大腦異常顯現出清楚的關聯性。如果沿著相同的思路,則可預期腸道一旦出現異狀,透過耳腸腦軸線的作用,聽覺系統應該也會連帶發生問題。實際上, 在 IBD 這一類疾病的觀察中,的確不同的研究也有著類似的發現。

-----廣告,請繼續往下閱讀-----

無論是在外耳、中耳或內耳,都有研究資料顯示,這些部位的某些異狀會跟 IBD 有所關聯 [19]。尤其是感音性聽力損失,是 IBD 患者最常見的耳科疾病。有研究者回溯了32位IBD病患者的資料,結果發現其中的 22 位兼有感音性聽損,比例將近七成,而且在之中的 19 位,並無法找到其他能夠解釋聽損的原因 [20]

還有進一步比較潰瘍性結腸炎(ulcerative colitis)與克隆氏症(Crohn’s desease)兩群患者的研究也報告了一致的發現 [21]。相較於身體健康的對照組,感音性聽損在這一群患者有著較高的盛行率,而顯示聽損的聲音頻率則在 2000Hz、4000Hz 與 8000Hz 等高頻的範圍。值得注意的是,研究者也指出這些患者的聽力損失與年齡之間並沒有顯著的關係。

感音性聽力損失是發炎性腸道疾病患者最常見的耳科疾病。圖/AI 創建

此外,大腦中的微膠細胞(microglia)在活化時會釋放發炎物質,而聽力功能的異常也可能與這種發炎反應有關。已有動物研究指出,在噪音環境引起耳鳴與聽力損失之後,中樞聽覺系統的微膠細胞出現了較高的活化狀態 [22]

聽覺與消化的你來我往

就如迷走神經的研究指出的,聽覺與消化之間的關係,可能也是一種雙向的互動。除了聽力損失伴隨腸道發炎出現之外,新近的研究還透露出,聽音樂,對於腸道來說也有著補充益生菌的效果。研究者在實驗室餵養 30 天的老鼠身上發現,餵養期間也接觸音樂的老鼠們,在第 25 天的體重,顯著高於沒有接觸音樂的老鼠;不僅如此,那些每天固定聽音樂六個小時的老鼠們,腸道裡的壞菌減少了,腸道的菌相也因此變得更好了 [23]。沒想到,聽覺系統不只是接收訊息的管道而已,還可能在無形中影響著消化系統的運作。

-----廣告,請繼續往下閱讀-----

「耳腸腦軸線」的想法,對於聽力保健而言,或許帶來另一個思考的角度:除了瞭解如何避免聽覺系統的器官受到損傷,多加留意消化系統是否正常運作,也可能是同樣重要的事情。如此一來,除了「胃腸顧好,人就快好」,未來還可以再說:腸道好,「聽」也好。

  1. Gracie, D. J., Williams, C. J., Sood, R., Mumtaz, S., Bholah, M. H., Hamlin, P. J., et al. (2017). Negative effects on psychological health and quality of life of genuine irritable bowel syndrome–type symptoms in patients with inflammatory bowel disease. Clinical Gastroenterology and Hepatology, 15, 376–384. https://doi.org/ 10.1016/j.cgh.2016.05.012
  2. van Langenberg, D. R., & Gibson, P. R. (2010). Systematic review: Fatigue in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 32, 131–143.
  3. D’Silva, A., Fox, D. E., Nasser, Y., Vallance, J. K., Quinn, R. R., Ronksley, P. E., & Raman, M. (2022). Prevalence and risk factors for fatigue in adults with inflammatory bowel disease: A systematic review with meta-analysis. Clinical gastroenterology and hepatology: the official clinical practice. journal of the American Gastroenterological Association, 20(5), 995–1009.e7. https://doi.org/10.1016/j.cgh.2021.06.034
  4. Van Langenberg, D. R., Yelland, G. W., Robinson, S. R., and Gibson, P. R. (2017). Cognitive impairment in Crohn’s disease is associated with systemic inflammation, symptom burden and sleep disturbance. United European Gastroenterology Journal, 5, 579–587. https://doi.org/10.1177/2050640616663397
  5. Ng, J. Y., Chauhan, U., Armstrong, D., Marshall, J., Tse, F., Moayyedi, P., et al. (2018). A comparison of the prevalence of anxiety and depression between uncomplicated and complex Ibd patient groups. Gastroenterology Nursing, 41, 427–435. https://doi.org/10.1097/ SGA.0000000000000338
  6. Tremlett, H., Bauer, K. C., Appel-Cresswell, S., Finlay, B. B., & Waubant, E. (2017). The gut microbiome in human neurological disease: a review. Annals of Neurology, 81, 369–382. https://doi.org/10.1002/ana.24901
  7. Vogt, N. M., Kerby, R. L., Dill-Mcfarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7, 1–11. https://doi.org/10.1038/s41598-017-13601-y
  8. Haran, J. P., Bhattarai, S. K., Foley, S. E., Dutta, P., Ward, D. V., Bucci, V., et al. (2019). Alzheimer’s disease microbiome is associated with dysregulation of the anti- inflammatory P-glycoprotein pathway. mBio, 10, e00632–e00619. https://doi.org/10.1128/ mBio.00632-19
  9. Romano, S., Savva, G. M., Bedarf, J. R., Charles, I. G., Hildebrand, F., & Narbad, A. (2021). Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. npj Parkinson’s Disease, 7, 1–13. https://doi.org/10.1038/s41531-021-00156-z
  10. Ohgami, N., Ida-Eto, M., Shimotake, T., Sakashita, N., Sone, M., Nakashima, T., et al. (2010). C-ret–mediated hearing loss in mice with Hirschsprung disease. Proceedings of the National Academy of Sciences, 107, 13051–13056. https://doi.org/10.1073/pnas.1004520107
  11. Denton, A. J., Godur, D. A., Mittal, J., Bencie, N. B., Mittal, R., & Eshraghi, A. A. (2022). Recent advancements in understanding the gut microbiome and the inner ear Axis. Otolaryngologic Clinics of North America, 55, 1125–1137. https://doi.org/10.1016/j.otc.2022.07.002
  12. Graham et al., 2023
    Graham, A. S., Ben-Azu, B., Tremblay, M. È., Torre, P., 3rd, Senekal, M., Laughton, B., van der Kouwe, A., Jankiewicz, M., Kaba, M., & Holmes, M. J. (2023). A review of the auditory-gut-brain axis. Frontiers in Neuroscience, 17, 1183694. https://doi.org/10.3389/fnins.2023.1183694
  13. Kociszewska, D., & Vlajkovic, S. M. (2022). The association of inflammatory gut diseases with neuroinflammatory and auditory disorders. Frontiers in Bioscience-Elite, 14:8. https://doi.org/10.31083/j.fbe1402008
  14. Megantara, I., Wikargana, G. L., Dewi, Y. A., Permana, A. D., & Sylviana, N. (2022). The role of gut Dysbiosis in the pathophysiology of tinnitus: a literature review. International Tinnitus Journal, 26, 27–41. https://doi.org/10.5935/0946-5448.20220005
  15. Breit, S., Kupferberg, A., Rogler, G., and Hasler, G. (2018). Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry, 9:44. https://doi.org/10.3389/fpsyt.2018.00044
  16. Mion, F., Pellissier, S., Garros, A., Damon, H., Roman, S., and Bonaz, B. (2020). Transcutaneous auricular vagus nerve stimulation for the treatment of irritable bowel syndrome: a pilot, open-label study. Bioelectronics in Medicine, 3, 5–12. https://doi.org/10.2217/ bem-2020-0004
  17. Lehtimäki, J., Hyvärinen, P., Ylikoski, M., Bergholm, M., Mäkelä, J. P., Aarnisalo, A., et al. (2013). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto-Laryngologica, 133, 378–382. https://doi.org/10.3109/00016489.2012.750736
  18. Ylikoski, J., Markkanen, M., Pirvola, U., Lehtimäki, J. A., Ylikoski, M., Jing, Z., et al. (2020). Stress and tinnitus; transcutaneous auricular vagal nerve stimulation attenuates tinnitus-triggered stress reaction. Frontiers in Psychology, 11:2442. https://doi.org/10.3389/ fpsyg.2020.570196
  19. Fousekis, F. S., Saridi, M., Albani, E., Daniel, F., Katsanos, K. H., Kastanioudakis, I. G., et al. (2018). Ear involvement in inflammatory bowel disease: a review of the literature. Journal of Clinical Medicine Research, 10(8), 609–614. https://doi.org/10.14740/jocmr3465w
  20. Karmody, C. S., Valdez, T. A., Desai, U., & Blevins, N. H. (2009). Sensorineural hearing loss in patients with inflammatory bowel disease. American Journal of Otolaryngology, 30, 166–170.
  21. Akbayir, N., Çaliş, A. B., Alkim, C., Sökmen, H. M. M., Erdem, L., Özbal, A., et al. (2005). Sensorineural hearing loss in patients with inflammatory bowel disease: A subclinical extraintestinal manifestation. Digestive Diseases and Sciences, 50, 1938–1945. https://doi.org/10.1007/ s10620-005-2964-3
  22. Wang, W., Zhang, L. S., Zinsmaier, A. K., Patterson, G., Leptich, E. J., Shoemaker, S. L., et al. (2019). Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biology, 17:e3000307. https://doi.org/10.1371/ journal.pbio.3000307
  23. Niu, J., Xu, H., Zeng, G. et al. (2023). Music-based interventions in the feeding environment on the gut microbiota of mice. Scientific Reports, 13, 6313. https://doi.org/10.1038/s41598-023-33522-3
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
62 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。