0

0
0

文字

分享

0
0
0

側斑蜥天生綁定的「剪刀、石頭、布」繁殖策略:比例決勝負,時機造英雄!

林展蔚 (Jhan-Wei Lin)
・2018/09/18 ・2884字 ・閱讀時間約 6 分鐘 ・SR值 542 ・八年級

圖/OpenClipart-Vectors @Pixabay

「剪刀、石頭、布」是人類世界共通的遊戲,人人都會玩,但你知道蜥蜴也略懂嗎?側斑蜥(side-blotched lizard, Uta stansburiana)的雄蜥們就用牠們的一生來玩剪刀石頭布。牠們有三種繁殖策略,每種策略比其中一策略強,卻又比另一策略弱,剛好形成類似剪刀石頭布的勝負循環!

這種特殊的生活史策略是由 Barry Sinervo 發現的,讓側斑蜥這小傢伙自九零年代起一躍成為演化生物學中的明星物種1(爬行界另一演化巨星是變色蜥,改天再撰文談談吧~),直至今日這經典案例仍有不斷出爐的後續研究,持續讓人們感受演化的神奇。

乍看常見的側斑蜥,實則為演化生物學討論的明星。圖/Joshua Tree National Park@flickr

橘、藍、黃三種類型的繁殖策略

這大明星是北美洲西南部常見的小型鬣蜥,雄性的喉部具有明顯的體色多型性(color polymorphism),雖然是同一種但可以很清楚的區分成橘、藍、黃三種顏色類型。

這三種顏色的雄蜥有著完全不一樣的的繁殖策略:

-----廣告,請繼續往下閱讀-----
  • 橘喉雄蜥(好鬥者)體型較大,兇猛而好鬥,咬合力與耐力都是三型雄蜥中最強的,守護著範圍極大的領域,因此擁有許多雌蜥後宮;
  • 藍喉雄蜥(防衛者)體型中等,具有領域性,但較橘喉的守護範圍較小,領地內常常僅有一隻雌蜥配對,領域行為比較謹慎而不好鬥,常與鄰近的藍喉雄蜥和平共處;
  • 黃喉雄蜥(偷情者)則完全沒有領域性,體型與體色擬態雌蜥,繁殖策略是偷偷摸摸的跑到其他領域雄蜥的家裡找雌蜥偷情。

當這些雄蜥遭遇時,會有以下三種情況:

  • 橘喉(好鬥者) > 藍喉(防衛者):兩者都有領域性,但橘喉雄蜥打鬥能力較強,總是能夠戰勝藍喉雄蜥,奪得領地和雌蜥。
  • 藍喉(防衛者) > 黃喉(偷情者):藍喉雄蜥的領域較小,而且經常與鄰近藍喉雄蜥共同守護領域,黃喉雄蜥常常不得其門而入,很難成功偷情。
  • 黃喉(偷情者) > 橘喉(好鬥者):橘喉雄蜥領域非常大,又獨力守衛整個領域,黃喉雄蜥很容易趁虛而入,偷偷的和橘喉雄蜥的眾後宮們交配。

終身性的剪刀石頭布遊戲

側斑蜥(Uta stansburiana)雄蜥的剪刀石頭布繁殖策略。
三種雄蜥的喉部顏色,分別對應不同的繁殖策略,左至右分別是橘喉好鬥者、藍喉防衛者與黃喉偷情者。三種雄蜥剛好互相克制,形成類似剪刀石頭布的勝負循環。 圖/作者修改自 Sinervo Lab

三種雄蜥的繁殖策略剛好類似剪刀、石頭、布,橘剋藍,藍剋黃,黃剋橘,形成迴圈的勝負循環(見上圖)。那究竟雄蜥色型與策略是怎麼決定的呢?中途可以變色轉職成另一種策略嗎?

Sinervo 等人當年的研究即顯示這有趣的色型與繁殖策略是由基因遺傳的,近年同一實驗團隊更是進一步指出這三種繁殖策略是由單一基因座的三個等位基因所調控2。簡單的說就是老爸的策略決定兒子的策略,雄蜥們是靠爸氣在玩剪刀石頭布的,中途沒有辦法轉職成其他策略。

在無法轉職的情況下,族群中各色型雄蜥的比例就扮演了非常重要的角色,「比例」能夠決定哪一種雄蜥較容易繁殖。

-----廣告,請繼續往下閱讀-----

試想一下這種剪刀、石頭、布的玩法,所有人在遊戲前先決定手勢,接著進行多場對決,與他人兩兩相遇時都不能變換手勢,直至所有對決結束。假設你決定出剪刀,而遊戲進行之前有九成的人決定出布,那你的遊戲一定戰無不勝;反之,若多數人決定出石頭,那你就會輸的屁滾尿流。

這就是側邊蜥雄性個體的一生寫照,時機若對,就可以擁有許多交配機會,但是生錯時代就準備當一輩子的羅漢腳。例如,一隻黃色雄蜥出生在橘色雄蜥比例高的族群,他就會變成超級小王,讓多數擁有大領域又好鬥的猛男們帶綠帽;但是若生在藍喉比例高的族群,就幾乎沒有什麼交配機會,注定終老一生。

風水輪流轉!

更有趣的是,由於基因遺傳的關係,這種終身的剪刀、石頭、布遊戲在時間的演進下,世代間的優勢策略會隨之改變!以橘喉比例高的族群為例,少數黃喉偷情者將極度優勢的生下一堆小小王,這些小小王長大後依然會很有優勢的繼續偷情,再生下另一批小小王。數個世代過後,當族群中黃喉偷情者的比例升高至一定程度時,風向就改變了,藍喉防衛策略將變成最優勢的策略,然後生下很多藍喉小雄蜥,使得防衛者的比例在幾個世代內漸漸增加。當藍喉比例增高時,由於對手幾乎都是藍喉雄蜥,橘喉猛男的時代就來了。

這種策略優勢度隨其頻度變動的現象被稱為「頻率依存型擇汰」(frequency-dependent selection),在這種擇汰壓力下,三種策略在族群中都會存在,其比例會在一定範圍內不斷波動(見下圖)。近年的大尺度野外研究即顯示在超過半數的側斑蜥族群中,這三個不一樣的繁殖策略同時存在。然而由於族群間存在著相異的環境壓力,這種剪刀、石頭、布的平衡狀態可能會被打破,導致部分族群僅僅只剩下兩個策略,或是一個策略,而這樣失去多型性的狀況與此物種型態的改變以及種化事件高度關聯。2

-----廣告,請繼續往下閱讀-----
三種雄蜥策略在族群中的頻率隨著時間而重複波動之模擬圖。任一策略的頻度會因其所剋制的策略的頻度上升而隨之漸增,此策略增加至一定頻度後又因剋此策略之策略隨其漸增而下降,導致波動循環。 圖/參考研究結果[1]繪製。

剪刀、石頭、布、蜥蜴、史巴克循環!?

動物界體色多型性的情況比比皆是,除了側斑蜥的剪刀、石頭、布循環外,雙點花鱂(Poecilia parae)的雄魚有五種相異的色型(見下圖),這些形態和體色差異極大的雄魚,甚至一度被分成不同種!

雙點花鱂雄魚的色型同樣是由基因所決定的,不同色型雄魚的繁殖力、異性吸引力、和存活力等表現皆有不同。多數的族群擁有四種色型以上的雄魚,有些族群中甚至五型並存,這代表維持多型性共存的擇汰力量存在其中3。在這個物種中,除了性擇以外,天擇很可能一同參與了這個多色型的維持,這會不會是剪刀、石頭、布遊戲的升級版──「剪刀、石頭、布、蜥蜴、史巴克」的勝負循環呢(見下圖)?目前有數個科學團隊正在深入了解其中的機制。

雙點花鱂(Poecilia parae)雄魚的五個色型,以及剪刀、石頭、布、蜥蜴、史巴克的遊戲。 圖/參考資料[3] 與 wikipedia。

最後,不論是側斑蜥或是雙點花鱂,這些神奇有趣的多型性及生活史策略都需要專家們持續不斷的研究才能被發現。以側斑蜥為例,牠們經典的剪刀、石頭、布策略在 1996 年被發表,讓這個美西常見的小蜥蜴變成演化生物學中的經典,也帶領了後續許多開創性的研究。但在此之前,有關牠們的基礎研究自 1960 年代就開始了。經過多代兩爬學者努力研究,才漸漸解密其生態與行為背景,三十年後才能有這麼經典的研究發表。自然界中一定還有許多不起眼的小生物,身體裡藏著美妙的演化故事等著被探索發掘!

參考資料:

  1. Sinervo B and Lively CM. 1996. The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380: 240-243
  2. Corl A, Davis AR, Kuchta SR, and Sinervo B. 2010. Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. PNAS 107:4254-4259
  3. Lindholm AK, Brook R, and Breden F. 2004. Extreme polymorphism in a Y-linked sexually selected trait. Heredity 92: 156-162
文章難易度
林展蔚 (Jhan-Wei Lin)
4 篇文章 ・ 3 位粉絲
台師大生科系博士,專長為演化生物學、族群生態學與脊椎動物學,目前正在國立自然科學博物館做博士後研究,在學術界強烈的擇汰洪流下力爭上游中(希望不會被沖到海裡)。空閒時寫寫科普文,當當說書人,讓大家了解生態與演化中的神奇故事。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
剪刀石頭布——和平號上自主企劃案協商│環球科學札記(49)
張之傑_96
・2021/10/20 ・1582字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者 / 張之傑

和平號第一○一回行程,停靠港原有古巴的哈瓦那,所以文化教室特聘莎莎舞老師宗像志布子到船上教莎莎舞,預備船到哈瓦那時,到革命廣場和古巴人一起跳。古巴是莎莎舞的起源地,人人會跳,可說古巴的國舞。

每次上莎莎舞的課,一開始都有個踏著基本舞步的接龍遊戲。起初兩個人猜拳,輸者雙手搭在贏著肩上。當老師喊停,說聲じゃんけん(janken),前頭的贏者再和另一組的贏者猜拳,跺著腳大聲地喊じゃんけんぽん(jankenpon)。如此愈接愈長,最後產生出勝利的隊伍。

我小學就讀台北市松山區的興雅國小,記得小時候台語稱剪刀石頭布猜拳就是janken。外省社區,如四四兵工廠子弟小學的孩童,則稱作「將-軍-寶」,顯然來自日語。看來剪刀石頭布猜拳可能源自日本,且傳入中國可能是清末的事。

猜拳源自日本,圖為日本學童在課堂上猜拳。Aka Hige攝。圖/Wikipedia

じゃんけんぽん,漢字表記為石、鋏、紙。石頭在前,剪刀在中,布原為紙。英語世界大多稱rock paper scissors。關於剪刀石頭布的起源,有人說源自中國的酒拳(划拳),但沒有證據證明酒拳曾包含剪刀石頭布。根據日文版維基百科じゃんけん條,剪刀石頭布猜拳誕生於十九世紀,即江戶-明治年間,到十九世紀末已在日本普遍,二十世紀後傳至世界各地,甚至有國際賽事。

-----廣告,請繼續往下閱讀-----

剪刀石頭布這種日式猜拳傳到中國後,何以從石鋏紙變成剪石布,可能是布字的音韻接近日語的ぽん(pon)。關於日式猜拳,還有一件事值得一記。七月七日,是日本的七夕。明治維新後,棄陰曆,採陽曆,傳統節日也改成陽曆。為了慶祝七夕,船上特請中日聯姻的陸先生演講,由陸太太做日語翻譯。陸先生邀請我聽他的演講。

圖/Giphy

為了申請七月十日的自主企劃案「我的西藏因緣——兼談藏族的歷史、宗教和文學」,還沒聽完陸先生的演講,就趕到八樓阿古拉廳。已申請過一次,這次駕輕就熟。各廳可使用的時間寫在白板上。巴伊雅廳有一百二十分鐘,但已貼上六張條子。阿古拉廳有五十五分鐘,還沒人貼,我就貼在阿古拉廳。但我貼上去不到一分鐘,有位日本女孩子也貼上一張,意味著這個時段至少有兩個人競爭。

當貼條子的時間過了,工作人員開始處裡。只有一人貼條子的的空間,馬上找來貼的人,經確認後,向一旁的工作人員報到。有好幾個人貼的,就要協商,如每人分配幾分鐘。只有兩個人貼、時間又不長的話則以猜拳決定。阿古拉廳的五十五分鐘有兩個人貼,就得猜拳了。

圖/Giphy

我和那位日本女孩子猜拳,我不諳日本人的猜拳規矩,弄錯了幾次。原來日本人猜拳,彼此先以拳頭相對,再收回拳頭,接著大喊jankenpon,當喊到pon時,正式出拳。不能和我們一樣,不需甚麼儀式就可直接出拳。那日本女孩子大概被我弄糊塗了,我竟然成為贏家。

-----廣告,請繼續往下閱讀-----

工作人員認為我的題目太長,也不希望題目上有宗教字眼。透過翻譯,幾經商量,只留下「我的西藏因緣」,副標題「兼談藏族的歷史、宗教和文學」刪除了。確定了題目,向一旁的工作人員報到。技術人員要知道我的電腦的插頭,這有點麻煩,特地回房拿來電腦。又詢問有沒有音樂,我說沒有。又詢問需要幾支麥克風,我說一支。一切確認,才算完成手續。

七月十日,上午十時二十分至十一時零五分是我的自主企劃。交給船上的題目是「我的西藏因緣」,他們大概覺得不夠通俗,擅自改為「我與西藏的緣分」。這次演講也滿座,但事後沒人過來討論,整體來說沒有上次成功。聽者可能想聽一些神祕的人事物,而我的演講沒講歷史和宗教,也沒講奇風異俗。講的只是個人對藏族文化產生興趣的緣起,及其後續的一些經歷,這可能不是大家想聽的。