Loading [MathJax]/extensions/tex2jax.js

0

9
0

文字

分享

0
9
0

如果小美人魚失去的是聽力,幸福也沒有比較容易:談輕微聽力損失「微聽損」

雅文兒童聽語文教基金會_96
・2018/09/18 ・5797字 ・閱讀時間約 12 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

  • 作者/楊又臻│雅文兒童聽語文教基金會研究助理
換一下沒什麼啦……才怪。圖/imdb

在小美人魚和巫婆交換之前,讓我們先來前情提要一下:

人魚公主原本是海神最寵愛的小女兒,15 歲生日那天在暴風雨的海面上,救了英俊的王子。她為了跟王子再見上一面,不惜用聲音跟巫婆交換雙腿……

如果當時巫婆想要用來跟人魚公主交換雙腿的不是聲音,而是聽見聲音的能力,會發生什麼事呢?對人魚公主又會有什麼樣的影響呢?如果巫婆大發慈悲,只拿走公主一點點聽力,結果會變得比較好嗎?

「輕微聽力損失」是怎樣的症頭?

外耳和中耳,耳咽管標記為auditory tube。圖/wikipedia

其實一點點聽不清楚這個症頭,有一個很正式的名稱叫做「輕微聽力損失(minimal hearing loss)」,後面就簡稱它「微聽損」。根據 Educational Audiology Association(2017)所整理的定義,微聽損包括了「單側聽損(Unilateral Hearing Loss)」、「高頻聽損(High-Frequency Hearing Loss)」以及「輕型聽損(Mild/Minimal Hearing Loss)」。

此外,因為兒童的耳咽管較平、短、寬,而且黏膜纖毛的免疫與排泄功能也還沒完全成熟,在上呼吸道感染後病毒、細菌容易隨著耳咽管侵犯中耳導致中耳積水,引起「暫時性的傳導型聽力損失(Temporary Conductive Hearing Loss, CHL)」(Wang, Chang, Chuang, Su,& Li, 2011),也屬於微聽損的範疇。如果中耳積水長期反覆發生,最後也可能會變成永久性的聽力損失。(延伸閱讀:更多微聽損資訊請見認識微聽損

-----廣告,請繼續往下閱讀-----

根據 2012 年 WHO 的統計,整個東亞地區(包括台灣)15 歲以上的微聽損人口占比高達 14%。Bess et al.(1998)的研究也指出除了成人老化造成的聽損外,有11.3% 的學齡兒童有不同程度與類型的聽損,其中微聽損就佔了 8.8 %(單側聽損 3.0%、高頻聽損 1.4%、輕型聽損 1.0% 和暫時性傳導型聽損 3.4%)。

本圖所示之聽損程度參考國際標準劃分。圖示為日常生活中安靜環境下每個頻率常見聲響的音量範圍;灰色區塊為語音分布位置,是人類語音主要分布的區域。圖/雅文兒童聽語文教基金會提供

單側聽損:小美人魚的右耳聽不到海鷗的提醒

可能情境一:隔天一早,小美人魚一面聽著海面上的浪聲,一面用雙腿奮力蹬向陸地。好心的海鷗想告訴她「王子的城堡是在另一頭!」儘管著急的海鷗在小美人魚右邊殷勤提醒,但小美人魚卻沒有聽見,一直往海的另一端游去,一直到天空又像魚肚子那樣的明亮……她 還 是 沒 有 遇 見 王 子。

圖/imdb

一般來說,一邊耳朵聽力正常,另一邊耳朵的聽力在 500 Hz、1,000 Hz、2,000 Hz三個頻率的平均聽力閾值(也就是能夠聽到的最小音量)大於 20 dB HL;或是在 2,000 Hz 以上至少 2 個頻率的聽力閾值大於 25 dB HL,就可以說是「單側聽力損失」(Centers for Disease Control and Prevention, 2005; Eichwald& Gabbard, 2008)。

單耳聽損程度不論是輕至極重度皆稱為單側聽損。但其中約有 59%單側聽損者的聽損程度落於輕度至中度之間 (Fitzpatrick et al., 2014),也就是大約落在 26-55 dB HL這個範圍。下圖為一單側聽力損失聽力圖示例。

一般來說,聽力圖中紅色的O代表右耳;藍色的X代表左耳,測驗完畢後會將圖示以線段連接起來。線段的下方,表示在安靜環境中聽得到的聲音;線段的上方表示聽不清楚的聲音。示例圖為右耳單側聽力損失,表示右耳無法聽取分布於紅色線段以上的子音,亦即分布於相對頻率上的風吹樹葉沙沙聲、時鐘滴答聲及鳥鳴聲等常見聲響也可能聽不見。本圖僅為示意,因為每個人的聽力損失程度皆不相同,實際聽力損失情形須尋求專業聽力師做聽力檢測。圖/雅文兒童聽語文教基金會提供

這樣說起來好像海鷗說話的聲音大一點就沒什麼問題了?

然而,一耳聽不好的小美人魚接收遠距離語音的能力較差,且較難理解聽力較差那一耳聽到的語音。同時,在有噪音的情況下(如:身旁圍繞著浪淘聲),辨識語音的能力也相對較差(Bess & Tharpe, 1984; Bess, Klee, & Culbertson, 1986),海鷗大聲對著小美人魚講話,不僅無法正確傳遞訊息,更糟糕的是大聲喊叫的語音其實是扭曲的,這對聽力損失的人來說,反而會更加難以辨認對方所要表達的意思。

-----廣告,請繼續往下閱讀-----

話說回來,儘管沒有和王子相遇,15 歲的小美人魚爬上另一邊陸地還是得上學。右耳聽不好的小美人魚功課會不會跟不上呢?

根據過往研究指出,在噪音中的語音辨識能力,即便是聽力較佳的那一耳,單側聽損的兒童表現仍明顯與聽力正常的同儕有落差(Bovo et al, 1988; McCreery,2014)。美國在1980至1990年代間的研究顯示,有三分之一單側聽損學童曾被留級過,也有將近一半的學童需要特教資源的協助(Bess & Tharpe, 1984; Bess, Klee, & Culbertson, 1986; English &Church ,1999)。相較於一般學童,單側聽損的學童中有1/4面臨更多的學習困難,導致學業落後於聽常同儕的平均表現(English & Church, 1999)。

高頻聽損:王子對小美人魚說「一起去掃地和親親…」

可能情境二:長出雙腿變成人類的小美人魚照理說可以聽到的聲音頻率約在 20-20,000 Hz,但是拿高頻聽力與巫婆交換雙腿之後,雖然聽得到聲音,頻率在 2,000Hz 以上的聲音就聽得比較差了。

一天,陰錯陽差的事情就這樣發生了:

王子:「你願不願意跟一個傻瓜,今晚三更時分,一起去草地看星星?」
小美人魚:「好啊!」

(噢,這樣的情節彷彿是一個浪漫的約會就要展開了……灑花)。

但是到了晚上,捧著玫瑰花束帶著望遠鏡的王子,只見到小美人魚拿著掃把塗著口紅赴約,打算與王子「一起去掃地和親親」……讓我們為這段戀情哀悼一秒鐘。

圖/imdb

是的,高頻聽損的小美人魚,即便是在安靜的環境中也很容易漏聽或誤聽如:ㄗ、ㄘ、ㄙ、ㄔ、ㄈ、ㄒ、ㄑ……等高頻的語音訊息,也因此在加入環境中的噪音時,聆聽的正確率就更差了。也由於小美人魚高頻語音聽得不好,在與王子交談的過程中,可能會流失 20%-30% 的語音訊息,容易造成會錯意的情況。同時,小美人魚的語音清晰度也會因為高頻聽不清楚而受到影響(Anderson, K. & Matkin, N., 1991, 2007 revised)。

事實上人類溝通時主要能聽取的頻率範圍大抵是在 250~8,000 Hz 之間,這也是一般聽力檢查中主要測試的頻率範圍。而單耳或雙耳的聽力閾值在 2000Hz以上至少兩個頻率的聽力閾值大於25dB HL時,就可以稱為「高頻聽損」(Educational Audiology Association, 2017)。下圖為一高頻聽力損失聽力圖示例。

根據美國疾病管制局(CDC)發表的資料顯示,1988-1994 年間 6-19 歲的人口中約有 12.7% 的高頻聽損者(Niskar, A. S et al., 1998)。不過這篇資料的標準較為寬鬆,在 3,000Hz-6,000Hz 之間(現行高頻聽損定義為 2,000Hz 以上),也就是說在比較寬鬆的標準下美國每 8 個人中仍有 1 人有高頻聽損問題。

-----廣告,請繼續往下閱讀-----

值得注意的是,衛生署國民健康局(衛生福利部國民健康署的前身)2008 年也曾委託台南醫院,針對台南 1,288 名國、高中生做聽力調查,結果發現約有 24% 的學生,已有高頻聽損的前兆(甯瑋瑜,2008)。Anderson(1967)調查國小兒童的聽力,並針對可能有聽力問題的兒童進行為期 3 個月的測試,發現高頻聽損的孩童在語言發展上面臨困難的人數是聽常孩童的 3 倍。

話說回來,雖然小美人魚的高頻聽損是由於和巫婆交換雙腿,但高頻聽損常見的原因則多為噪音性聽損或是老年聽損。

輕型聽損:小美人魚聽不到吵雜人群中王子邀舞…

可能情境三:小美人魚想了好久,最後決定以雙耳每個頻率都缺少一點點的聽力來跟巫婆交換雙腿。在這個時空,順利見到王子的小美人魚受邀參加城堡的舞會,隨著鋼琴聲悠揚響起,拉開了城堡舞會的序幕,在舞會上王子想要邀請小美人魚共舞,但因為會場的音樂聲加上賓客談天的聲音過於吵雜,小美人魚完全沒有注意到站在她後方說話的王子,讓小美人魚錯過王子的邀請……

王子以為會是這樣。圖/imdb

我們可以說這樣的小美人魚是「輕型聽力損失」,輕型聽損指的是兩側耳朵的平均聽力閾值介於 20-40 dB HL(Educational Audiology Association, 2017),也就是介於國際標準畫分的極輕度與輕度聽損間。下圖為一輕型聽力損失聽力圖示例。

和高頻聽損者所遭遇的情況類似,輕型聽損者是可以聽到聲音的。以 40 dB HL聽損為例,由於無法接收到 40 dB HL以下的聲音,而一般對話的語音音量則多數分佈於這個區域,沒有聽到這些語音會導致部份語音訊息流失,也更容易在對話中會錯意,所以在吵雜環境及遠距離對話中,輕型聽損者也更容易遺漏訊息(Anderson, K. & Matkin, N., 1991, 2007 revised)。

-----廣告,請繼續往下閱讀-----

正因為如此,輕型聽損的小美人魚除了白白錯失了跟王子共舞的機會,也可能會讓王子誤會小美人魚是高傲或是不想跟王子講話、跳舞,長久下來也難以拉近彼此的距離,甚至出現社交困難(Anderson, K. & Matkin, N., 1991, 2007 revised)。

發現有微聽損,該怎麼做?

當發現聽力損失時,聽覺輔具(助聽器、FM系統、助聽器+FM系統)往往是最優先被考慮的介入方式。像是高頻聽損及輕型聽損,過去已有許多文獻支持輔具使用的效果(Yoshinaga- Itano, 2003; Nina J. et al., 2017)。

圖/pinterest

然而,輔具的使用並不能全然解決微聽損者傾聽困難的問題,尤其是單側聽損者,對輔具的接受程度不一,且至今也仍缺乏大量微聽損嬰幼兒輔具使用成效的數據,因此對於是否要及早介入目前仍沒有一致的定論。

需要注意的是,由於微聽損者仍聽得到聲音,看似對生活影響也不大,他們的需求反而特別容易被忽略。尤其是語言及認知尚在發展的兒童,不像成人有大量的背景知識可以支持學習,微聽損帶來的影響可能會加劇。Hornsby(2012)指出,聽損者即便配戴了助聽輔具,在日常生活中的學習或工作上,大腦仍需要花費更多的注意力才能以聽覺完成理解任務。我們可以試著想像自己在聽不清楚的情況下,需要專心聽微積分課程。

-----廣告,請繼續往下閱讀-----

此時大腦一方面需要費力處理模糊的語音訊息,同時另一方面還需費力地理解課程內容。這樣的情境對於成年人來說尚且已經構成負擔,對於微聽損兒童來說,在課堂上因為需要費力聽清楚上課時老師的每個語音,同時也要理解上課的內容,他們將會更加疲累且壓力更大。(McFadden and Pittman 2008; Dokovic et al, 2014)。

圖/wikimedia

這樣的擔憂不是沒有道理的,英國的教師甚至發現重至極重度聽損孩子的課業表現反而比輕至中度聽損孩子還好(The Ear Foundation, 2015),微聽損兒童健康相關生活品質也低於重度聽損的兒童(Wake et al., 2004),更有研究顯示微聽損兒童的自信心低於聽力損失嚴重的兒童(Keilmann et al., 2007)。

這些發現在在顯示,聽損程度較重的孩子可能因為較早使用輔具且進行早療(Walker et al。2015),因而得到較多資源支持,但聽損程度較輕的孩子需求則常常被忽略。青少年的研究也指出,相較於重度聽損的青少年,微聽損的青少年可能更容易感到焦慮(Van Gent et al。2011)

正因如此,我們必須意識到,即使是輕型的雙側和單側聽損也可能增加適應不良的風險 (Tharpe 2008, Winiger et al. 2016)。所以,微聽損者可以尋求聽語專業人員給予適當的衛教建議,如:追蹤頻率、日常觀察技巧或是說明什麼狀況需要就醫檢查,以便及時得到專業協助。

-----廣告,請繼續往下閱讀-----

另外,無論是否使用輔具,微聽損者也需定期前往耳鼻喉科或尋求專業聽力師做聽力檢測,以追蹤聽損程度變化。一般來說,嬰兒建議每 3-6 個月追蹤一次,進入學齡階段之後,可改為每年定期追蹤。同時也要更加重視聽力保健,以免聽力持續惡化。

圖/imdb

透過微聽損小美人魚遭遇的困境,我們彷彿可以想像,微聽損者在日常生活中可能面臨更多問題。只要我們認識並了解他們的情況,並且嘗試站在他們的角度思考,與微聽損者在日常中透過使用正常音量但「稍微」放慢速度說話、適度調整說話的方向以及距離、減少環境噪音干擾等方式溝通,給予彼此良好的聽環境,且在聽損者聽不清楚時適時「換句話說」,就可以幫助自己與微聽損者溝通更加順暢。

Reference

  • Anderson, U. M. (1967). The incidence and significance of high-frequency deafness in children. American Journal of Diseases of Children113(5), 560-565.
  • Anderson, K. & Matkin, N. (1991, 2007 revised). Relationship of degree of longterm hearing loss to psychosocial impact and educational needs.
  • Bess, F. H., Dodd-Murphy, J., & Parker, R. A. (1998). Children with minimal sensorineural hearing loss: prevalence, educational performance, and functional status. Ear and hearing, 19(5), 339-354.
  • Bess, F. H., Klee, T., & Culbertson, J. L. (1986). Identification, assessment, and management of children with unilateral sensorineural hearing loss. Ear and Hearing7(1), 43-51.
  • Bess, F. H., & Tharpe, A. M. (1984). Unilateral hearing impairment in children. Pediatrics74(2), 206-216.
  • Bovo, R., Martini, A., Agnoletto, M., & Beghi, A. (1988). Auditory and academic performance of children with unilateral hearing loss. Scandinavian Audiology.
  • Centers for Disease Control and Prevention (2005). National Workshop on Mild and Unilateral Hearing Loss. Retrieved from
  • chfn28274500(2016年2月28日)。聽力小宇宙~動物聽力比一比003【部落格影音資料】。
  • Đoković, S., Gligorović, M., Ostojić, S., Dimić, N., Radić-Šestić, M., & Slavnić, S. (2014). Can mild bilateral sensorineural hearing loss affect developmental abilities in younger school-age children?. Journal of deaf studies and deaf education19(4), 484-495.
  • Eichwald, J., & Gabbard, S. A. (2008, May). Mild and Unilateral Hearing Loss in Children. In Seminars in Hearing(Vol. 29, No. 02, pp. 139-140). Published by Thieme Medical Publishers.
  • English, K., & Church, G. (1999). Unilateral hearing loss in children: an update for the 1990s. Language, Speech, and Hearing Services in Schools30(1), 26-31.
  • Fitzpatrick, E. M., Whittingham, J., & Durieux-Smith, A. (2014). Mild bilateral and unilateral hearing loss in childhood: A 20-year view of hearing characteristics, and audiologic practices before and after newborn hearing screening. Ear and hearing, 35(1), 10-18.
  • Hornsby, B. (2012). 20Q: Hearing loss, hearing aids, and listening effort. Audiology Online.
  • Keilmann, A., Limberger, A., & Mann, W. J. (2007). Psychological and physical well-being in hearing-impaired children. International Journal of Pediatric Otorhinolaryngology,71(11), 1747-1752.
  • Laugen, N. J., Jacobsen, K. H., Rieffe, C., & Wichstrøm, L. (2017). Social skills in preschool children with unilateral and mild bilateral hearing loss. Deafness & Education International19(2), 54-62.
  • McFadden, B., & Pittman, A. (2008). Effect of minimal hearing loss on children’s ability to multitask in quiet and in noise.Language, speech, and hearing services in schools39(3), 342-351.
  • Niskar, A. S., Kieszak, S. M., Holmes, A., Esteban, E., Rubin, C., & Brody, D. J. (1998). Prevalence of hearing loss among children 6 to 19 years of age: the Third National Health and Nutrition Examination Survey. Jama279(14), 1071-1075.
  • School-Based Audiology Advocacy Series: Minimal, Mild and Unilateral Hearing Loss/Single-Sided Deafness. (2017). The Educational Audiology Association. Retrieved from (2018.08.28)
  • Tharpe, A. M. (2008). Unilateral and mild bilateral hearing loss in children: past and current perspectives. Trends in amplification,12(1), 7-15.
  • The Ear Foundation (2015). Experiences of young people with mild to moderate hearing loss: Views of parents and teachers. The Ear Foundation report to NDCS: Mild-moderate hearing loss in children.
  • Van Gent, T., Goedhart, A. W., & Treffers, P. D. (2011). Self‐concept and psychopathology in deaf adolescents: preliminary support for moderating effects of deafness‐related characteristics and peer problems. Journal of Child Psychology and Psychiatry,52(6), 720-728.
  • Wake, M., Hughes, E. K., Collins, C. M., & Poulakis, Z. (2004). Parent-reported health-related quality of life in children with congenital hearing loss: a population study. Ambulatory Pediatrics4(5), 411-417.
  • Walker, E. A., McCreery, R. W., Spratford, M., Oleson, J. J., Van Buren, J., Bentler, R., … & Moeller, M. P. (2015). Trends and predictors of longitudinal hearing aid use for children who are hard of hearing. Ear and hearing36(0 1), 38S.
  • Wang, P. C., Chang, Y. H., Chuang, L. J., Su, H. F., & Li, C. Y. (2011). Incidence and recurrence of acute otitis media in Taiwan’s pediatric population. Clinics, 66(3), 395-399.
  • World Health Organization. (2012). WHO global estimates on prevalence of hearing loss. Geneva: World Health Organization.
  • Winiger, A. M., Alexander, J. M., & Diefendorf, A. O. (2016). Minimal hearing loss: From a failure-based approach to evidence-based practice. American journal of audiology25(3), 232-245.
  • Yoshinaga‐Itano, C. (2003). Early intervention after universal neonatal hearing screening: impact on outcomes. Developmental Disabilities Research Reviews9(4), 252-266.
  • 林淑芬(2009年7月27日) 。與聽損人士的溝通技巧【網路資料】。
  • 甯瑋瑜(2008年09月13日)。耳機聽音樂 近1成學子聽損。蘋果日報。
  • 羅敏馨(2017)。有聽可有懂?微聽損兒必修的三項習慣和五道能力。雅文聽語期刊,31,14。
-----廣告,請繼續往下閱讀-----
文章難易度
雅文兒童聽語文教基金會_96
61 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
0

文字

分享

0
4
0
為什麼不要對重聽的阿嬤大叫──不只是沒禮貌的問題
雅文兒童聽語文教基金會_96
・2024/06/04 ・3173字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/張逸屏|雅文基金會聽語科學研究中心 主任/研究員

端午節時,幼兒園大班的晴晴跟著爸爸媽媽回阿嬤家過節,晴晴興奮地跟阿嬤分享前幾天在學校聽的故事「紅盒子裡的祕密」,但是,最近開始出現重聽情況的阿嬤,常常聽不清楚或聽錯,不是說「啥?什麼?」,不然就是把「驢子爺爺」聽成「吳爺爺」。於是,晴晴不自覺地愈講愈大聲,希望能讓阿嬤聽清楚,當阿嬤還是聽得霧煞煞,晴晴只好更大聲!最後,大聲到爸爸從廚房跑出來罵晴晴:「怎麼可以對阿嬤講話這麼大聲、太沒禮貌了!」晴晴委屈地哭了起來……

大家應該都有碰過被身旁的人提醒跟這位長者說話要大聲一點的經驗吧?根據世界衛生組織的數據[1],60 歲以上高齡人口中,約有 1/4 的人患有足以造成生活障礙的聽力損失(disabling hearing loss)。然而,說話大聲一點,真的可以讓重聽的年長者聽得比較清楚嗎?一般來說,嗓門特別小的人,或是原本用悄悄話的方式在說話,這時提高到一般音量應該會有用。然而,若是一般音量的情況下,大聲說話、甚至大吼大叫,其實是不怎麼管用,更可能會有反效果的[2]。這樣違反直覺的情況,是什麼緣故造成的呢?

圖一/大吼大叫往往不會讓重聽的人聽得更清楚(圖片來源:Pixabay)

大聲不是比較聽得清楚嗎?

一般直覺上會認為,既然重聽或有聽力損失,就是講大聲一點應該就能聽得到了,不是嗎?事實上,由於「語音組成」及「聽力損失特性」這兩大因素,會使得加大音量卻反而有聽不「清楚」語音的問題。

然而,在解釋上述兩大因素之前,必須先釐清聽得「到」不一定聽得「清楚」。大家應該都有這樣的經驗,在有噪音或距離較遠的情境下,例如在廚房洗碗時,家人在客廳說話,我們會聽「到」家人在說話的聲音、也可能聽到大致的內容或是部份內容,但卻沒辦法聽「清楚」完整的內容、或是有聽錯的情況。而重聽或聽力損失的情況也很類似,因為聽力損失有不同的程度,一般年長者的重聽不會是完全聽不到的情形,因此老人家常會說「我都有聽到啊!是你講話不清楚。」

語音組成:聲母和韻母

那麼,當音量變大、卻反而「聽不清楚」,到底是什麼原因造成的呢?一般來說,聽不清楚的通常是指語音當中的聲母(子音)無法被完整地傳遞與接收。回想一下,小時候在學注音符號時,拼音時寫在上面的就是聲母(子音)、下面的則是韻母(母音)。圖二以「沙」(/ㄕㄚ/)為例,可以看出子音/sh/(聲母/ㄕ/,但只有氣音的部份)的部份音量小,且集中在高頻帶,而母音/a/(韻母/ㄚ/)的部份則是音量大,且相對集中在較低頻的區塊。然而,當我們試著說大聲一點,也就是把音量放大時,無論我們怎麼嘗試,都只能放大母音部份的音量[3],子音部份的音量都還是很小。甚至,我們可以試試看只針對子音的部份(如/sh/, /s/, /t/等音)「大叫」,會發現根本沒有辦法做到。

-----廣告,請繼續往下閱讀-----
圖二/語音的組成分為聲母(子音)和韻母(母音)。以「ㄕㄚ」(/sha/)音為例,從上半部的聲音波形可看出,子音(/sh/)的音量(振幅)比母音(/a/)要小得多;下半部則是聲譜圖(spectrogram),縱軸代表頻率,子音(/sh/)的頻率成份集中在高頻帶(黑色集中在較上方),母音(/a/)則是低頻相對較多。

然而,在語音中音量較小的子音才是主要提供清晰度的來源[3,4],曾有研究發現,若將語音中子音主要所在的高頻帶(1000 Hz 以上)去除掉之後,語音清晰度只剩不到 40%;反之,若將母音主要所在的低頻帶(500 Hz 以下)去除,語音清晰度仍有 95%[4]。試試看,若將一句話當中的子音都省略掉,那麼「他今天去上班」就會變成「阿因煙玉ㄤˋ安」,會變得非常非常難以理解。

聽力損失的特性:高頻通常較嚴重

大多數老年性的聽力損失是屬於高頻聽損[5],也就是在較高頻率的部份比較聽不清楚。這個類型的聽損者,就常會有前面所提到的感受:「我都有聽到,但我就是聽不清楚、沒有辦法理解內容!」而如果本文一開始提到的晴晴,因為阿嬤聽不清楚而愈說愈大聲時,卻如同前述,語音當中只有阿嬤原本就聽得到的母音部份變大聲了,但應該是要帶來語音清晰度的子音卻沒有辦法同樣變大聲。即使說話者不斷把音量加大,原本是希望能讓對方聽清楚,豈料適得其反,讓子音和母音之間的音量差距更大,更加劇了不清晰的問題,造成了愈大聲反而愈聽不清楚的矛盾現象。

助聽器科技來幫忙:音量壓縮

那麼,要如何才能讓重聽的長輩,或是聽力損失者能夠聽得清楚呢?如果對生活溝通已經造成困擾,應該要尋求專業耳科醫師和聽力師的協助,嘗試配戴設定適當的助聽器。助聽器的功能不只是放大聲音,還具備了「音量壓縮」的科技[6],讓小聲的聲音放大較多、大聲音量的聲音放大少一些。若套上前述子音和母音相對音量的概念,那就是能讓較小聲、原本聽不清楚的子音變得清楚,提高語音的清晰度。不過,配戴助聽器會需要一段時間的適應,同時也需要和聽力師討論生活上聆聽的需求,才能找到最適合自己的設定。並不是到藥局隨意買一副助聽器,以為戴上就能解決聆聽的所有困難喔!

和聽損者談話的小撇步:正常音量、稍慢語速、發音清楚

除了配戴助聽器之外,溝通策略[1,7]的運用也很有幫助註1。從前面的解釋已經了解到,大吼大叫對聽損者理解語音不但沒有幫助,甚至會有反效果。所以在語音本身上面,可以調整的部份不在音量,而是速度和發音清楚。因此,用一般的音量、語速稍微放慢、發音清楚一點但保持自然,這幾個小撇步可以幫助聽損者聽清楚。同時也可試著換句話說,或是搭配手勢動作來幫助理解。

-----廣告,請繼續往下閱讀-----

其他還有一些策略,包括先取得聽損者的注意力,讓他知道您在跟他說話,避免環境噪音或多人同時說話,這些方法可讓聽損者專注在要聽取的語音訊息上,並減少干擾。此外,建議環境的光線要充足,並可稍微靠近聽損者、讓他能看清楚您的臉部,這麼做可讓聽損者獲取臉部表情和口形等線索,幫助解讀語音訊息的內容,即便聽損者不一定有練過讀唇,但口形線索確實會有幫助,您可以留意看看在很吵雜時,若能看到說話者的臉及口形(當對方沒有戴口罩)時,會比較容易聽清楚。

相信若是晴晴運用了上面所提到的這些溝通策略,不但可以快樂地跟阿嬤分享在學校發生的事,享受愉快的祖孫親情時光,也不會被爸爸罵對阿嬤沒禮貌了喔!

圖三/與聽損者談話時,除了正常音量、稍慢語速、發音清楚等小撇步以外,在光線充足的地方談話,讓聽損者能看到說話者的臉部表情和口型輔助語音接收,也是很好的策略。(圖片來源:Pixabay)

註1 :欲了解更多溝通策略,可參考雅文基金會「聽損溝通小學堂」和「微聽損網站-聽說策略」

  1. World Health Organization. (2024/02/02). Deafness and hearing loss. Retrieved from https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
  2. Painter, K. (2013/03/10). How to talk to a hearing impaired person? Don’t shout. USA TODAY. Retrieved from https://www.usatoday.com/story/news/nation/2013/03/10/talking-hearing-impaired/1965127/
  3. DPA Microphones. (2021/03/04). How to improve speech intelligibility when amplifying the voice. Retrieved from https://www.dpamicrophones.com/mic-university/how-to-improve-speech-intelligibility-when-amplifying-the-voice
  4. DPA Microphones. (2021/03/03). Facts about speech intelligibility. Retrieved from https://www.dpamicrophones.com/mic-university/facts-about-speech-intelligibility
  5. Victory, J. (2024/02/21). Understanding high-frequency hearing loss: This kind of hearing loss affects speech clarity. Retrieved from https://www.healthyhearing.com/report/52448-Understanding-high-frequency-hearing-loss
  6. 張逸屏(2022/01/07)。長輩常抱怨助聽器噪音大?——孝子們該認識的「音量壓縮」科技。泛科學。取自https://pansci.asia/archives/339307
  7. UCSF Health. (n.d.). Communicating with people with hearing loss. Retrieved from https://www.ucsfhealth.org/education/communicating-with-people-with-hearing-loss
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
61 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

1

0
1

文字

分享

1
0
1
我的孩子有聽力障礙,戴上助聽器是否就能恢復聽力?
衛生福利部食品藥物管理署_96
・2023/10/09 ・4044字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自食藥好文網

  • 撰文/雅文兒童聽語文教基金會 黃上維、張晏銘 聽力師

聽覺是兒童接觸外在聲音世界、學習口語語言的基礎,聽得到且聽得清楚,孩子的語言及認知表現才有機會適齡發展,因此一旦確認有聽力損失,就有助聽器的使用需求。不過,當醫生判斷孩子有聽力損失後,父母心中都想知道:有沒有吃藥、手術或其它方式,來治療聽力問題?又或是戴上助聽器後,就能讓孩子的聽力恢復嗎?要解答這兩個問題,我們必須先了解聲音的傳遞方式。

我們如何聽見聲音?

耳朵是接收聲音的管道,分成外耳、中耳、內耳,隨後透過聽覺神經將聲音訊號傳遞至大腦解讀,任何一個區域出了差錯就有可能造成聽力損失。

外耳及中耳問題會造成「傳導性聽損」,例如:小耳症、耳道閉鎖、中耳積水、聽小骨硬化或斷裂等;這類聽損有醫療治癒的機會,但若治療的時機未到或期程過久,仍將耽誤孩童的聽語學習,因此可能需要階段性使用助聽器。內耳及聽神經問題會造成「感覺神經性聽損」,例如:毛細胞損傷、基因遺傳導致的細胞功能變異、神經細小等;這類聽損至今仍不可逆,也占先天性聽損的多數,需要終生使用助聽器或其它聽覺輔具。

耳朵剖面圖。引自馬英娟(2016,第267頁)[1]

助聽器的技術發展與時俱進

「工欲善其事,必先利其器。」要讓受損的耳朵重拾聽覺,要先了解助聽器的來歷。 助聽器顧名思義是幫助聽力的器具,如果說任何能把聲音有效傳進耳內的工具都是助聽器,那 17 世紀所誕生像漏斗、號角般的「耳朵喇叭(Ear trumpet)」就開啟了助聽器的時代篇章 [2]。不過這樣單純依靠聲學作放大的音量勢必有限,18 世紀末出現了以碳形成磁場,能有效提高音量的「碳助聽器」,同時引進不同頻率的聽力損失應有不同放大量的概念,隨後更歷經以「真空管」提供電力、以「電晶體」減少耗電及縮小外觀尺寸的時代。

-----廣告,請繼續往下閱讀-----

到了 19 世紀末,助聽器開始「數位化」處理,與過往類比式不同,數位式助聽器在麥克風收音時,便將聲音轉成 0/1 的數位訊號,透過處理器分析、過濾和放大這些聲音,以此達成方向性接收語音、降低噪音、消除回饋音(漏音)等功能,最後再把 0/1 的數位訊號解碼化回聲波,傳遞至耳朵內。

耳朵喇叭(Ear trumpet)。來源/Science Museum Group

助聽器可以像近視眼鏡一戴就好?

多數情況下,戴助聽器跟戴眼鏡不一樣,無法一戴就好,原因除了助聽器硬體的外部限制,如麥克風收音的品質與距離影響,人耳的生理也有內部限制。對少數「傳導性聽損」者而言,聽力損失相對單純,只要聲音的「音量」被放大還原,克服了外耳或中耳的阻礙,就能有正常的聆聽潛力,然而多數「感覺神經性聽損」者,損失的不單是音量,尚有對高低音「頻率」的差異分辨,如此當說話語音與環境噪音的頻率太過相近時,大腦很難將語音從噪音中抽離;以及對聲音「時間序列」的解析力降低,因為大聲音(或比較重的音節)會遮蔽緊跟其前後的小聲音,加上生活中的語音及噪音忽大忽小,大腦很難在交錯的聲音中鎖定目標語音 [3]

以視覺模擬聽力損失之面向。來源/作者。

以視覺做比擬,音量損失就像字體變小了,語音變得不易看見;頻率解析度下降就像字形變模糊了,讓本來就看起來相仿的字變得更混淆;而時間序列解析度下降就像比較大的字會凸顯而掩蓋前後比較小的字,或字跟字會有重疊情形,讓整句話變得不完整。

現代助聽器有許多進階功能,如頻率降轉技術 [4]、噪音消除技術,能協助濾化聲音,幫助聽損者更好接收到目標音,但無法從本質上根治感覺神經性聽損敏銳度低的問題,因此助聽器是以矯正聽力損失、利用殘餘聽力為目的,有賴後續聽能復健訓練以最大化助聽器的使用成效。

-----廣告,請繼續往下閱讀-----

「最好」的助聽器是「最合適」自己孩子的助聽器

國內經衛生福利部核准的助聽器醫療器材超過 180 種,各家廠牌的設計訴求不一,若家長在為孩子選購助聽器時陷入苦思,不妨先依序檢視下述原則:

一、選擇:助聽器的種類與適用對象

傳導方式適用對象注意事項
氣導助聽器因為能夠達成左右分耳、分頻率的矯正,為所有耳部具支撐力的聽損者之優先選項外型款式(如耳掛型、耳道接收器型、耳內型)除了要考量固定性,也會影響助聽器最大可支應的聽損程度,因此需依評估結果與聽力師討論。
擴音範圍與喇叭的輸出大小有關,應該視聽力穩定性預留調整空間,但音量輸出最大的幾款同時會使頻率響應的範圍變窄或不平順,造成音質差異,因此大小適當為佳。
傳導方式適用對象注意事項
骨導助聽器小耳症及耳道閉鎖者
聽力常變化的傳導性聽損者
內耳聽力在輕度聽損以內的混合性聽損者
配戴側:左右各有麥克風收音才能貼近人耳真實的聆聽感受,因此雙耳聽損仍要以雙耳配戴為佳。
刺激側:雖然內耳的骨頭是左右相連,在正常傳導機制下,聲音會傳至兩側;但若兩側的內耳聽力有落差,又或兩側的傳導性聽損阻礙程度不同,聲音仍會以優耳感受。
傳導方式適用對象注意事項
雙對側傳生型助聽器 (CROS)單側不具殘餘聽力的聽力不對稱性聽損者需雙耳配戴,但會將聲音無線傳輸至優耳聆聽,即捨棄刺激劣耳聽神經。
  • 整理/雅文兒童聽語文教基金會

二、配置:助聽器的規格與使用需求

聽損者的聽力在不同聲音頻率間,多有不同的感知受損程度,助聽器要達成分頻率地矯正,有賴於可調整的「壓縮頻道」,頻道數的多寡也常反應在助聽器的等級與價格,但越多的壓縮頻道不一定會聽得越好。對於聽力圖屬於平坦型,即高低頻的聽損程度相近者,擁有 6 個壓縮頻道就足以達成理想的語音辨識清晰度;對於聽力圖屬於極陡降型,即高低頻聽力可能橫跨輕度至重度聽損範圍的人,提高壓縮頻道至 18 個才有改善語音聆聽清晰度的顯著意義 [5]。此外要留意,若您的孩子適用政府輔具費用補助資格,壓縮頻道在 6 個以上就能符合〈身心障礙者輔具費用補助基準表-進階型助聽器〉的頻道數要求,該「進階型」的意義與市面上廠商所定義「入門款、基本款、高階款」等不相同。

接著,承前述助聽器與人耳的限制,助聽器需要與「無線傳輸系統」相容,不論是搭配各助聽器廠牌自有的藍牙麥克風,亦或是搭配現今教育部針對聽覺障礙學生提供之遠端麥克風系統(舊稱調頻系統)[6],才能讓孩子在具有複雜聲音環境的學習場域聽得清楚,克服與老師間的距離、周遭的噪音回音等影響,減輕長時聆聽的疲勞。

三、驗證:確認助聽器的使用效果

因為兒童還無法完善表達自身需求,要確認使用助聽器效果時,除了家長的日常觀察,下述的客觀檢測不可少,包含「聲場矯正後聽力圖」用以確認孩子最小可以接收到的音量有無改善;「語詞辨識測驗」用以確認孩子在不同聆聽情境(如安靜環境下的遠距離說話音量、及吵雜環境下的一般說話音量)皆能聽得清楚;「真耳或耦合器量測」用以確認助聽器的處方公式設定與輸出音量相符,並確認最大輸出音量,避免過度擴音造成傷害。「聲電分析」用以確認助聽器的效能(如增益量、內部噪音量、聲音失真率等)隨時間可能衰減後是否仍在容忍值。

-----廣告,請繼續往下閱讀-----

然而,不同聽損程度或助聽器的配戴經驗會影響驗證的細節,因此在購買助聽器之前,記得向聽力師了解這些檢測的理想目標、同樣能達成目標的其它選項有何差異、目標未達成時可努力的方向,以此兼顧助聽器的購買成本及使用效果。

和戴上助聽器同樣重要的下一步

看起來助聽科技很厲害,但別忘了,助聽器不是治療聽損的萬靈丹,聽覺大腦的路徑具有神經可塑性,需要透過正確配戴輔具,來增進聽損者對聲音的感知 [7]。對語言及認知能力還在發展階段的兒童來說,養成全日配戴的習慣、培養良好的傾聽技巧 [8]、學習聲音與意義的連結,是擁有適齡發展的要素。此外,你可以想像即便是聽力正常人,在聆聽環境複雜的時候,不總能聽得如此清晰,也需要依靠上下文解讀、請他人重述,或轉換環境做聆聽等,因此,「聽能復健訓練」是從建立核心的聽能技巧開始,擴展到語言及認知能力的促進,再到有效溝通策略的練習,是最佳化輔具成效所不可或缺的步驟。

  • [1] 馬英娟(2016):淺談聽覺系統。載於林桂如(主編),以家庭為中心的聽覺障礙早期療育——聽覺口語法理論與實務(265-282頁)。新北市:心理。
  • [3] 劉殿楨等譯(2019)。聽覺輔具,第 1 章。台北市:華騰文化。(Harvey Dillon, 2012)
  • [5] Jason Galster & Elizabeth A. Galster.(2011).The Value of Increasing the Number of Channels and Bands in a Hearing Aid. AUDIOLOGYONLINE. Retrieved from https://www.audiologyonline.com/articles/value-increasing-number-channels-and-826.
  • [7] Karawani, H., Jenkins, K., & Anderson, S. (2022). Neural Plasticity Induced by Hearing Aid Use. Frontiers in aging neuroscience, 14, 884917.

延伸閱讀

  • [2] 楊又臻(2018)。助聽器是尊貴的象徵?從聲學椅到聲學拐杖,為了聽清楚的怪招式還真多。
  • [4] 張逸屏(2022)。高音唱不上去可以降 KEY,高頻聽不清楚可以……?──談助聽器降頻技術。
  • [6] 林淑芬(2022)。教室聆聽小幫手—遠端麥克風系統。
  • [8] 楊琮慧(2020)。有聽沒有到,為何學會「傾聽」這麼重要?
-----廣告,請繼續往下閱讀-----
衛生福利部食品藥物管理署_96
65 篇文章 ・ 24 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx