0

0
1

文字

分享

0
0
1

用吹泡泡搭設三維細胞鷹架,讓細胞脫離培養皿的「平面國」

研之有物│中央研究院_96
・2018/07/31 ・3242字 ・閱讀時間約 6 分鐘 ・SR值 540 ・八年級

  • 採訪編輯|歐柏昇 美術編輯|張語辰

物理學家做細胞研究?

中研院物理所的林耿慧副研究員,帶領團隊發明製作「細胞鷹架」,可在三維環境中培養細胞,比二維平面的培養皿更接近生理環境。不僅能藉此了解細胞的物理,也可應用在組織工程、精準醫療等方面。

物理學家研究細胞?你也許心想,這篇文章是不是「錯頻」了?其實沒有,林耿慧就是研究細胞的物理學家。

林耿慧在美國念書的時候,有一個潮流鼓勵物理科學家 (physical scientist) 轉到生物學 (biology) 研究。她研究的「軟物質」領域與生物物理也算接近,生物物理中用了許多軟物質的方法。於是,林耿慧回國後就投入了生物物理的研究。圖/張語辰

不同於培養皿 全新細胞鷹架創造三維實驗空間

林耿慧說,大部分的細胞必須貼附在基材上才能存活。一般培養細胞的「基材」就是培養皿,但是培養皿是二維的平面,如果想要養出三維的結構,培養皿做不到。然而,身體內的細胞,都有三維的結構。

真實細胞生長於三維環境,與二維平面(如培養皿)的條件不同。圖/林耿慧

很早以前就有人想到,可以製造一個三維的「鷹架」來培養細胞。許多組織工程學研究試著製作細胞鷹架,不過一直未能培養出一個有完好功能的組織或器官。

林耿慧認為,要成為一個完好的組織,端視細胞與基材、還有細胞與細胞之間作用力協調出來的結構;但因為現今製作細胞鷹架的方式很不均勻,導致鷹架孔洞大小不一,因此很難了解細胞如何與鷹架作用。林耿慧想到了統計力學的這個概念:就算給定一模一樣的能量、溫度條件,還是會有很多的微觀狀態 (microstate);那不如創造出很多一模一樣的微環境,去觀察裡面細胞的狀態。「我的想法就是讓全部微環境都一樣,就可以觀察很多東西。」

-----廣告,請繼續往下閱讀-----

「吹泡泡」技術 低成本細胞鷹架夢想成真

細胞鷹架該怎麼作呢?有些科學家提出 3D 列印的方法,可惜很難印出夠小的孔洞。那為什麼要做夠小的孔洞呢?

細胞怎麼感覺自己在三維?它沒眼睛,一定是靠觸摸的。

林耿慧說,我們如果沒有眼睛,也會覺得自己在二維,除非空間的尺度跟自己本身的尺度差不多,可以觸摸到環境,才能夠感覺自己在三維。細胞的尺度大約是 10 到 100 微米大小,因此如果做出類似大小的孔洞,就可以讓細胞生長在三維的環境。

林耿慧的專長,正好是製作小塑膠球,博士論文就是做「膠體粒子」,把幾百奈米到幾百微米的小球堆疊成晶體。她想,這是她的老朋友,現在只要把尺度改成 10 微米以上就可以了。

查了文獻,林耿慧發覺她的想法已經被別人發明了。但是,讀完文獻之後,發覺前人的做法並不好,製作過程又慢又貴,自己仍然大有可為。

-----廣告,請繼續往下閱讀-----

那個時候,「微流道」剛好發展起來,林耿慧對其研究現況有持續掌握。她看到一個方法,是用微流道吹泡泡,尺度剛好和細胞鷹架所需一模一樣,「就是我要的方法!」於是,林耿慧開始在實驗室製作這樣的泡泡。

利用微流道,可以做出大小一樣的泡泡。收集起來,把它背景變成膠,再把孔洞相連通,最後就可以拿來裝細胞。

實驗中通入氣體和液體,利用微流道「吹泡泡」製作細胞鷹架,動態如下圖所示。圖/林耿慧

林耿慧用微流道來吹泡泡製作細胞鷹架,實驗相當成功。不但成本很低,製作所需時間也很短,做一個不到一分鐘。並依此申請了專利,也成功技轉,現在這個產品可以在生化試劑最大販賣平台的 Sigma-Aldrich 上買到。

進化的三維環境 讓實驗與真實更接近

三維的細胞鷹架,有什麼功用呢?不但可以應用於再生醫學、人工敷料,也對精準醫療有所幫助。林耿慧表示,現在化學製藥成本不算太貴了,最貴的是篩藥,而用三維細胞培養來篩藥,應該會有更接近身體內細胞的反應。

一般篩藥是在二維平面進行。在二維平面上篩出有效的藥,最後去做動物實驗常常卻沒有效,原因可能是二維比較不接近生理環境。

林耿慧舉例,1992 年生物學家米納‧碧賽爾 (Mina Bissell) 的團隊,把乳癌細胞養在二維和三維環境來做實驗。他們放了一些抗體進去,發現在三維環境,這些惡性腫瘤細胞可以回復成良性,但在二維環境卻維持惡性。如此一來,傳統在二維的篩藥方法就篩不出來這個藥效。

-----廣告,請繼續往下閱讀-----

另外,即使是表皮細胞,乍看之下是平坦的二維結構,但事實上,經常要形成管狀構造才有功能。例如血管、氣管,都需要管狀的細胞。而在二維平面上養細胞,很難養出管狀結構。

三維細胞培養一大瓶頸在於成本。一般三維培養用的材料如水膠,價格昂貴、操作時間又慢,而林耿慧發明的細胞鷹架,突破了這些限制;又經由技轉公司的進一步改良後,操作上和二維培養一樣方便了。

二維培養皿、三維細胞鷹架培養的細胞影像。紅色部分是肌動蛋白 (F-actin),綠色部分是沾黏的纖維組織 (Paxillins)。在二維環境中,細胞呈現平行發展;在三維環境中,細胞長成立體結構。圖/林耿慧

物理學家眼中的細胞力學

製作出細胞鷹架只是第一步。林耿慧利用這樣的鷹架來培養細胞,做了各方面的細胞研究。她用物理方法,來量化細胞的體積、曲率,這是與一般生物學不同之處。

我的研究風格就是量測,然後去量化。那些東西未必是生物學家會去量的。

林耿慧說,生物學家量化的東西不一樣,例如他們會去量化蛋白質的表現。物理學家則是量化細胞的物理,例如「看到彎彎的線,就去量化曲率半徑」,因為這與細胞的作用力、能量有關。

-----廣告,請繼續往下閱讀-----

量測細胞的形態,其實很困難。我們無法拿尺量測細胞,需要憑藉影像,而光是處理影像就很麻煩。林耿慧團隊突破這些技術困難,獲得一些有趣的發現,找到了一些在二維和三維不同的細胞型態:例如黏著斑尺寸比較小的細胞,其應力纖維也比較細,而黏著斑與應力纖維的分布是環繞整個細胞身體,呈現三維分布。而還有一些尚未發表的結果,皆顯示細胞在三維與二維的不同,團隊後續希望能從細胞力學的角度來解釋這些差異。

要研究生物物理,跨科重新學「常識」

生物物理包含許多跨領域專業,林耿慧團隊實驗成果的背後,其實是艱辛的歷程。

林耿慧笑說:帶領跨領域的實驗室比較累,有時學生來實驗室前沒有足夠的背景「常識」,更不用說非常少學生來實驗室前,就有足夠的背景「知識」。圖/張語辰

林耿慧說明,因為沒有現成的「生物物理」學系,可以教給學生所需的背景「常識」,所以學生來實驗室都需要從頭學起。有些學生學得快,有些學生會在一些不同領域中應該是常識的細節上出錯,例如:之前曾帶過機械系的學生,不知道將化學樣品加入溶液後要充分混合才能使用。在團隊裡,擅長養細胞的學生不一定會寫程式,而擅長寫程式的學生不一定會養細胞,因此研究經常要拆開來做。

此外,團隊與生物學家合作,也是不斷磨合的過程。林耿慧談到,物理學和生物學研究的方法學不同:物理學家很多研究是基於觀察的研究,並且習慣「套用理論」來解釋事情;而生物學家的研究方法主要是以「假說檢驗」。偶爾,跨領域合作中,由於彼此不夠了解對方的領域,有時會高估彼此的能力。雖然並非易事,但林耿慧團隊仍持續和生物學家合作,得到了豐碩的研究成果。

-----廣告,請繼續往下閱讀-----

從軟物質起家,林耿慧跨入生物的範疇,以物理的方法研究細胞。就像《平面國》一書所傳播的三維福音:「向上,而非向北」,透過細胞鷹架開啟三維的視角,也得以對生命的最小單位有更多探索的空間。

本著作由研之有物製作,原文為《培養細胞的新技術──「吹泡泡」製作細胞鷹架》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

 

在網站上看不過癮?研之有物出書啦!

-----廣告,請繼續往下閱讀-----

研之有物:穿越古今!中研院的25堂人文公開課》等著你來認識更多中研院精彩的研究。

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
1

文字

分享

0
7
1
想知道鯨魚健不健康?首先,你需要牠們的「鼻涕」!
Lea Tang
・2022/03/07 ・2203字 ・閱讀時間約 4 分鐘

為了瞭解鯨豚的健康狀況,科學家們正試圖用更好的方法,來蒐集牠們的鼻涕。

來觀察鯨豚囉!

鯨豚的背鰭,是牠們最容易被人們觀察到的部位,類似於人類的指紋,背鰭是鯨豚的辨識區,可以作為研究人員個體種類辨識上的依據【註1】。然而,若想進一步了解鯨豚的演化史,就不得不仰賴含有 DNA 的活體組織。

不同種類的鯨豚,背鰭都不同。圖/成功海洋環境教室 X ㄈㄈ尺

早期,科學家採集鯨豚活體組織的方式稱作「活體組織切片飛鏢」。如同字面上的意思,他們會向動物投擲飛鏢,獲得牠們的小部分組織作為樣本。但是,這種光用聽的就很痛的方式,不僅會讓鯨豚對研究船隻感到畏懼,更會使得牠們在水中生活時,成為傷口感染的高風險群。

值得高興的是,隨著科技進步,現在科學家已有了新的採集方式。這回,他們自製非侵入性的工具,而且決定改成採集「鼻涕」。

此鼻涕非彼鼻涕

說到鼻涕,我們容易聯想到感冒生病時,從鼻孔裡流出來的東西,不過這裡所提到的「鼻涕」,和那個可不一樣。鯨魚呼氣時所吐出的黏液並非來自呼吸孔,而是來自肺部【註2】。

-----廣告,請繼續往下閱讀-----
當鯨豚換氣時,會以相當大的力道呼氣,進而向空中發射鼻涕。有趣的是,不同種類的鯨魚也有不同的吐氣型態。圖/north-atlantic-society.com

藉由蒐集鯨豚呼吸孔吐出的氣,可以得到許多關於牠們的資訊——包含肺表面活性物質(一種蛋白質和脂質的混和物)、呼吸液與肺細胞。同時,這些樣本也可以用來檢測疾病以及皮質醇【註3】、孕酮【註4】等荷爾蒙,幫助研究者知道一頭鯨魚是否染病,甚至可以知道雌鯨是否有孕。

不過,鯨豚的鼻涕藥怎麼蒐集呢?接下來讓我們一起來看看方法。

鼻涕機器人登場

隨著 DNA 提取技術的進步,研究員們從 2010 年起便開始使用新的工具採集。一但在海面上觀察到鯨魚蹤跡,他們便驅船前往,伸出長長的的竿子,利用末端的培養皿來收集鼻涕。

最初,蒐集樣本的工具是一種培養皿與竿子的組合。圖/bbc.com

另一種進階版的工具稱作「鼻涕機器人」(The Parley Snotbot),由無人機和培養皿所組成。鯨魚換氣時,機器人會從後方靠近鯨身,讓鯨魚的鼻涕因慣性往後落在無人機上的培養皿中。

-----廣告,請繼續往下閱讀-----

不過以上兩種方法通常用來蒐集座頭鯨等大型鯨魚的 DNA,對於體積、肺部容積較小的海豚則不易達成【註5】。

鯨魚躍升時,鼻涕機器人會迅速在牠後上方 standby,在不驚擾與傷害對方的狀況下蒐集鼻涕。圖/howstuffworks.com

鯨魚鼻涕在遺傳學上的貢獻

至於我們能不能利用鼻涕檢體來進行遺傳學相關的研究呢?答案是可行的。儘管小型鯨豚的鼻涕提取比預期中困難,科學家仍然能從樣本中回收一些粒線體 DNA。

正在分析的鼻涕樣本。圖/bbc.com

他們嘗試以聚丙烯製成的管子倒置在水族館豢養的海豚氣孔上,以得到每隻海豚體內的粒腺體 DNA 和微衛星 DNA ,收集到比野外樣本更加豐富的數據。此外,科學家也發現,從海豚鼻涕中獲得的 DNA 圖譜與從血液中取得的 DNA 圖譜相符,證明了在研究海豚遺傳學上,使用鼻涕的結果可能和抽血一樣好。

現在,科學家們要克服野外採集樣本量不足的挑戰,以期在未來能結合傳統的照片識別,建立有關海豚種群的遺傳學目錄

-----廣告,請繼續往下閱讀-----

【註】

  1. 不同種類的鯨豚會有不同形狀的背鰭。就算是同種,不同個體背鰭上的花紋也都不一樣。
  2. 由於鯨豚僅靠呼吸孔呼吸,呼吸孔的堵塞會使牠們窒息死亡。2016 年,研究員曾發現一條呼吸孔先天畸形的海豚在換氣時用嘴呼吸,但這是目前所知的唯一例外。
  3. 腎上腺皮質激素中的糖皮質激素,可以提高血壓、血糖水平和產生免疫抑制作用,有助身體調節壓力事件。
  4. 屬於孕激素荷爾蒙的一種,與懷孕、胚胎與月經週期有關。
  5. 座頭鯨的體型大,吐息也大,容易被船上的研究員發現。海豚因為個體嬌小,肺部僅有約兩個橄欖球大,因此採樣相對困難:牠們呼出的液氣混和物距離海表過近,常在竿子到達前就被海浪打散。另外,面對來勢洶洶的龐大漁船,牠們往往跑得飛快、「走敢若飛」(tsáu kánn-ná pue),不利採樣進行。

資料來源:

  1. 【鯨豚大小事】鯨豚背鰭說
  2. whales-do-not-catch-colds-but-they-do-get-snotty-blowholes
  3. ‘Dolphin snot’ used to look at health of pod off Gower
  4. Those snot-collecting drones are back, and this time they’re seeking dolphins
  5. The Usefulness of Dolphin Snot
  6. The ‘SnotBot’ Drone Is Making Scientific Research Easier on Whales
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
1

文字

分享

0
0
1
用吹泡泡搭設三維細胞鷹架,讓細胞脫離培養皿的「平面國」
研之有物│中央研究院_96
・2018/07/31 ・3242字 ・閱讀時間約 6 分鐘 ・SR值 540 ・八年級

  • 採訪編輯|歐柏昇 美術編輯|張語辰

物理學家做細胞研究?

中研院物理所的林耿慧副研究員,帶領團隊發明製作「細胞鷹架」,可在三維環境中培養細胞,比二維平面的培養皿更接近生理環境。不僅能藉此了解細胞的物理,也可應用在組織工程、精準醫療等方面。

物理學家研究細胞?你也許心想,這篇文章是不是「錯頻」了?其實沒有,林耿慧就是研究細胞的物理學家。

林耿慧在美國念書的時候,有一個潮流鼓勵物理科學家 (physical scientist) 轉到生物學 (biology) 研究。她研究的「軟物質」領域與生物物理也算接近,生物物理中用了許多軟物質的方法。於是,林耿慧回國後就投入了生物物理的研究。圖/張語辰

不同於培養皿 全新細胞鷹架創造三維實驗空間

林耿慧說,大部分的細胞必須貼附在基材上才能存活。一般培養細胞的「基材」就是培養皿,但是培養皿是二維的平面,如果想要養出三維的結構,培養皿做不到。然而,身體內的細胞,都有三維的結構。

真實細胞生長於三維環境,與二維平面(如培養皿)的條件不同。圖/林耿慧

-----廣告,請繼續往下閱讀-----

很早以前就有人想到,可以製造一個三維的「鷹架」來培養細胞。許多組織工程學研究試著製作細胞鷹架,不過一直未能培養出一個有完好功能的組織或器官。

林耿慧認為,要成為一個完好的組織,端視細胞與基材、還有細胞與細胞之間作用力協調出來的結構;但因為現今製作細胞鷹架的方式很不均勻,導致鷹架孔洞大小不一,因此很難了解細胞如何與鷹架作用。林耿慧想到了統計力學的這個概念:就算給定一模一樣的能量、溫度條件,還是會有很多的微觀狀態 (microstate);那不如創造出很多一模一樣的微環境,去觀察裡面細胞的狀態。「我的想法就是讓全部微環境都一樣,就可以觀察很多東西。」

「吹泡泡」技術 低成本細胞鷹架夢想成真

細胞鷹架該怎麼作呢?有些科學家提出 3D 列印的方法,可惜很難印出夠小的孔洞。那為什麼要做夠小的孔洞呢?

細胞怎麼感覺自己在三維?它沒眼睛,一定是靠觸摸的。

林耿慧說,我們如果沒有眼睛,也會覺得自己在二維,除非空間的尺度跟自己本身的尺度差不多,可以觸摸到環境,才能夠感覺自己在三維。細胞的尺度大約是 10 到 100 微米大小,因此如果做出類似大小的孔洞,就可以讓細胞生長在三維的環境。

-----廣告,請繼續往下閱讀-----

林耿慧的專長,正好是製作小塑膠球,博士論文就是做「膠體粒子」,把幾百奈米到幾百微米的小球堆疊成晶體。她想,這是她的老朋友,現在只要把尺度改成 10 微米以上就可以了。

查了文獻,林耿慧發覺她的想法已經被別人發明了。但是,讀完文獻之後,發覺前人的做法並不好,製作過程又慢又貴,自己仍然大有可為。

那個時候,「微流道」剛好發展起來,林耿慧對其研究現況有持續掌握。她看到一個方法,是用微流道吹泡泡,尺度剛好和細胞鷹架所需一模一樣,「就是我要的方法!」於是,林耿慧開始在實驗室製作這樣的泡泡。

利用微流道,可以做出大小一樣的泡泡。收集起來,把它背景變成膠,再把孔洞相連通,最後就可以拿來裝細胞。

實驗中通入氣體和液體,利用微流道「吹泡泡」製作細胞鷹架,動態如下圖所示。圖/林耿慧

-----廣告,請繼續往下閱讀-----

林耿慧用微流道來吹泡泡製作細胞鷹架,實驗相當成功。不但成本很低,製作所需時間也很短,做一個不到一分鐘。並依此申請了專利,也成功技轉,現在這個產品可以在生化試劑最大販賣平台的 Sigma-Aldrich 上買到。

進化的三維環境 讓實驗與真實更接近

三維的細胞鷹架,有什麼功用呢?不但可以應用於再生醫學、人工敷料,也對精準醫療有所幫助。林耿慧表示,現在化學製藥成本不算太貴了,最貴的是篩藥,而用三維細胞培養來篩藥,應該會有更接近身體內細胞的反應。

一般篩藥是在二維平面進行。在二維平面上篩出有效的藥,最後去做動物實驗常常卻沒有效,原因可能是二維比較不接近生理環境。

林耿慧舉例,1992 年生物學家米納‧碧賽爾 (Mina Bissell) 的團隊,把乳癌細胞養在二維和三維環境來做實驗。他們放了一些抗體進去,發現在三維環境,這些惡性腫瘤細胞可以回復成良性,但在二維環境卻維持惡性。如此一來,傳統在二維的篩藥方法就篩不出來這個藥效。

另外,即使是表皮細胞,乍看之下是平坦的二維結構,但事實上,經常要形成管狀構造才有功能。例如血管、氣管,都需要管狀的細胞。而在二維平面上養細胞,很難養出管狀結構。

-----廣告,請繼續往下閱讀-----

三維細胞培養一大瓶頸在於成本。一般三維培養用的材料如水膠,價格昂貴、操作時間又慢,而林耿慧發明的細胞鷹架,突破了這些限制;又經由技轉公司的進一步改良後,操作上和二維培養一樣方便了。

二維培養皿、三維細胞鷹架培養的細胞影像。紅色部分是肌動蛋白 (F-actin),綠色部分是沾黏的纖維組織 (Paxillins)。在二維環境中,細胞呈現平行發展;在三維環境中,細胞長成立體結構。圖/林耿慧

物理學家眼中的細胞力學

製作出細胞鷹架只是第一步。林耿慧利用這樣的鷹架來培養細胞,做了各方面的細胞研究。她用物理方法,來量化細胞的體積、曲率,這是與一般生物學不同之處。

我的研究風格就是量測,然後去量化。那些東西未必是生物學家會去量的。

林耿慧說,生物學家量化的東西不一樣,例如他們會去量化蛋白質的表現。物理學家則是量化細胞的物理,例如「看到彎彎的線,就去量化曲率半徑」,因為這與細胞的作用力、能量有關。

-----廣告,請繼續往下閱讀-----

量測細胞的形態,其實很困難。我們無法拿尺量測細胞,需要憑藉影像,而光是處理影像就很麻煩。林耿慧團隊突破這些技術困難,獲得一些有趣的發現,找到了一些在二維和三維不同的細胞型態:例如黏著斑尺寸比較小的細胞,其應力纖維也比較細,而黏著斑與應力纖維的分布是環繞整個細胞身體,呈現三維分布。而還有一些尚未發表的結果,皆顯示細胞在三維與二維的不同,團隊後續希望能從細胞力學的角度來解釋這些差異。

要研究生物物理,跨科重新學「常識」

生物物理包含許多跨領域專業,林耿慧團隊實驗成果的背後,其實是艱辛的歷程。

林耿慧笑說:帶領跨領域的實驗室比較累,有時學生來實驗室前沒有足夠的背景「常識」,更不用說非常少學生來實驗室前,就有足夠的背景「知識」。圖/張語辰

林耿慧說明,因為沒有現成的「生物物理」學系,可以教給學生所需的背景「常識」,所以學生來實驗室都需要從頭學起。有些學生學得快,有些學生會在一些不同領域中應該是常識的細節上出錯,例如:之前曾帶過機械系的學生,不知道將化學樣品加入溶液後要充分混合才能使用。在團隊裡,擅長養細胞的學生不一定會寫程式,而擅長寫程式的學生不一定會養細胞,因此研究經常要拆開來做。

-----廣告,請繼續往下閱讀-----

此外,團隊與生物學家合作,也是不斷磨合的過程。林耿慧談到,物理學和生物學研究的方法學不同:物理學家很多研究是基於觀察的研究,並且習慣「套用理論」來解釋事情;而生物學家的研究方法主要是以「假說檢驗」。偶爾,跨領域合作中,由於彼此不夠了解對方的領域,有時會高估彼此的能力。雖然並非易事,但林耿慧團隊仍持續和生物學家合作,得到了豐碩的研究成果。

從軟物質起家,林耿慧跨入生物的範疇,以物理的方法研究細胞。就像《平面國》一書所傳播的三維福音:「向上,而非向北」,透過細胞鷹架開啟三維的視角,也得以對生命的最小單位有更多探索的空間。

本著作由研之有物製作,原文為《培養細胞的新技術──「吹泡泡」製作細胞鷹架》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----

 

在網站上看不過癮?研之有物出書啦!

研之有物:穿越古今!中研院的25堂人文公開課》等著你來認識更多中研院精彩的研究。

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook