0

0
0

文字

分享

0
0
0

等效原理與重力異常:厄圖渥許誕辰│科學史上的今天:7/27

張瑞棋_96
・2015/07/27 ・985字 ・閱讀時間約 2 分鐘 ・SR值 484 ・五年級

-----廣告,請繼續往下閱讀-----

圖/wiki commons

牛頓提出三大運動定律與萬有引力定律,從物體運動到天體運行都可以解釋背後的原理,並做出正確的預測,成為古典力學的根基。然而,有個問題卻隱隱困擾著牛頓與當時的科學家。

按照牛頓第二運動定律,一個物體的質量可以根據它所受的外力與產生的加速度之間的比例,計算出它的質量;這稱為慣性質量。另外根據萬有引力定律,也可計算出物體的質量,這是重力質量。問題就在於一個物體的慣性質量等於重力質量嗎?

牛頓從惠更斯的單擺實驗得到靈感,做了兩個完全相同的單擺,除了擺錘是用不同材料。因為兩種擺錘的重量相同,所以重力質量相同,而擺動時則是取決於慣性質量,如果兩個單擺不同步,就表示慣性質量與重力質量有別;相反地,若維持同步,就代表兩者等同。牛頓用了九種物質當擺錘,結果都證明慣性質量就等同重力質量,誤差不到千分之一,這個問題從此拍板定案。

不過,千分之一的誤差範圍就算證據確鑿嗎?此後兩百年,就算有人感到懷疑,也想不出更好的驗證方法。直到今天生日的匈牙利物理學家厄圖渥許(Loránd Eötvös, 1848 –1919)出面,才終於能更精確地重新檢視這個問題。他改良了庫倫發明的扭秤(卡文迪許也是用庫倫扭秤,於 1798 年測出萬有引力常數與地球質量),於 1889 年再度證實牛頓的實驗結果,精確度是意義非凡的二千萬分之一!

-----廣告,請繼續往下閱讀-----

「慣性質量等同重力質量」是廣義相對論中「等效原理」的基礎,雖然愛因斯坦提出廣義相對論時並不知道厄圖渥許的實驗,但是他的實驗結果還是為廣義相對論提供了堅實的支撐。

1891 年,厄圖渥許進一步發明了「厄圖渥許扭秤」,可以測量出重力的水平分力。因為地球並非正圓的球體,加上各地的地殼厚薄或地下的物質密度不同,因此重力場也因地而異,有可能地勢高的重力反而大於地勢低之處。有了厄圖渥許扭秤,就可以繪製出各地的重力梯度,以及測出各地的重力異常,因此它也成為油氣田與礦脈探勘的有力工具。

厄圖渥許並未為他發明的扭秤申請專利。他過世後,他任教並從事研究的布達佩斯大學為了紀念他在科學上的貢獻,於 1950 年改以他的姓名為名──

「Eötvös Loránd University 」。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 957 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

11
2

文字

分享

0
11
2
宇宙到底是什麼樣子?——宇宙觀的發展史(上篇)| 20 世紀前
賴昭正_96
・2023/04/19 ・6261字 ・閱讀時間約 13 分鐘

  • 文/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

根本沒有理由假設世界有一個開始。認為事物必須有開始的想法實際上是由於我們思想的貧乏。
—— Bertrand Russell(1950 年諾貝爾文學獎)

「天上的星星千萬顆,世上的妞兒比星多,啊,傻孩子,想一想,為什麼失眠只為⋯⋯」(註一)不!世上的妞兒不會比星多,為什麼失眠也不是只為「她一個」,而是遐想著天空這麼多的星星是哪裡來的?為什麼不停地對著我咪咪地微笑?⋯⋯沉靜晴朗的夜晚,仰望著天空,有多少人不會為閃耀的星空沈思著迷呢?因此相信人類很早就在思考這個問題:在中國有盤古開天闢地,其身形化為日月星辰、山川河流,逝世時將精靈魂魄變成了人類之傳說。

而古希臘人(公元前 750-650 年) 則認為起初世界處於一種虛無混沌狀態,突然從光中誕生了蓋亞(Gaia,地球母親)以及其「他」具有人性的諸神,在沒有男性幫助的情況下,蓋亞生下了烏拉諾斯(Ouranos,天空),後者使她受精,生出了第一批泰坦(Titan)。泰坦後代普羅米修斯(Prometheus) 用泥塑人,雅典娜(Athena)為泥人注入了生命,宙斯(Zeus) 創造出一個擁有驚人美貌、財富、欺騙心、和撒謊舌頭的女人潘多拉(Pandora),給了她一個盒子,令永遠不要打開,但好奇心最後戰勝了,她終於打開盒子釋放出各種邪惡、瘟疫、悲傷、不幸、和在盒子底部的希望——現今打開「潘多拉盒子」的來源。

1881年,英國畫家勞倫斯.阿爾瑪-塔德瑪爵士(Sir Lawrence Alma-Tadema)的《矛盾的潘朵拉》。圖/Wikipedia

除了神話和傳說外,宗教在宇宙觀的發展上也佔了重要的地位。西方的宗教如基督教主要認為宇宙是一個由超自然力量之神創造出來的,人死後會上永生天堂。而東方的宗教如佛教則認為宇宙是無始無終的,沒有起點或終點,因此無所謂宇宙的起源與創造,人會以不同的面貌和形式,不斷生死輪迴。歐洲宗教在十六世紀前一直認為人與地球在這宇宙中佔了一個特殊的中心地位,因此深深影響了基於證據、推理、和辯論的宇宙觀發展。

中國古代的天文學

中國古代的宇宙觀有蓋天說、宣夜說、渾天說三學派,蓋天說認為「天圓地方」,天覆蓋著地,但由於地是方的,故而有四個角是無法覆蓋的,因此這四個角上有八根柱子支撐著整個天空。宣夜說則認為「日月眾星,自然浮生於虛空之中,其行其止,皆須氣焉」,即整個天體漂浮於氣體之中。渾天說雖然也認為「天圓地方」,但天是一個圓球,而不是蓋天說中的半圓,地球在天之中,類似於雞蛋黃在雞蛋內部一樣。東漢張衡(78-139 年)將「渾天說」發展成為一套系統的理論,並透過其所製作的「渾天儀」來加以演示,使渾天說成了中國宇宙結構的權威理論。渾天說的基本觀點認為日月星辰都佈於一個「天球」之上,不停地運轉著。

-----廣告,請繼續往下閱讀-----
清代的渾天儀。圖/Wikipedia

中國帝王自稱為「天子」,因此天文觀測的目的是為了帝王預測天下的禍福,用以指導治國理政、風水地理、農業民生、中醫人文的;天命如果有所改變,就會通過天象昭示天下。因此雖然中國是世界上最早發明曆法的國家之一,也為我們留下了許多寶貴的觀測資料,如記錄了 1054 年 7 月 4 日金牛座超新星的爆發,但古代的天文是皇權統治的一種工具而已,因此中國的天文學難以在民間發展,也不可能出現以科學為目的的天文研究。

地球中心模型

反觀西方世界,天文學在古典希臘則早已經是數學的一個分支。柏拉圖(Plato,公元前 427-347 年)鼓勵年輕的數學家蛇床子(Eudoxus of Cnidus,公元前 410-347 年)發展天文學體系,於公元前 380 年左右提出第一個以地球為中心的宇宙模型,認為一系列包含恆星、太陽、和月亮的宇宙球體都圍繞地球旋轉。

亞里士多德(Aristotle,公元前 384-322 年)識這些宇宙球體為物理實體,裡面充滿了導致球體移動之神聖和永恆的「以太」(ether)。他將這些球體分為陸地(terrestrial) 和天界 (celestial) 兩個領域。陸地領域包括地球、月球、及它們之間的月下區域,以變化和不完美為其標誌。天界是月球上方的領域,在這裡秩序井然,完美無缺。恆星固定在一個天球上,該天球每 24 小時圍繞地球旋轉一次。

最裡面的球體是地球的「陸地」,最外面的球體是「以太」構成的,包含「天界」。圖/Wikipedia

這個模型在接下來的幾個世紀裡得到了進一步的發展:希臘裔埃及天文學家、數學家、和地理學家托勒密(Claudius Ptolemy, 85-165)仔細研究以前所有天文學家的工作,了解到用肉眼觀察夜空中物體的方法後,透過他出色的數學技能開發出自己的天體運動模型,於公元 150 年出版了一本現在稱為《Almagest》(最偉大)的書籍來闡述其論點。

-----廣告,請繼續往下閱讀-----

他認為地球是一個靜止的球體,位於一個大得多的天球的中心;這個天球攜帶著恆星、行星、太陽、和月亮以完全均勻的速度圍繞地球旋轉,從而導致它們每天的升起和落下。完美的運動應該是圓周運動,因此托勒密認為這些表面上不規則的天體運動實際上是由規則的、均勻的圓周運動組合成的:運動的中心不但偏離了地球,而且還沿著主要圓形軌道上的點依較小的「本輪」圓圈(epicenter)移動。托勒密在該書目錄後留言謂:

我知道我天生必死,轉瞬即逝; 但當我隨心所欲地描繪天體的曲折軌跡時,我的腳不再接觸大地,而是站在宙斯面前,盡情享受神的美味。

此後的 1500 年,托勒密書中的表常被用來預測天體在夜空中的位置;而其以地球為中心的宇宙觀也幾乎統領了以後 2000 年的天文物理發展!

太陽中心模型

1543 年,波蘭哥白尼(Nicolas Copernicus,1473-1543)在德國紐倫堡出版《De revolutionibus orbium coelestium》 (論天體運轉,註二) 一書,提出日心系統,謂地球不在宇宙中心之特別位置,而是與其他行星一起在圍繞太陽的圓形軌道上運動。不幸的是它表面上不規則的天體運動之複雜並不亞於托勒密地心系統;還有,如果地球在動,為什麼星星總是在同一個地方出現——除非它們離地球很遠(註三)?因此該書出版後從未獲得廣泛支持。儘管如此,在日心系統裡,行星繞日具有地心系統所沒有的周期性

哥白尼的宇宙觀,中心為太陽。圖/Wikipedia

十七世紀初,在新發明之望遠鏡的幫助下,意大利天文、數學、哲學家伽利略(Galileo Galilei,1564-1642)發現了圍繞木星運行的衛星,終於對地球位於宇宙中心的觀念造成致命的打擊:如果衛星可以繞另一顆行星運行,為什麼行星不能繞太陽運行?伽利略因之慢慢地深相地球繞日說,但被羅馬教會禁止「堅持或捍衛」哥白尼理論。晚年於 1630 年出版《Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano》(關於兩大世界體系——托勒密和哥白尼——的對話), 在最後一章裡用潮汐現象來證明地球是在動,不是靜止地在宇宙中心(註四)。

-----廣告,請繼續往下閱讀-----

大約就在那個時候,德國數學、天文學家開普勒(Johannes Kepler 1571-1630)「盜取」導師丹麥天文學家布拉赫(Tycho Brahe,1546-1601)的豐富實驗資料構建了日心的定量模型,在 1618 年至 1621 年期間出版(立刻成為天主教會禁書的)《Epitome Astronomiae Copernicanae》(哥白尼天文學概要),提出描述行星體如何繞太陽運行的(開普勒)三定律:(1)行星以太陽為焦點在橢圓軌道上運動,(2)無論它在其軌道上的哪個位置,行星在相同的時間內覆蓋相同的空間區域,及(3)行星的軌道周期與其軌道的大小(半長軸)成正比。

開普勒終於解開行星之謎:行星以橢圓形——不是完美的圓形——圍繞太陽運轉。開普勒第三定律謂:行星與太陽的距離與其繞太陽公轉所需的時間存在精確的數學關係。這條定律激發了牛頓(Isaac Newton,1643-1727)的靈感,證明橢圓運動可以用引力與距離的平方反比定律來解釋。

平方反比定律

人類事實上好像很早就注意到了所有物質都互相作用,例如亞里士多德認為物體由於其內在的引力(沉重)而趨向一個點,伽利略則注意到物體被「拉」向地球中心。英國博學士胡克(Robert Hooke,1635-1703)在 1670 年的格雷沙姆演講 (Gresham lecture) 中謂萬有引力適用於「所有天體」,並添加了萬有引力隨距離減小的原理,及在沒有任何這種動力的情況下,物體會直線運動。到 1679 年,胡克認為萬有引力具有「距離平方反比」依賴性(註五),並在給牛頓的一封信中傳達了這一點:「我(胡克)的假設是引力總是與距中心距離成雙倍比例。」

牛頓因為害怕其他科學家和數學家竊取了他的想法,喜歡把他的工作隱藏起來、不發表;因此直到 44 歲才在英國天文學家哈雷(Edmond Halley)說服下,寫了一篇關於他的新物理學及應用在天文學的完整論述;一年多後(1687 年),發表了後來成為物理經典的《Philosophiae Naturalis Principia Mathematica》(自然哲學數學原理)或簡稱為《Principia》(原理)。

-----廣告,請繼續往下閱讀-----

儘管牛頓在《原理》中承認胡克曾經提出太陽系中的平方反比定律,但胡克仍然對牛頓聲稱「發明」了這一定律感到不滿。胡克是一位才華橫溢、但是又駝背又矮的科學家:發現彈性定律(胡克定律)、發現有機體基本單位的「細胞」、發明顯微鏡(使他成為細胞理論的早期支持者)。 當胡克要求牛頓承認他已經預料到後者在陽光中顏色的一些研究結果時,牛頓寫了一封諷刺的拒絕信,影射了胡克的小身材謂:「如果我看得更遠,那是因為站在巨人的肩膀上」(事實上,牛頓的許多創見都不是站在巨人之肩膀上的——被譽為是有史以來最偉大的物理學家,不是沒有道理的)。

胡克透過顯微鏡觀察、繪製的細胞壁。圖/Wikipedia

自然哲學數學原理

牛頓在《自然哲學數學原理》裡用同一個定律解釋了一系列以前不相關的現象:太陽-行星運動、行星-衛星運動、軌道物體、拋射體、鐘擺、地球附近的自由落體、彗星的偏心軌道、潮汐變化、以及地球軸的進動等等,具體地證明了「萬有引力」定律:「⋯⋯所有物質吸引所有其它物質的力與它們質量的乘積成正比,與它們之間距離的平方成反比」。這項工作使牛頓成為科學研究的國際領導者,「自然哲學數學原理」被公認為有史以來最偉大的科學著作。

但除了受過幾何學訓練的數學家外,《原理》事實上是一本非常難以理解的書,更糟的是:裡面充滿了矛盾和不一致,而且還點綴著一些令人毛骨悚然的錯誤(一些錯誤是計算和演示中的徹底錯誤,其它則是邏輯上的空白:沒有證明、只是猜測)。在牛頓時代,很少有人能讀懂它,而今天幾乎沒有人嘗試過。牛頓任教之劍橋大學的學生曾這樣諷刺:「有一個人寫了一本他和任何人都無法理解的書」。

《原理》在那個時代還有一個很大的邏輯問題:那時的物理學家認為世界是一部大機械,作用是必須透過物質撞擊或擠壓物質的接觸來達成的;從遠處發出穿過虛空的無形作用力量是魔法、神秘的、非科學的!為了阻止不可避免的批評和挑釁,牛頓先下手為強,在《原理》一書謂:

-----廣告,請繼續往下閱讀-----

「我已經用重力解釋了天空和海洋的現象,但我還沒有為重力提出一個原因。 ⋯⋯我還不能推斷⋯⋯這些重力特性的原因。我不需要假設,因為任何不是從現像中推導出來的東西都必須被稱為假設;而假設——無論是形而上學的、還是物理的、基於神秘特性的、或機械的⎯在實驗哲學中都沒有地位⋯⋯。在本哲學中,特定的命題是從現像中推斷出來的,然後通過歸納來概括。」

所以重力不是機械的、不是神秘的、不是假設;牛頓用數學及結果證明了這一點:「重力確實存在,並根據我們制定的定律起了作用,足以解釋天體和海洋的所有運動」,因此即使它的本質不能被理解,但我們不能否認它。牛頓認為這就「夠了」。

牛頓的著作《原理》被其任教之劍橋大學的學生諷刺為一本「任何人都無法理解的書」。圖/Wikipedia

靜態的宇宙

當牛頓抬頭仰望月亮、太陽、和行星以外的天空時,他沒有發現任何物體的運動,因此宇宙應該是靜止的。而如果萬有引力可以用在所有的天體上,科學家再沒有任何理由認為人類很特別,我們所處在的地方在宇宙中佔了一個很獨特的地位。這在現代物理宇宙學中被稱為「宇宙學原理(Cosmology principle)」的概念,認為這些力會在整個宇宙中均勻地作用,因此從足夠大的尺度上觀察時,宇宙中物質的空間分佈應該是均勻的、沒有方向性的。同樣地,我們現在所處在的時刻也沒理由是個很特殊的時刻。顯然地,宇宙永遠就是那樣地存在,它沒有開始,也不會有終結—因為如果有開始,那顯然就應有創造者,這不是太宗教了嗎?

牛頓的引力理論實際上需要一個持續的奇蹟來防止太陽和恆星被拉到一起。在 1666 年至 1668 年之間之手稿《De Gravitatione》 (引力)中,牛頓闡述對空間和宇宙的看法:一種「無限而永恆」的神力與空間共存,它「向各個方向無限延伸」。牛頓設想了一個無限大的宇宙,上帝在其中將星星放置在正確的距離上,因此它們的吸引力抵消了,就像平衡針在它們的點上一樣精確。所以宇宙可以保持靜態,不會崩潰到無任何一點(無限大的宇宙沒有中心點)。

有限的宇宙

但是此一充滿著星球的無限宇宙在羅輯上是有幾個很嚴重的問題。例如雖然兩物體間的作用力與距離的平方成反比(收斂系列),但作用的星球數卻是與距離的平方成正比,正好抵消了前者的效應;因此,

-----廣告,請繼續往下閱讀-----

(1)宇宙中的任何一點均應感受到無限大、往四面八方外拉的重力,所以物體不可能存在的!

(2)宇宙中的任何一點均應看到無限多的星光,所以夜晚的天空不應是黑暗的(註六)。

在你心中宇宙長什麼樣子呢? 圖/Pixabay

事實上亞里士多德早就回答了這個問題:物質宇宙在空間上一定是有限的,因為如果恆星延伸到無限遠,它們就無法在 24 小時內繞地球旋轉一圈。1610 年,開普勒也提出既然夜晚的天空是黑暗的,所以宇宙中的恆星數量必須是有限的!這有限宇宙的觀點一直到二十世紀初期還是被歐洲宗教及大部分科學家所接受(註三),造成了愛因斯坦犯下他一生最大的錯誤(詳見愛因斯坦的最大錯誤——宇宙論常數)。

如何解決牛頓之無限宇宙論與宗教之有限宇宙論間的衝突呢?請待下回分解吧。

註解

  • 註一:高山(作曲沈炳光之夫人黄任芳?):《牧童情歌》。
  • 註二:該書非常複雜難懂,科學歷史學家稱它為一本沒有人讀的書。
  • 註三:Giodano Bruno(1548-1600),意大利哲學家、天文學家、數學家、和神秘學家;因為堅持非正統的想法——包括宇宙是無邊緣的,恆星是離地球很遠的太陽、有它們自己在上面可能存在生命的行星,而付出被羅馬天主教酷刑,在火刑柱上燒死的代價——為一有名的宗教迫害案件例。
  • 註四:晚年被羅馬天主教強迫收回(在審判庭上寫了悔過書),因此不像註三的 Bruno,只被軟禁在家到逝世。說來有點可笑,伽利略之「證明」地球在動的理論完全是錯誤的:例如潮汐每天應該出現兩次,但他的證明只出現一次而已。但伽利略發現相對論原理,正確地解釋了為什麼我們沒感覺地球在動。
  • 註五:引力與距離的平方反比定律最早由布利亞爾杜斯(Ismael Bullialdus)於 1645 年提出;但他不但不接受開普勒的第二和第三定律,也認為太陽的力量在近日點是排斥的。
  • 註六:為紀念十九世紀的德國天文學家歐博耳(Heinrich Olbers, 1758-1840) 在這方面的深入研究,現在被稱為「歐博耳悖論(Olbers paradox)」 。
賴昭正_96
42 篇文章 ・ 51 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

4
1

文字

分享

0
4
1
與原色、光譜、煉金術交織而成的牛頓光學——《全光譜》
商周出版_96
・2022/03/19 ・2705字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/亞當.羅傑斯 
  • 譯者/ 王婉卉

光譜的故事

牛頓從三稜鏡中獲得的最大體悟,並非不同色光在穿透同一介質後,折射率會有所不同。席奧多瑞克與他同時代的研究學者已經證實這點了。

就算讓單色光再穿透另一個稜鏡也不會改變,牛頓甚至不是證明這點的第一人——證明的人是十七世紀的波西米亞科學家約翰尼斯.馬克斯.馬奇(Johannes Marcus Marci)。

牛頓的獨家發現是,那些色彩是如何混合在一起。他發覺,純粹陽光的白光,其實是所有其他色光混合而成的結果,透過稜鏡的折射,才使其分散開來。或者就像牛頓所說的,光是「由形形色色的光線構成,有些光比其他光更容易折射。」我們四周充斥的光是由順序固定的「純」色構成,而這個順序就是自亞里斯多德的時代起,眾人不斷在尋找的目標。

牛頓為這個順序想出了一個非常不錯的名稱,叫做「光譜」(spectrum)

模擬的自然光光譜。圖/Wikipedia

然後,牛頓誰也沒說,就這樣返回了劍橋。他協助一位年長導師編輯光學與色彩的著作,卻沒告訴對方自己的新發現。這位導師退休後,牛頓接任了這傢伙的職務:盧卡斯數學教授(Lucasian Professor of Mathematics)榮譽職位。

-----廣告,請繼續往下閱讀-----

牛頓這位據說上課很無聊的講師,這時才終於開始一點一滴發表自己從研究稜鏡所得出的結果。

儘管牛頓寫出的折射運算式既冰冷又毫不浪漫,卻依然有人深感崇拜。當時的皇家學會祕書是德國人亨利.歐登堡(Henry Oldenburg),工作主要是負責讓歐洲各地的研究人員能進行書信交流。(歐登堡精通荷蘭語、英語、法語、德語、義大利語、拉丁語。)

《自然科學會報》的鬥嘴故事

一六六四年,他向皇家學會創始成員的波以耳極力推銷一個可以賺錢的構想:把所有書信整合成只供訂閱的通訊刊物。

法國才剛開始出版《科學家週刊》(Journal des Sçavans),他們的編輯部也有向歐登堡邀稿。結果,歐登堡反而把先前出版的一本週刊帶到了學會的集會上,連同一份他自己想嘗試的通訊草稿或校樣——一份相似「但本質更偏向哲學」的刊物,他如此表示。

-----廣告,請繼續往下閱讀-----

於是,《自然科學會報》(Philosophical Transactions)就這樣創刊了,可說是世上首份徹徹底底的科學期刊。一份有兩三頁,要價一先令。

歐登堡聽說了牛頓正在埋首研究的主題,於是開始不斷央求他發表成果。最後,在一六七二年二月,牛頓洋洋灑灑寫了一封長信,描述自己的研究,以為這封信會在皇家學會的集會上由人朗讀。

由於歐登堡假定,任何人寄給自己的任何內容都屬於正式公開發表,於是就把那封信的內容刊登在當月的《自然科學會報》上。這時,歐登堡已經把這份期刊改為訂閱制,而這種模式是否可行,全取決於獨家內容。

《自然科學會報》自創刊以來的七年間,發表的論文格式大多遵循波以耳樹立的範本,也就是採時序敘事。現今期刊可能會遵循的格式——緒論、假設、研究方法、實驗結果、結論——當時尚未成形。

牛頓寫的信一開始有點像做工精良的成品,提出了研究方法與概念,並表達這整個研究到底多有樂趣,他自己對研究發現又是多樂在其中。

-----廣告,請繼續往下閱讀-----

然後,他似乎就放棄了。寫到一半,牛頓不再試圖用數學計算證明任何事,就只是寫下自己的理論,描述幾個實驗。這不是「我的彩虹之旅」。儘管如此,牛頓依然為世上有史以來的第一份科學期刊,寫下了有史以來的第一篇科學論文。內容還是關於色彩與光。

色彩與光。圖/Pexels

幾乎沒過多久,世上最聰明的一群人就開始酸他。虎克在信件內容發表後的一週內,就寫信給歐登堡,表示牛頓對折射性不同的看法錯了、對白光的看法錯了、對光是由什麼構成的看法也錯了。

況且無論如何,虎克說,他早就做過這些實驗了,不覺得有什麼了不起。接下來的四年間,《自然科學會報》不斷發表針對牛頓研究成果的批評,再刊登牛頓對這些批評的回應。

《光學》終於出版

最終,牛頓投降放棄。他不再跟歐登堡有所交流。虎克則在一七○三年去世,一年後,少了吹毛求疵的批評者,牛頓出版了《光學》(Opticks)。

在這本相當有分量的著作中,牛頓添加了一堆新難題。他先前就一直在思考原色的問題,但現在終於承認光譜是連續的,而這個連續光譜包含了無窮的色彩層次變化,也是色彩何以會改變、色彩順序何以會漸變的答案。

-----廣告,請繼續往下閱讀-----

然而,牛頓也堅決主張,這個光譜具有亞里斯多德式(與煉金術)的七種色彩:他在紅、黃、綠、藍、紫羅蘭中,加上了橙與靛藍,接著將所有色彩圍成一圈,透過根本就是他虛構的非光譜紫色,把其中一端的紅色與另一端的紫羅蘭色連接起來。

以現代色彩學術語來說,他創造出一張色度圖(chromaticity diagram),試圖要量化混色的方式,似乎也呈現出色彩按順序漸變為另一種色彩。

色度圖。圖/Wikimedia

牛頓建構的色彩順序屬於現代,有如彩虹般的漸層變化,是以自然的物理現象為基礎。不過,把色彩圍成一圈,可能是牛頓輕觸尖頂巫師帽,向鍾情於畢達哥拉斯神奇數學比例的煉金術士致意。

牛頓實際上究竟有沒有尖頂巫師帽,歷史學家對此尚未發表意見,但他無疑相當熟悉煉金術是如何看待色彩,以及色彩具有的重要性:雖然是在背地裡,但牛頓確實寫下了大量關於煉金術的內容,而且在他位於三一學院〔Trinity College〕的實驗室裡,還放置了煉金術相關的藏書,以及煉金術會用到的常見材料。

但不像典型的煉金術士,牛頓運用的是數學。他能相當精確地計算出每個色彩之間的折射率差異,色環(color circle)也依各顏色的比例,分配到長短不一的周長,意即各顏色的扇形區塊有大有小。

無可否認的是,這些比例都是主觀分配的結果,跟對應音階的神祕關聯有關,但就像之後會看到的,一般人對色彩彼此是如何互有關聯的認知,一向都很主觀。這個色環逐漸成為具體表達色彩之間幾何關係的方法。簡言之,就是所謂的色彩空間。

-----廣告,請繼續往下閱讀-----

—摘自《全光譜》,2021 年 12 月,商業周刊

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。