1

14
2

文字

分享

1
14
2

茫茫宇宙為何遇不見《異形》:找不到外星人是合理的嗎?──《科幻電影的預言與真實》

PanSci_96
・2018/07/23 ・4128字 ・閱讀時間約 8 分鐘 ・SR值 526 ・七年級

-----廣告,請繼續往下閱讀-----

編按:七月選書《科幻電影的預言與真實》,由身兼作家與電視主持人的邁可‧布魯克斯與量子物理學博士兼記者瑞可‧艾德華斯兩位作者討論科幻電影裡的情節能否成真,揭密各種電影背後的科學秘辛,並且加入各種打諢插科的對話內容,對人類的命運展開各種科學想像、思辯與對話。

邁可:我有生之年看不到外星人,真是太崩潰了。
瑞克:嗯,也許這是件好事。我不知道人類接觸外星生命時是否能應對得宜。
邁可:好吧,想像你自己面對一個來自異世界,長得又怪又醜的生物。你會怎麼做?
瑞克:我不用想像啊。我和他一起做了很受歡迎的播客節目。

在《異形》裡,太空船諾斯托洛莫號上的船員,到了最後關頭才發現自己被地球的異形獵人設計了,機器人艾許也是他安插的棋子。他們──或至少大部分的他們,隨便啦──很衰,因為對外星人著迷的人通常沒什麼理智,尤其當你想到找到 ET 的機率有多低,就知道他們多不理智。

說真的啦,如果找到的外星人是這個樣子,那還真是相見不如不見?圖/電影《異形》劇照@imdb

目前為止,我們已經花了數十年尋找,而且一無所獲。真的讓人空歡喜一場。每當我們發現來自地球以外的不尋常東西,就會湧現一陣充滿希望的興奮與熱忱,想把我們觀察到任何現象都歸功於外星生命。但是我們總是會失望。大家都到哪裡去了?

為什麼直到現在都還沒看到外星生命?

1961 年,天文學家法蘭克.德瑞克(Frank Drake)提出一個方程式 ,試圖解答這個問題。方程式裡有七個參數,一旦你放入值,就會得出宇宙中可偵測到的外星文明預估數量,後來被稱為「德瑞克方程式」。一切都很好,只有一個問題—找出每個參數的值到底是多少。以下是這個方程式中的參數:

-----廣告,請繼續往下閱讀-----

(1)新恆星出現的速率
(2)有行星系統(環繞恆星,運行在軌道上)的恆星比例
(3)每個太陽系中可居住行星的數量
(4)生命出現在可居住的行星上的機率
(5)發展出有智慧的生命的機率
(6)有可偵測技術的文明的比例
(7)文明能生存並向外送出訊號的時間長度

從德瑞克開始顯擺這個方程式以來,我們一直在嘗試得出這些參數的值。最近我們在第一項有了還不錯的成果。透過各種方法,我們現在發現了超過三千個外行星,讓天文學家可以做出更好的估計。

現在我們認為,和太陽類似的恆星中,百分之九十會有外行星,當中有百分之二十處於「可居住帶」,也就是應該存在能支撐生命—至少是我們所知的生命—的環境條件的地方。

至於其他參數,你差不多就只能用猜的(生命與智慧出現的機率原則上應該可以知道,但我們還不知道)。輸入最低、最悲觀的值之後,我們可以算出自己是銀河系裡唯一有智慧的文明,但在可觀察到的宇宙裡,可能還有一萬五千個有智慧的文明存在。如果用非常樂觀的值來算,那麼光是在我們的銀河系裡,就還有七萬個有智慧、可溝通的文明存在,整個宇宙中的數字則接近一百一十億。這代表有很多外星人欸。

-----廣告,請繼續往下閱讀-----
我們對於發現其他世界這件事愈來愈上手。圖/方言文化出版社提供

宇宙存在這麼久了,其他「人」在哪裡呢?

另外要考慮的是,地球是在四十五億年前才形成的,有鑑於我們認為宇宙已存在一百三十八億年,那麼也可以合理假設,我們認為那些可居住的行星有很多都比地球古老。這意味著生命在那裡演化的時間,會比我們這個年輕行星久很多。這麼一來,如同蕭斯戴克所指出的,我們可以預期某些文明比我們的文明還要進步很多很多,可能有超級聰明的生化人生存其中。這暗示了,出於好奇心與獵取資源在內的種種理由,這些文明都會想辦法殖民其他行星。就算只是搭乘以我們所能想像的速度(比方說,光速的四分之一就好)飛行的太空船,勤勞的外星人大概也只需要四五百萬年,就能殖民一整個像我們這樣的銀河系,乍看好像很久,但以宇宙的角度來看,根本只是一眨眼的時間。所以我們要再問一次:他們到底在哪裡?

恩里科.費米在 1950 年問了這個問題,並且導致了費米悖論(Fermi Paradox)的出現。費米的重點其實在於星際旅行看似不可能,但卻被詮釋為懷疑外星智慧存在的理由。如果宇宙裡有很多外星人,那我們當然應該要看過一些證據吧?

有可能地球對外星文明來說地處郊區沒什麼值得注意的?圖/銀河便車指南劇照@imdb

也許有,也許沒有。關於為什麼超級進步的文明還沒向我們現身,有很多不同的解釋。可能是因為我們處於銀河系遙遠、荒蕪的「郊區」,所以在「都會區」的那些外星人沒什麼太大的興趣前來。也許他們曾經在數千、數百萬年前,甚至數十億年前來過地球,然後發現這堆爛泥裡沒什麼值得淘金的。也許超級智慧種族根本對殖民沒有興趣。又說不定,他們是那些愛家好男人,找到在自己的太空鄰里間過著烏托邦般的生活方法。也許他們生存在完美的虛擬實境裡,在銀河系裡閒晃對他們來說一點吸引力也沒有。也許他們進步到我們無法得知自己被他們觀察的程度,而他們遵守著「請勿碰觸」的觀賞原則,對他們來說,我們只是一個娛樂設施,一種珍品,或是一座動物園。更極端的版本是,這些外星人已經發展得遠超過我們的概念,我們根本無法理解他們。他們可能已經以某種方式居住於地球,但我們渾然不覺。

也許就像《星際效應》裡演的那樣,外星人住在第五維度裡,我們就是不知道怎麼接觸他們所在的現實。也許我們就像是住在十線道高速公路旁蟻丘裡的螞蟻──無論是高速公路還是蟻丘的構造都很了不起,但是兩者在規模與移動速度上的差異,意味著使用其中一個構造的有機體,會很容易滿足於現狀,而忽視另外一個構造。

-----廣告,請繼續往下閱讀-----

也或者,他們只是還沒找到我們──也許我們應該對此心懷感激。一切都平靜無波,也許是因為宇宙裡有掠食性外星人,就像《異形》裡的那些外星人,而其他有智慧的文明都知道這一點,所以非常低調。換句話說,他們嚇得屁滾尿流,躲得好好的。這使得我們「朝空中發射訊號,派遣太空船離開我們的太陽系」的行動看起來有點蠢。

在這一點上,霍金已經承認自己是個膽小鬼。他擔心進步的外星種族「力量會比我們強大許多,也許會認為我們比細菌還沒價值」。那也是「也許」,不過壞消息是,一切都為時已晚了。我們已經播放電視、無線電和雷達好多年了,而這些傳輸內容都已經洩漏到太空裡了,現在才安靜下來已經沒什麼意義。

我們的許多電視訊號已經到達了其他星系。圖/方言文化出版社提供。

最後一個關於外星人缺席的解釋,當然是經典的《駭客任務》情境:我們活在虛擬世界裡,程式設計師根本不想沒事找事,寫什麼其他智慧生物的程式碼。也許他們發現那根本是浪費時間,而且看我們抓破腦袋也沒有頭緒也滿好玩的。

不過,萬一沒有任何外星人呢?這是非常恐怖的一個論點。也許就是,文明發展到某個技術成熟的階段時,最終必然會毀滅自己;也許是透過改造出無法控制的病毒,或是發展與部署毀滅整個星球的核子武器,或是創造出將整顆星球覆蓋二氧化碳的科技,繼而摧毀曾經讓自己繁榮發展的那些條件。

-----廣告,請繼續往下閱讀-----

這也不是難以置信的,對吧?


同場加映:我們能以多快的速度旅行?

航海家一號是目前最快、不在軌道上的人造物體──它已經離開了我們的太陽系在星際空間裡航行,時速約六萬一千五百公里。聽起來很快,但航海家一號還得花上八萬年才能抵達距離我們最近的恆星:半人馬座比鄰星。如果我們要派一艘有人員乘坐的太空船進行這趟旅程,實際抵達那顆恆星的人會是船員的第兩千五百代子孫—兩千五百個世代,在零重力、輻射線大轟炸的環境裡繁衍。偷偷告訴你,到時候他們應該已經不算是人類了……

最令人期待的可能方法,應該是以某種推進束(beam propulsion)加速前進,太空船會有一面巨大、非常輕薄的帆,由在地球產生的集中能源束(雷射或是微波)提供動力。突破星擊計畫(Breakthrough Starshot)打算使用類似這樣的東西,派一艘無人奈米船進入宇宙,以百分之二十的光速前進。這個計畫希望派遣一個艦隊,「在一個世代內」,也就是短短二十年後,抵達半人馬座 α 星。一旦抵達,奈米太空船可望用它的迷你相機拍攝一些照片,然後貼在臉書上。外星人,快標記你自己!

風帆的設計顯然相當關鍵。一些哈佛的科學家已經在研究如何維持風帆的最佳角度以獲得推進束的能量,目前也得出了一個球面的構造。而且風帆會自我修正,如果太空船向左晃了晃,能源束自然會把它推回右邊。更重要的是,這些奈米太空船看起來會很像超大的迪斯可舞廳水晶球。唯一能肯定的是,外星人一定會知道我們是好玩的生物。

-----廣告,請繼續往下閱讀-----

同場加映:我們被綁架了嗎?

沒有。

一個很有名,但非常沒有根據的 1992 年民意調查顯示,有三百七十萬名美國人相信自己曾經被外星人綁架過。冷靜下來,美國人!

相信自己被外星人綁架的心理學非常有意思。首先,這些據稱被綁架者的回憶,通常都是在催眠狀態下製造出來的。催眠不是擷取「隱藏記憶」的可靠方法—事實上,目前已經顯示受催眠者非常容易就被誘發出假記憶,容易受到暗示的人更是如此。再者,許多被綁架者都表現出「假記憶症候群」,他們在記憶測試中,傾向想到自己沒有看過的字詞或物品。

睡眠癱瘓據信也在他們的故事中扮演一個重要部分。有這種症狀的人,在入睡或醒來時經歷會暫時的癱瘓。這算是個已經獲得了解的現象,我們知道這些人醒來時,他們嚇壞了的腦袋有時候會創造出閃光、滋滋聲、漂浮感,以及人物存在(哈囉,外星人)。在此澄清,這些都只是幻覺。大部分有這種問題的人,都把這些效果視為夢境的一部分;剩下的人就把它們解釋為外星人胡搞的證據。這樣的經驗主觀上是非常真實的,但是客觀上……呃,就是胡說八道。

研究顯示,很多回報綁架的人都會主動擁抱「外星人綁架受害者」的身分。他們似乎認為這具有某種安慰效果,在心理上對他們有所幫助。就像是在一個恐怖的俱樂部裡找到歸屬感。

-----廣告,請繼續往下閱讀-----

 

 

本文選自泛科學 2018 年 7 月選書《科幻電影的 預言與真實:人類命運的科學想像、思辯與對話》,方言文化出版社。

文章難易度
所有討論 1
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
1

文字

分享

0
3
1
和外星人的第五類接觸!《三體》中的微中子通訊是真的?
PanSci_96
・2024/04/08 ・6799字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

不要回答!不要回答!不要回答!

Netflix 版「三體」終於上線了,你覺得與外星人接觸是安全的,還是冒險的?

其實啊,人類早就多次嘗試與外星文明接觸,三體中的「那個」技術,甚至也已經驗證成功了?到底誰能先與外星人取得聯繫?是中國還是美國?

接下來的討論可能會暴雷原版小說的設定,但應該不會暴雷 Netflix 版的劇情。

-----廣告,請繼續往下閱讀-----

如果你也有一點想跟外星人接觸,那就來看看人類到底已經跟外星人搭訕到什麼程度了吧!

我們與外星文明接觸過了嗎?

對於是否要與外星文明接觸,每個人都有不同想法。三體小說作者劉慈欣在小說中提出一種觀點,那就是人類太弱小,最好避免與外星文明接觸,以免招致不必要的風險。

但是回到現實世界,如果我們真的身處在三體的世界的話,那人類可真的是不停作死啊。早在 1974 年,科學家就利用阿雷西博天文台,向武仙座的 M13 球狀星團發射了一條著名的訊息,也就是「阿雷西博訊息」。這個目標距離地球不算遠,星星又多,被認為是潛在的外星文明所在。阿雷西博訊息中,則包含人類的 DNA 結構、太陽與九大行星、人類的姿態等資訊。每次想到總覺得是新開的炸雞排在發傳單攬客。

航海家金唱片。圖/wikimedia

除了無實體的電波訊息,人類還向太空中發送了實體的「信件」。1977 年,航海家探測器載著「航海家金唱片」進入太空。唱片中收錄了包含台語在內,55 種語言的問候語、大自然與鳥獸的聲音、115 張圖像、還用 14 顆銀河系內已知的脈衝星來標示出太陽系的位置。是一封向宇宙表達人類文明與友好意圖的信件。恩,如果接收到這個訊息的外星人不是很友善的話,那麼……。

-----廣告,請繼續往下閱讀-----

好吧,就算現在說應該要謹慎考慮接觸外星文明的風險,或許已經來不及了。對方是善還是惡,怎麼定義善或惡,會不會突然對我們發動攻擊,我們也只能聽天由命了。

反過來說,過了這麼久,我們收到外星文明的來信了嗎?

要確定有沒有外星文明,接收訊號當然跟發送訊號同等重要甚至更重要。1960 年,天文學家法蘭克.德雷克,就曾通過奧茲瑪計畫,使用直徑 26 公尺的電波望遠鏡,觀察可能有外星文明的天苑四和天倉五兩個恆星系統,標誌著「尋找外星智慧計畫」(the Search for Extraterrestrial Intelligence, SETI)的誕生。可惜,累積了超過 150 小時的訊息,都沒有搜尋到可辨識的訊號。

比較近的則是 1995 年的鳳凰計畫,要研究來自太陽附近一千個恆星所發出的一千兩百到三千百萬赫的無線電波。由於有經費支持,SETI 每年可以花五百萬美元,掃描一千多個恆星,但是目前還沒有任何發現。

中間有一個小插曲是,1967 年 10 月,英國劍橋大學的研究生喬絲琳.貝爾發現無線電望遠鏡收到了一個非常規律的脈衝訊號,訊號周期約為 1.34 秒,每次脈衝持續時間 0.04 秒。因為有可能是來自外星文明的訊號,因此訊號被開玩笑地取為 Little Green Man 1(LGM-1 號)。但後來他們又發現了多個類似的脈衝信號,最後證實這些脈衝是來自高速自轉的中子星,而非某個文明正在傳遞訊息。

-----廣告,請繼續往下閱讀-----
貴州天眼望遠鏡。圖/FAST

在中國也有探索外星生命的計畫,大家最關注的貴州天眼望遠鏡,直徑達五百公尺,是地球上最大的單一口徑電波望遠鏡。天眼望遠鏡在探索外星生命這件事,並不只是傳聞而已。2016 年 9 月天眼正式啟用後,也宣布加入 SETI 計畫。現在貴州天眼的六大任務之一,就包含探測星際通訊,希望能捕捉到來自其他星際文明的訊號。

而背負著地球最大單一口徑望遠鏡的名號,自然也引起不少關注。從 2016 年啟用到現在,就陸續出現不少檢測到可疑訊號的新聞。然而,這些訊號還需要經過檢驗,確定不是其他來自地面或地球附近的干擾源,或是我們過去難以發現的輻射源。可以確定的是,目前官方還未正式聲明找到外星文明訊號。

會不會是我們的通訊方法都選擇錯誤了?

即使電磁波用光速傳遞訊息,太陽系的直徑約 2 光年、銀河系直徑約 10 萬光年。或許我們的訊息還需要花很多時間才回得來,更別提那些被拋入太空的實體信件。航海家 1 號曾是世界上移動速度最快的人造物,現在仍以大約時速 6 萬公里的速度遠離地球,大約只有光速的一萬八千分之一倍。就算朝著最近的恆星——比鄰星飛去,最少也需要大約 7 萬 6 千年的時間才會到。

如果用電磁波傳遞訊息,又容易因為穿越星塵、行星、恆星等天體而被阻擋或吸收。不論是人類還是外星文明,都必須找到一個既快速,又不容易衰退的訊號,最好就是能以光速穿越任何障礙物的方式。

-----廣告,請繼續往下閱讀-----

在三體小說中,就給出了一個關鍵方法:微中子通訊。

微中子通訊是什麼?

微中子(Neutrino),中國通常翻譯為中微子,是一種基本粒子。也就是說它是物質的最基本組成單位,無法被進一步分割。這種粒子引起了廣泛關注,因為它與其他物質的交互作用極弱,並且以極高的速度運動。微中子能夠輕易穿過大部分物質,通過時幾乎不受阻礙,因此難以檢測。

在宇宙中,微中子的數量僅次於光子,是宇宙中第二多的粒子。有多多呢?地球上面向太陽的方向,每平方公分的面積,大約是你的手指指尖,每秒鐘都會被大約 650 億個來自太陽的微中子穿過,就是這麼多。但是因為微中子與物質的反應真的是太弱了,例如在純水中,它們平均需要向前走 250 光年,才會與水產生一次交互作用,以至於我們幾乎不會發現它們的存在。

藉由微中子撞擊氣泡室中氫原子裡的質子,進行微中子觀測,照片右方三條軌跡的匯集之處便是帶電粒子撞擊發生處。圖/wikimedia

但是對物理學家來說,更特別的是微中子展示出三種不同的「味」(flavor),也就是三種樣貌,電子微中子,渺子微中子和濤微中子,分別對應到不同的物理特性。 在粒子物理學裏,有個「標準模型」來描述強力、弱力及電磁力這三種基本力,以及所有基本粒子。在這個標準模型中,微中子是不具備質量的。 然而,當科學家發現微中子竟然有三種味,而且能透過微中子振盪,在三種「味」之間相互轉換,證明了微中子必須具有質量,推翻了標準模型中預測微中子是無質量的假設,表示標準模型還不完備。

-----廣告,請繼續往下閱讀-----

微中子在物理界是個非常有研究價值的對象,值得我們花上一整集來好好介紹,這邊就先點到為止。如果你對微中子或其他基本粒子很感興趣,歡迎在留言催促我們。

我們現在只要知道,微中子不僅推翻了標準模型。宇宙中含量第二多的粒子竟然有質量這件事情,更可能更新我們對宇宙的理解,以及增加對暗物質的了解。

但回到我們的問題,如果微中子幾乎不與其他粒子交互作用,我們要怎麼接收來自外星文明的微中子通訊呢?

要如何接收微中子?

Netflix 版《三體》預告片中,這個一閃而過,充滿金色圓球,帶有點宗教與科幻風格的大水缸,就是其中的關鍵。

-----廣告,請繼續往下閱讀-----

這個小說中沒有特別提到,但相信觀眾中也有人一眼就看出來。這就是位在日本岐阜縣飛驒市,地表 1,000 公尺之下,由廢棄礦坑改建而成的大型微中子探測器「神岡探測器」。

由廢棄砷礦坑改建而成,深達千米的神岡探測器。圖/Super-Kamiokande Construction

探測器的主要結構是一個高 41.4 米、直徑 39.3 米的巨大圓柱形的容器。容器的內壁上安裝有 11200 個光電倍增管,用於捕捉微小的訊號。水缸中則需灌滿 5 萬噸的超純水。捕捉微中子的方式是等待微中子穿過整座探測器時,微中子和水中的氫原子和氧原子發生交互作用,產生淡藍色的光芒。這與我們在核電系列中提到,核燃料池中會發出淡藍色光芒的原理一樣,是當粒子在水中超越介質光速時,產生類似音爆的「契忍可夫輻射」。

填水的神岡探測器。圖/Super-Kamiokande

也就是說,科學家準備一個超大的水缸來與微中子產生反應,並且用超過一萬個光電倍增管,來捕捉微小的契忍可夫輻射訊號。

但這樣的設計十分值得,前面提到的微中子可以在三種「味」中互相轉換,就是在這個水槽中被證實的。

-----廣告,請繼續往下閱讀-----

這座「神岡探測器」在建成後 40 幾年來,讓日本孕育出了 5 位的諾貝爾物理獎得主。

三體影集選在這邊拍攝,真的要說,選得好啊。

話說回來,有了微中子的捕捉方法之後,現實中還真的有人研究起了微中子通訊!

微中子通訊是怎麼做到的?

來自羅徹斯特大學與北卡羅來納州立大學的團隊,在 2012 年發表了一篇文章,說明它們已成功使用微中子,以接近光速的速度將訊息穿過 1 公里的距離,其中有 240 公尺是堅硬的岩石。訊息的內容是「Neutrino」,也就是微中子。

這套設備準備起來也不簡單,用來發射微中子的,是一部強大的粒子加速器 NuMI。質子在加速繞行一個周長 3.3 公里的軌道之後,與一個碳標靶相撞,發出高強度的微中子射束。

用磁場將微中子聚集成束的 NuMI。圖/Fermilab

用來接收微中子的則是邊長約 1.7 公尺,長 5 公尺的六角柱探測器 MINERvA,一樣身處於地底 100 公尺的洞穴中。

當然,這兩套設備的重點都是拿來研究微中子特性,而不是為了通訊設計的。團隊只是趁著主要任務之間的空檔,花了兩小時驗證通訊的可能性。

但微中子那麼難測量,要怎麼拿來通訊呢?團隊換了一個思維,目標只要能傳出0跟1就好,而這裡的0就是沒有發射微中子,而1則是發出微中子,而且是一大堆微中子。多到即使每百億個微中子只有一個會被 MINERvA 偵測到,只要靠著數量暴力,探測器就一定能接收到微中子。最後的實驗結果,平均一秒可以傳 0.1 個位元的訊息,錯誤率 1%。

MINERvA 實驗中的中微子偵測器示意圖。圖/wikimedia

看起來效率並不實用,卻是一個好的開始。

因為微中子「幾乎能穿透所有物體」的特性,即便我們還沒有其他外星文明可以通訊,或許還是有其他作用。例如潛水艇的通訊、或是與礦坑深處的通訊。進一步說,他幾乎可以在地球上的任一兩點建立點對點的直線通訊,完全不用擔心中間的阻礙。而對於現在最夯的太空競賽來說,月球背面的通訊問題,微中子也可以完美解決。

那麼,在微中子的研究上,各國的進度如何了呢?

除了前面提到的超級神岡,世界上還有幾個有趣的微中子探測器,例如位於加拿大的薩德伯里微中子觀測站(SNO),它有特殊的球體設計並且改為填充重水,專門用來觀測來自太陽的微中子。

薩德伯里中微子探測器。圖/wikimedia

而位於南極的冰立方微中子觀測站,則是將探測器直接埋在南極 1450 到 2450 公尺的冰層底下,將上方的冰層直接作為捕捉微中子的水。非常聰明的設計,這也讓冰立方成為地球上最大的微中子探測器。

除了已經在使用的這幾個探測器之外,美、中、日也即將打造更先進、更強大的探測器。

預計在美國打造的國際計畫——地下深處微中子實驗(Deep Underground Neutrino Experiment),預計成為世界上最大的低溫粒子偵測器。接收器位於南達科他州的地底一公里深處,用作研究的微中子訊號源則來自 1300 公里外的費米實驗室,百萬瓦等級的質子加速器,將產生有史以來最強的微中子束。這台地下深處微中子實驗(Deep Underground Neutrino Experiment)的縮寫非常有趣,就是 DUNE,沙丘。

中國呢,則預計在廣東的江門市,用 2 萬支 51 公分光電倍增管和 2 萬 5000 支 7.6 公分光電倍增管,在地底 700 公尺深處,打造巨大球形的微中子探測器-江門中微子實驗室,內部可以填充兩萬噸的純水。最新的消息是預計 2024 年就能啟用。

最後,經典的超級神岡探測器也不會就此原地踏步,日本預計打造更大的超巨型神岡探測器。容積將提升 5.2 倍、光電管從 11200 個變成 4 萬個,進一步研究微中子與反微中子之間的震盪。

超巨型神岡探測器設計圖。圖/Hyper-Kamiokande

結論

這些微中子探測器的研究目標必然是微中子本身的特性。但既然微中子通訊是有可能的,在任務之餘研究一下這個可能性,也不是說不行吧。

雖然我們現在還沒連繫上我們的好鄰居,但很難說明天就有哪個外星文明終於接收到我們對外宣傳的訊息,發出微中子通訊問候,甚至按圖索驥跑來地球。

至於那時我們應該怎麼辦呢?我們的網站上有幾篇文章,包括介紹黑暗森林法則,以及從《異星入境》看我們要如何與語言不通的外星文明溝通。有興趣的朋友,可以點擊資訊欄的連結觀看。在外星人降臨之前,也不妨參考我們的科學小物哦。

最後問問大家,你覺得我們應該主動聯繫外星文明嗎?

  1. 當然要,我相信探索一定是好的,我覺得引力波通訊更有機會!
  2. 先不要,我已經可以想像被外星文明奴役的未來了!
  3. 為了維繫美中之間的平衡,由台灣來率先接觸外星人,當仁不讓啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

延伸閱讀

參考資料

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

7
0

文字

分享

1
7
0
人類在宇宙中是否孤寂?——宇宙中是否可能有其他文明?
Castaly Fan (范欽淨)_96
・2023/04/12 ・4993字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

1990 年,NASA 的航海家 1 號完成任務時,在 64 億公里外回首拍攝一張照片。地球,好似一粒漂浮在深空中的塵埃。該照片被命名為《蒼藍小點》(Pale Blue Dot),天文學家卡爾・薩根(Carl Sagan)隨後寫下了這段經典的語錄:

「凝視著這個淡藍小點:就是這裡。這就是家園。這就是我們。在這個小點上,每一個你愛的人,每一個你認識的人,每一個你曾聽聞的人,每一個人類、都曾經生活於此。我們一切的快樂和掙扎,萬千種引人自豪的宗教信仰、思想體系、經濟法則,每一位獵人與騎兵,每一位英雄與懦夫,每一個文明的締造者與摧毀者,每一位君王與農夫,每一對陷入愛河的年輕伴侶,每一位為人父母者、充滿希望的孩子們、發明家與探險者,每一位靈魂導師,每一位貪腐政客,每一個所謂的「超級巨星」,每一個所謂的「偉大領袖」,每一位歷史上的聖人以及罪人⋯⋯我們的一切一切,全部存在於——這顆懸浮在一束陽光中的渺小塵埃上。」

著名地球照片《蒼藍小點》。 圖/wikimedia

在浩瀚的宇宙中,地球確實是一粒渺小沙塵,也是我們唯一確定有智慧生命居住的世界。那麼,在茫茫太空中、銀河系的彼端、抑或是更遙遠之處,是否還有其他生命、乃至於文明正在活躍著?在這偌大而寂寥的宇宙中,人類又是否是孤獨的存在?

地球是否特別?平庸與殊異的爭辯

《蒼藍小點》這張影像意味著:地球不過是宇宙空間億萬顆星體中的一粒微塵,在近幾十年來,實驗觀測更指出宇宙比我們想像中來得更大、且正在持續擴張中。從演化論的視角來看,人類並非特別,我們所擁有的聰慧恰恰就是有機化學中基因序列的一種結果。

這些證據指向了一個事實——地球並不特別,只不過是一顆普通的行星。這樣一種看法在哲學上面被稱作「平庸原理」(mediocrity principle)。

-----廣告,請繼續往下閱讀-----

然而,對此有不少科學家抱持反對意見,而這一系列說法被稱之為「地球殊異假說」(Rare Earth hypothesis)。他們認為,地球的形成、板塊運動、大氣、海洋、乃至於生命的誕生、演化——這些都並非輕而易舉就能產生的。英國天文學家霍伊爾(Fred Hoyle)爵士曾如此形容:

「生命自發形成的機率,宛若一陣龍捲風掃過垃圾場、從中隨機拼湊出一架波音 747 那樣渺茫。」

確實,一系列有機分子纏繞結合成蛋白質、再組成基因序列、構成原始細胞這一段程序,這機率是非常微小的。而科學家們同時也提出了地球恰恰位在「適居帶」(habitable zone),這些條件決定了生命是否得以形成並且演化:

  1. 星系適居帶:恆星系統若接近星系中心,由於超大質量黑洞影響,會導致輻射、宇宙射線、以及星體撞擊的干擾,從而難以形成生命;若過於遠離核心,則會使重元素(例如:鐵、碘)難以形成,這些重元素是組成複雜生命分子的條件。太陽系位在銀河系第三旋臂上,恰好座落在適居帶。
  2. 太陽系適居帶:對於一個恆星系統而言,行星與恆星的距離將主宰生命誕生的條件。比如:水星、金星溫度過高,便不適合生命形成;火星、木星外側的行星距離太陽偏遠,則不會有液態水的存在;而地球位處金星、火星之間,不僅溫度適宜、有液態水存在,更有足夠大氣層可以擋避隕石與輻射,使得碳循環得以建立,恰好符合生命形成的條件。
  3. 行星適居帶:與前者類似,行星必須在恆星的一定範圍內,才能有良好的溫度環境、使得液態水可以存留。
太陽系在銀河系中的位置。圖/Wikipedia

超級適居行星的發現

所謂的「超級適居行星」(superhabitable planet),顧名思義,就是指位居在適居帶的行星。請注意,不少人常常將其誤解為「超級地球」(super-Earth),但這兩者是不一樣的。

首先,超級地球的判斷依據僅僅是質量,而非適居帶等條件,亦即比地球大出許多的岩質行星、但通常遠比天王星或海王星小。

-----廣告,請繼續往下閱讀-----

而另一個相關的數據稱為地球相似指數(Earth Similarity Index, ESI),指的是一行星的大小、質量、溫度等條件與地球的相似程度。以地球的 ESI=1 為標竿,目前所發現 ESI 最高的行星為位在 1,075 光年外的 KOI-4878.01,其 ESI 值高達 0.98,但存在性還在評估中。

不過,ESI 值高並不代表行星中有生命(畢竟有可能遠離行星適居帶)。真正意味著有可能會有生命存在的,便是「超級適居行星」。目前,葛利斯 370b、葛利斯 581c、葛利斯 581d、葛利斯 581g、葛利斯 832c、克卜勒 22b、克卜勒 62e、克卜勒 62f、克卜勒 69c、克卜勒 186f 和克卜勒 442b 等等,皆是超級適居行星的代表。為了探究這些星球是否有生命存在,最具表性的行動莫過於「搜尋地外文明計畫」(SETI)。

地球數以萬億計的物種中,人類算得上是最具高等智慧的生物。但假設——遙遠的某顆行星上也有「智慧生命」的存在,那麼,對方是否有可能比我們先進?他們能透過量子力學的應用而發明電子產品嗎?他們能掌握陽光、電磁等能源嗎?他們是否有完善的醫療、教育、經濟、社會結構?又或者,他們是否已然可以達成人類難以觸及的瞬時旅行?

在探討這個問題之前,先讓我們回到「人類」身上。人類是因為達成了哪些「成就」,而擁有了智慧呢?

-----廣告,請繼續往下閱讀-----

費米悖論:我們為何從未接觸過外星智慧?

或許宇宙深處已然有著科技程度比我們先進數百萬年的高等文明,那些 III 型文明或許早已可以駕馭光速飛行、甚至能掌握時空動力學跳脫距離限制到訪地球。根據「德雷克公式」(Drake equation),銀河系中可能與我們接觸的先進文明數量大約可以表示為:

其中,等號右側從左至右依序為:銀河系恆星形成速率、恆星系統有行星的可能性、位於適居帶行星的平均數目、行星上發展出生命的可能性、生命演化成為智慧文明的可能性、智慧文明得以進行通訊的可能性、以及該智慧生命的預期壽命。根據估算,可能與人類通訊的智慧文明在銀河系中最少一千、最多則高達一億個。

我們總是如此預估:在擁有 137 億年歷史的廣袤宇宙中,與地球類似的星體非常多,先進地外文明的存在性相對而言也非常高,而德瑞克公式更意味著本銀河系中便可能有成千上萬個智慧文明存在。於是,一個矛盾產生了:

既然宇宙的尺度與年齡意味著高等文明應當存在,那麼——為何這個敘述迄今沒有得到充分的科學證據支持?

更簡潔的說法,便是:

-----廣告,請繼續往下閱讀-----

宇宙中高等文明存在的可能性極高,然而為什麼這些智慧生命至今尚未與我們接觸過?

這便是著名的「費米悖論」(Fermi paradox)。關於這項提問,也出現了各種不同的說法或解答。

第一種答案認為,目前其實並沒有外星文明存在,因為:

  • 生命誕生的條件是極其稀罕的,有可能進化失敗、又或許尚未崛起(地球殊異假說)。
  • 自我摧滅:智慧生命在能完成恆星際旅行之前,便可能因為核戰爭、生化戰爭、或是資源枯竭等災難而自我毀滅了。

第二種則認為,外星文明其實存在,卻因為:

  • 尺度限制:受限於空間限制,使得智慧生命不容易前來;此外,也有可能是外星生命已經接獲人類的訊號,只是訊號尚未返回地球。
  • 技術因素:外星文明未必比地球文明進步;又或是,人類找尋外星生命的方法有誤,也有可能外星技術現象與自然現象過於雷同而難以區辨。
  • 刻意緘默「動物園假說」(zoo hypothesis)意味著外星智慧有可能已經收到人類訊息,但為了觀察人類舉動而不願回答;或者,科幻作家劉慈欣提出的「黑暗森林法則」認為,在尚未分別對方意圖之時、為保有宇宙資源等利益,刻意隱匿行蹤,必要時可能摧毀對方文明;又或者,基於技術奇點(technological singularity),與人類差別太遠從而無法有效答覆。
  • 已然接觸:外星智慧已然與人類接觸,但可能因為維度差異、或者隱匿行蹤,致使人類尚未發覺。例如文章中所提及的「馮紐曼探測器」(von Neumann probe)預示著:智慧文明可能透過奈米乃至於原子尺度的探測針、散播並且監控著地球人的舉動。

對於地外文明的探索與展望

對於探索地外文明,人類的野心從未止息。1972 年,無人探測器先鋒號裝載了一塊鍍金鋁板,其中囊括一些有關人類科技的基本訊息,例如——人類的身材面貌、氫原子躍遷圖示(用以表示長度與時間單位)、太陽系位置、以及地球的所在地等等。這塊「先鋒號鍍金鋁板」(Pioneer plaque)雖然不是第一個離開太陽系的人造物件(第一個離開太陽系的是航海家一號),但卻是第一個攜帶了人類文明訊息離開太陽系的人造物件。

-----廣告,請繼續往下閱讀-----
先鋒號鍍金鋁板上面所鐫刻的訊息。圖/Planetary

如同先前提及的,SETI 或許是最具代表性的團體。1974 年,SETI 透過無線電訊息發送了知名的「阿雷西波訊息」(Arecibo message)至遠在 25,000 光年外的 M13 球狀星團。這串訊息陣列包含了:二進位數字、DNA 序列、核苷酸、雙股螺旋、人類平均身高與人口、行星系統、以及望遠鏡結構。假設 M13 星團的外星文明接收到訊息,那麼根據傳播速度推算,人類接收到回覆大約是五萬年之後的事了。

阿雷西波號所發射的無線電波信息,其中攜帶了人類相關的基本資訊。圖/PHL

1977 年,有鑒於先鋒號刻板基礎,以薩根為主的 NASA 委員會將地球上的 55 種語言、各種大自然的聲音、不同年代的音樂,以及有關於科學、人體構造、生態、建築物、交通建設、書信文物等 116 張影像,一併收錄至一張唱片裡,其中還包括時任總統卡特(Jimmy Carter)的書面信息,再透過航海家探測器發射至太空。這張「航海家金唱片」(Voyager Golden Record)預計 4 萬年後才會到達距離太陽系 1.7 光年的地方。

航海家金唱片及其所攜帶的信息。圖/NASA

雖說上述訊息目前為止都尚未得到回覆,當然,就宇宙尺度而言恐怕要等到數萬年後才會有所答覆。不過,值得一提的是,近年來天文學家透過克卜勒望遠鏡觀測到 KIC 8462852(又稱 Tabby 星、博雅吉安星)的光度有異常變化。

關於這個變化,有人認為可能是新形成的恆星塵埃造成的,但是科學家在觀測後尚未發現相關跡象;有人認為是星體碰撞下的殘骸導致的,然而克卜勒望遠鏡觀測到此情況的機會亦非常低;也有人認為是彗星群受到重力影響而朝往該恆星方向運動,不過這說法無法解釋為何光度會顯著下降。

-----廣告,請繼續往下閱讀-----

這光度異常不規律的起伏至今仍是謎團,而所有證據彷彿指向了另一個極端的可能性——人工巨型結構(即「戴森球」)。假設該恆星系統有高等文明存在,便得以透過「戴森雲」這類結構控制恆星能量。乍聽之下似乎無比驚人,然而,目前唯有這個說法可以合理解釋光度的異常變化,因此,科學家並不否定 KIC 8462852 存在先進外星文明。

作者註:目前 KIC 8462852 的光度變化,科學界基本上已經排除戴森球的可能性

我們期待這些有關外星智慧的謎團能夠解開,也期許人類文明能在短時間內擺脫戰亂、資源枯竭等危機,從而在本世紀末順利躍升成為第 I 型文明。最後,讓我們引用 1977 年收錄在航海家金唱片中、吉米・卡特前總統的一段語錄作為總結:

「這個禮物來自於有點遙遠的世界,夾帶著屬於我們的聲音、我們的科學、我們的圖像、我們的音樂、我們的思想、以及我們的感觸。我們嘗試永存現有的時光,好讓來日得以共生於你們所處的時光中。我們期望有朝一日,能夠共同解決彼此所面臨的難題,並且聯合組成一個星系文明。這張唱片象徵著我們的希望、我們的決心、以及我們的善意——在這浩瀚且壯麗的宇宙中。」

參考文獻

  • 加來道雄,《穿梭超時空》,台北:商周出版,2013
  • 加來道雄,《平行宇宙》,台北:商周出版,2015
  • 卡爾.薩根,《宇宙・宇宙》,台北:遠流出版事業股份有限公司,2010
  • 史蒂芬.霍金,《胡桃裡的宇宙》,台北:大塊文化,2001
所有討論 1
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及文學創作。

0

9
0

文字

分享

0
9
0
2020 重要天文事件回顧
臺北天文館_96
・2021/03/01 ・4340字 ・閱讀時間約 9 分鐘 ・SR值 548 ・八年級

-----廣告,請繼續往下閱讀-----

塵埃可能是參宿四變暗的罪魁禍首

參宿四是全天第九亮星,也是獵戶座第二亮星。圖/轉自《臺北星空》

去年年底,天文學家發現參宿四的亮度異常降低,這現象還被某些人解釋為這顆紅超巨星已幾乎沒有核燃料,即將發生超新星爆炸。不過,華盛頓大學和羅威爾天文台的天文學家認為,參宿四更可能只是正在發生其他紅超巨星也會發生的事情:拋出的外層大氣遮住了一些往地球的光線。

天文學家在二月進行的觀測數據中,發現參宿四表面平均溫度比 2004 年的測量低了 50 至 100 度,這個結果使他們更加確定其答案必為星際塵埃,若是對流胞上升至表面冷卻的話,那降幅會更為明顯。

科學家宣稱在隕石中發現了外星蛋白質

血石素的結構。圖/arXiv

繼默奇森隕石發現胺基酸以來,在 1990 年的一塊隕石中,隱藏了更具突破性的進展,蛋白質一般是由多個胺基酸組成的,同時也是地球上幾乎所有生物體中的必要組成成分,從細胞核膜到遺傳物質 DNA 都有蛋白質的身影。在這被稱為「Acfer 086」的隕石所含有的蛋白質,被稱為血石素 (Hemolithin) ,是一種新的命名,旨在描述其具有一半血紅素 (Hemoglobin) 及一半卵磷脂 (Lecithin) 的分子結構,科學家發現的這種新蛋白質,成分中含有鐵和鋰,且氘與氫的比例與地球上的不同,基本上可以確認絕非地球上的物質。儘管研究團隊認為這是最有可能的解釋,但是他們也指出其發現的複合性分子可能不是蛋白質,而只是一種聚合物,所以現在下結論仍為之過早,但是種種跡象顯示「它」是蛋白質的機率相當高。

宇宙最早的物質可能潛藏於中子星的核心

藝術家對於中子星剖面的想像圖。圖/轉自《臺北星空》

中子星是恆星死亡後的核心塌縮而形成,中子星的質量上限約在兩個太陽質量,更大的質量將會形成黑洞,然而最近天文學家發現了少數超過這個上限的中子星。

-----廣告,請繼續往下閱讀-----

研究團隊計算了中子星物質的狀態方程式,計算的結果描述了中子星的可能結構。結合最近 LIGO 和 VIRGO 的重力波觀測結果,更進一步揭露了許多中子星內部的訊息。根據他們的研究,這些死亡恆星的中心可能可以找到由夸克形成的核心,其含量甚至可能佔核心組成的一半以上,未來更多的中子星觀測資料將可提升或改善這項研究結果的正確性。

銀河系中也許有至少 36 個外星高等智慧文明存在

除非人類能想到如何建造無線電擴音器,並在接下來的 17,000 年都保持人類的生存及技術實力,否則無法與任何外星文明聯絡。圖/轉自《臺北星空》

繼德瑞克方程式後,人類就一直持續在搜尋地外高等智慧文明,但長時間以來一無所獲,新的研究認為該方程式的後面幾項參數,不確定值太多,使得整個方程式的實用性降低,研究人員建立了一套新的參數及計算標準,稱為天文生物學哥白尼極限,在六種嚴格的限制條件下,得到的外星文明數量約為 36個。

若將此 36 個外星文明平均打散在銀河系中,可以得到每個文明的平均距離至少有 17,000 光年,而人類自有無線電訊號以來,也才 125 年,亦即最遠的傳播僅達125 光年,此外,無線電波在傳遞過程中也會逐漸變弱,因此,除非我們能想到如何建造無線電擴音器,並在接下來的 17,000 年都保持人類的生存及技術實力,否則我們仍無法與任何外星文明聯絡。

首次發現奇怪的冥府行星

冥府行星示意圖。圖/轉自《臺北星空》

天文學家發現一顆非常奇怪的系外行星 TOI-849b ,它位於 730 光年遠,母恆星TOI-849 與太陽非常相似。 TOI-849b 僅比海王星小一點,但質量卻是海王星的兩倍多,因此密度與地球差不多!如此高密度顯示它是岩質行星,但大小卻遠高於岩質行星的上限。這意味著它可能是非常罕見的冥府行星(Chthonia),即是大氣層已被剝離的氣體行星核心。

-----廣告,請繼續往下閱讀-----

天文學家認為這種極靠近恆星的氣體行星,會被高熱剝離大氣,如 Gliese 3470 b 被觀測正以高速失去其大氣層。但這不足以解決 TOI-849b 大氣全部損失的原因,還有大天體碰撞等事件的可能性。另一可能原因是 TOI-849b 開始形成氣體行星時,沒有足夠的物質成為大氣。又或者是它在行星系統演化後期時形成,抑或是在原行星盤的間隙中形成的,使得沒有足夠的材料來增加大氣。研究小組計劃將繼續觀測,以確定 TOI-849b 是否還剩下任何大氣。

天文學家在本超星系團旁發現了新的長城結構

紅色區塊屬於南極長城。圖/轉自《臺北星空》

宇宙的結構並不是由隨機分佈的星系所組成,而是互纏互繞、具有藕斷絲連的特性,受到萬有引力的影響,較為靠近的星系組合成一個星系群或星系團,或隸屬於一個超星系團,這些藕斷絲連的網狀結構,又被稱為大尺度纖維狀結構,其中最大的一條被稱為武仙-北冕座長城,全長跨越 97 億光年,是目前已知最巨大的結構。新發現的纖維狀結構橫跨南極天空,至少長達 13.7 億光年,發現者將其命名為「南極長城」(South Pole Wall) ,而且南極長城的特別之處在於它離銀河系非常近,簡直就像是在我們的後院而已,僅有5億光年遠,(我們所在的結構稱為拉尼亞凱亞超星系團,直徑達5.2億光年,所以5億光年確實就像是後院的存在)換句話說,它是離我們最近的長城結構。

迄今為止質量最大的合併事件證實了中介質量黑洞的存在

一對黑洞的合併產生新重力波的觀測事件,證實了中介質量黑洞的存在。圖/轉自《臺北星空》

在 70 億光年外,一對碰撞的黑洞產生了新的重力波,在 2019 年 5 月 21 日由 LIGO 和 VIRGO 雙重認證得知,這次的重力波事件是黑洞天文學中最受囑目的發現之一,因為該天體質量介於恆星級黑洞及超大質量黑洞之間,正是天文學家急欲尋找的中介質量黑洞,且我科技部及清華大學研究團隊亦參與其中。本次的重力波訊號與往常的訊號相比非常短,但經過艱困的比對分析後,科學家得知這是分別由 66 倍太陽質量及 85 倍太陽質量的黑洞合併而成,產物為一個約 142 倍太陽質量的黑洞,這是自發現重力波以來迄今為止最大質量的重力波源。

中介質量黑洞是黑洞系列的一個謎團,我們常發現的是恆星質量黑洞及超大質量黑洞,但是藉由重力波的觀測, GW190521 成為對於中介質量黑洞的第一次決定性的直接觀測。超大質量黑洞的形成過程仍是個謎,長久以來,科學家不清楚它們是由恆星大量坍縮聚集而成,抑或是透過一種尚未被發現的方式產生的,所以科學家一直在尋找中介質量黑洞,來填補介於兩者差異甚大的質量空隙,如今,科學家終於有證據可以證明中介質量黑洞確實存在。

-----廣告,請繼續往下閱讀-----

歐西里斯號成功登陸貝努收集樣本

OSIRIS-REx 收集樣本示意圖。圖/轉自《臺北星空》

OSIRIS-REx 任務耗資 8 億美元,在 2016 年 9 月發射, 2018 年 12 月 3 日抵達500 公尺大的貝努近地小行星。經過一年多環繞研究後,團隊選擇了一個名為夜鶯(Nightingale)的小隕石坑為降落地點,因為該點表面物質的顆粒較細,且相對新鮮沒經過長期暴露於太空環境而變質。但夜鶯周圍也充滿危險,其中包括要經過一個兩層樓高,綽號厄運山(Mt. Doom)的巨石,而隕石坑內也有其他障礙物,因此太空船的目標是一個寬 8 公尺相對平坦無石塊的區域, OSIRIS-Rex 任務距離達3億公里之遙,相當不容易。臺灣本地時間 10 月 21 日 6 時 12 分歐西里斯號(OSIRISRex)號降落到近地小行星貝努(Bennu)表面,目標是從貝努表面收集至少 60 克的灰塵和碎石,預計 2023 年 9 月 24 日將樣品送回地球,以研究太陽系的起源與生命相關有機物和水的來源。中間還有一段插曲:一些岩石碎塊阻擋導致收集器無法完全閉合,使得在探測器的三公尺機械手臂末端的收集器內的小行星表面碎片樣本,一直在緩慢漏失到太空中,好在後來已經克服此狀況,且收集來的樣本也遠高於當初設定的最低目標。

阿雷西博望遠鏡的輝煌與終結

曾完成多項偉大天文學研究的阿雷西博天文臺,因結構損壞而除役。圖/轉自《臺北星空》

該望遠鏡於 1963 年落成啟用,阿雷西博天文臺開始運作之後,做出的科學貢獻不勝枚舉。 1964 年天文學家藉由雷達脈衝發現水星的自轉週期為 59 天,有別於原先認為的 88 天;1968 年提供了蟹狀星雲脈衝星(Crab Pulsar, PSRB0531+21,自轉週期33毫秒)存在的確切證據,也是第一顆被確認為跟超新星殘骸有關的中子星。 1974 年,天文學家法蘭克德瑞克及卡爾薩根設計了知名的阿雷西博訊息,內容包含人類的 DNA 結構,和太陽系的介紹等等,以強力的電磁波從阿雷西博天文台發送向距離地球 25000 光年的球狀星團 M13。雖然無法期待在不久的將來能收到回覆,卻是人類主動接觸外星文明的重要嘗試。 1989 年趁著小行星(4769)Castalia 經過,阿雷西博望遠鏡首次利用其功能描繪出小行星的 3D 圖像,迄今已研究過數百個近地小行星。今年的 12 月 1 日的一聲巨響,支撐平台的纜線應聲斷裂,整個接收平台、900 噸重的心臟與一個纜線塔硬生生撞入下方的碟型天線。雖然造成多大破壞還在評估,但照片與影片仍然震驚所有人,阿雷西博望遠鏡結束其 57 年傳奇的一生

嫦娥五號返回艙帶回月壤, 40 年以來的新鮮貨

中國嫦娥五號於去年年底返航,完成人類 40 年來首次收集月球樣本的任務。圖/轉自《臺北星空》

歷經 23 天的飛行,攜帶著月壤的中國嫦娥五號返回艙於 12 月 17 日凌晨 1 時 59 分安全返回地球,這是 40 年來首次收集月球樣本的任務。其返回艙在中國北部內蒙古四子王旗著陸場著陸。內蒙古地區夜間達攝氏零下 30 度,對於地面工作人員的準備是一大考驗。

嫦娥五號於 12 月 1 日登陸月球,並於兩天後開始返航,中國航天局也在月球上,升起了中國五星旗幟。此次任務是自 1976 年蘇聯「月球 24 號」任務以來的首次嘗試,使中國成為繼美國和蘇聯之後,第三個從月球上取回樣本的國家。飛船的任務是在「風暴洋」的區域收集兩公斤 (4.5磅) 的物質,該區域是一片廣闊的、此前尚未被探索過的熔岩平原。

-----廣告,請繼續往下閱讀-----

中國的科學家們希望藉由採集回來的樣本了解月球的起源、形成以及月球表面的火山活動,並期望在 2022 年以前建立一個載人太空站,並最終將中國人送往月球。

臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!