0

6
1

文字

分享

0
6
1

如何習得《駭客任務》裡的絕招「子彈時間」?──《科幻電影的預言與真實》

PanSci_96
・2018/07/23 ・3883字 ・閱讀時間約 8 分鐘 ・SR值 495 ・六年級

編按:七月選書《科幻電影的預言與真實》,由身兼作家與電視主持人的邁可‧布魯克斯與量子物理學博士兼記者瑞可‧艾德華斯兩位作者討論科幻電影裡的情節能否成真,揭密各種電影背後的科學秘辛,並且加入各種打諢插科的對話內容,對人類的命運展開各種科學想像、思辯與對話。

電影《駭客任務》中的經典「子彈時間」場景。圖/imdb

尼歐在《駭客任務》裡的絕招令人大感驚奇,因為他不受虛擬環境中運行的時鐘限制,所以他能抽離,讓周圍慢下來,藉此躲開探員發射的子彈。所以如果你想躲子彈(誰不想?),你只需要讓外部世界的時間流逝速度,比在你身上流逝的速度更慢就行了。這讓我們不得不問這個問題:我們能獲得子彈時間嗎?拜託?

寧死也要獲得的時間

瑞克:你有看過麥爾坎.葛拉威爾(Malcolm Gladwell)那本書嗎?書裡說他花了一萬個小時精通一項技能。真的很久吧?我不確定我是否那麼想要某個技能。你覺得你會為了任何東西投入一萬個小時嗎?
邁可:有,想辦法讓書賣得和葛拉威爾一樣好。
瑞克:進行得不是很順利吧?
邁可:說句公道話,我大約已經投入了七千小時了。
瑞克:是喔,但我不確定你的工作時數是不是還有三千個小時。

真相來了──電影都是騙人的。你在看《駭客任務》時,看到的是連續的靜止影像,只是你的大腦解釋為它們在運動。當然囉,你早就知道了。不過,你是否想過這代表什麼?電影的連續動作能成功,暗示了我們的腦在欺騙我們;而大腦欺騙我們最嚴重的,莫過於我們對時間的感知。

時間是我們大腦粗製濫造的一棟東搖西晃的大樓。你頭骨裡的那個果凍,收集了各種可取得的感官資訊,例如視覺與聽覺線索,創造出一種印象,說明事件的時間長度與順序。所以,生命雖然彷彿在連續的線軸上開展,但你的腦其實只是把外在世界的許多片段集合在一起,就和你在看《駭客任務》或其他電影時它做的事一樣。因此,時間在每個人身上流逝的速度其實不同,會根據訊號要花多久時間通過身體而決定。

-----廣告,請繼續往下閱讀-----
蒼蠅取樣的時間可是一秒鐘幾十萬上下的。(誤)圖/imdb

要為人腦從環境中取樣的速率定下一個特定的值並不容易,不過如果我們想要體驗「子彈時間」,我們應該只要大幅提高大腦的取樣率,並重新校準我們的「主觀時間」(我們感知到的事物持續時間長度)與「客觀時間」(我們的手錶告訴我們時間過了多久)的比較結果。

如果我們的腦知道──或是以為它知道──每秒將會得到 x 個影格的視覺資訊,但若突然把取樣率加倍,成為每秒 2x 個影格,大腦就會把這段時間解釋為原本的兩倍。換句話說,時間感覺就像是慢下來了。主觀時間會被改變,但客觀時間還是一樣。賓果!子彈時間到手。

有可能嗎?嗯,說不定。蒼蠅對世界取樣比我們快得多,這代表相對於我們,牠們活在一個時間慢很多的世界裡,因為牠們是用一個更精細的刻度在觀察動作。這就是為什麼我們相信蒼蠅很容易就能躲過報紙的攻擊,對牠們來說,報紙根本是在散步。蒼蠅隨時都在過牠們自己的「子彈時間」,或者你可以說是「報紙卷時間」。

而且你不是沒有經歷過類似「子彈時間」的東西。很多人都有經驗,覺得在某些時刻──通常是危險或是高壓時──時間彷彿走得比較慢。為什麼?有沒有可能是我們的大腦提高了取樣率呢?

-----廣告,請繼續往下閱讀-----

神經科學家大衛.伊葛門(David Eagleman)試圖用一個超乎尋常的實驗回答這個問題。他說服一群自願者乘坐遊樂園裡的「懸空掉接裝置」,其實就是從五十層樓高的平臺往下掉。這東西非常可怕──正是伊葛門想要的。

台灣的遊樂園也有「懸空掉接裝置」的遊樂設施。圖/YouTube

他要求自願者在事後回報他們掉落的時間長度,還要他們看著其他自願者往下掉,估計那些人經歷的時間長度。自願者估計的自己掉落時間,大約都比實際多了三分之一。這就是時間膨脹(time-dilation)效果,顯示對於嚇壞的自由落體乘坐者來說,主觀時間變慢了。目前為止,沒什麼問題。

除此之外,每個乘坐者身上都穿戴了伊葛門和學生切斯.史戴特森(Chess Stetson) 一起發明的「精密感知計」。其實就是一支會閃出隨機數字的手錶,數字出現的速率可調整。精密感知計可能會在黑色的背景上閃出紅色的數字 83,接著在紅色的背景上閃出黑色的 83──和前一次畫面完全相反的色彩配置。

當兩個影像在不到一百毫秒之類的極短時間內前後出現,大腦的校正程式就會整合兩個影像。所以如果第二個影像(也就是第一個影像的負片)很快就出現,大腦會看到一片空白。

-----廣告,請繼續往下閱讀-----

自願者將精密感知計戴在手腕,伊葛門事先調整了數字閃出的速率,建立每個自願者的感知門檻──上限是自願者勉強看到數字的速率,接著他再調快一點點。如果自由落體時的時間真的過得比較慢,那麼受試者的時間解析度就會比較高,也就是「每秒影格數」較多,因此他們應該能看到以更高速率閃過的數字。

想體驗子彈時間嗎?坐雲霄飛車吧!圖/pixabay

實驗結果打破了我們原本的看法──沒有任何自願者在墜落時能看到那些數字,暗示掉落者根本沒有經歷較高的時間解析度。那為什麼大家回報的掉落時間,都比實際時間長呢?

這可能是因為危險會讓我們有一種特殊的假記憶。在壓力之下,腦中的杏仁核會接管大腦,以「高畫質」記錄記憶,而事後大腦回想這段記憶時,會看到高密度的資料,於是錯以為當時一定是花了一段時間才能記下這麼多東西。用伊葛門的話來說,你會覺得:

「媽啊,那真是超久的。」

如果伊葛門是對的,那麼你在危險時刻也不太可能像蒼蠅那樣。你無法躲開危險,因為時間沒有變慢,你只是對威脅的回憶更詳細。就像是尼歐記得子彈以慢動作朝他飛來,但是他無法移動:「那顆子彈要打中我了,那顆子彈要打中我了,糟糕!那顆子彈打中我了!」

-----廣告,請繼續往下閱讀-----

想到這裡,這真是最糟的可能性了:

對於無法迴避的災難擁有強大、詳細的記憶。但是等一下,這些都無法解釋關於短暫、危險情況的常見回憶。我們通常會對於在客觀的「轉瞬間」,腦海中冒出的想法與表現出的行動數量之多感到不可思議。

既然子彈時間沒有發生,那為什麼感覺變慢?

戰鬥或逃跑?圖/vignette

如果以伊葛門的自由落體實驗來解釋,時間解析度並沒有加強、時間變慢也只是記憶玩的把戲,那麼為什麼我們的反應像是時間為我們變慢了呢?

芬蘭圖爾庫大學的維塔利.亞斯提拉(Valtteri Arstila)的論點也許是我們的救星。他主張,和「戰鬥或逃跑」反應有關的壓力荷爾蒙,會迅速啟動可大幅加速大腦處理能力與速度的機制,使得大腦覺得外在的世界彷彿變慢了。以從事高風險極限運動者為對象的研究顯示,有些人能「打開」這種時間變慢的感知,換句話說,他們能以此控制他們自己的子彈時間。

就算這是真的,這個機制也尚未獲得了解,所以我們不清楚你要怎麼做才能得到這種好處──除了不斷在懸崖邊進行特技跳傘,或是從事其他不怕死的愚蠢消遣之外的方法。不過,我們這些凡人/有腦袋的人還是有希望的。

-----廣告,請繼續往下閱讀-----

在基爾大學的實驗裡,受試者會先聽一段長度十秒鐘的快速滴答聲(大約每秒五聲),接著進行一些基本心智任務,例如算術、回憶單字,以及辨識目標。聽過滴答聲後,受試者會處理任務的速度,會比還沒聽的時候快了百分之十到二十,顯示他們腦中的時間速率以某種方式加速了。

這個我們覺得可以。這些變化也許不能幫我們躲子彈,但是偶爾能幫腦袋換檔也不錯。

精密感知計的原理:精密感知計會輪流閃出數字與相反配色的版本。
當交換的間隔時間變短,大腦會結合兩個畫面,創造出「零」的組合,我們就看不到數字了。圖/方言文化出版社提供

同場加映:過時的大師

幫恐龍大大因為太大隻而無法活在當下 QQ。圖/pixabay

「活在當下真的很重要」,這是教人自立的大師會講的話。令人開心的是,這不可能做到,因為我們都活在過去。

全都要怪我們大腦處理感官資訊的方式。資料以不同的速度從不同的地方進來,並由大腦的不同區塊加以處理。接著,大腦必須漂亮地進行「時間整合」,將所有東西編輯、縫合在一起,創造出清楚的事件輪廓。

-----廣告,請繼續往下閱讀-----

這導致一個意料之外的結果,就是大腦必須等到動作最慢的那個資訊抵達,才能進行最後的組合。耽擱的時間大約是十分之一秒,但確切的時間會根據你的體型而定。邁可沒有瑞克那麼病態的高,所以如果有人同時碰他們的腳趾,這個感官資訊需要比較長的時間才能傳到瑞克的腦。邁可短短的四肢總算讓他有個優勢了—他很接近活在當下。

此外,等待所有資訊抵達只是比賽的一半而已。你的腦假設你在與世界互動時,所有相對應的視覺影像、觸摸、聲音都是同時發生的。當你彈手指,做這件事的感覺、這件事發生的畫面、彈手指的聲音,似乎理所當然都是同時發生。但其實大腦必須額外做點努力,預期到即將傳來的訊號,才能達到這種同步感,讓你對情況有合理的感受。

 

 

本文選自泛科學2018年7月選書《科幻電影的 預言與真實:人類命運的科學想像、思辯與對話》,方言文化出版社。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1256 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

5

30
6

文字

分享

5
30
6
不用數學就可以解釋——相對論的著名想像實驗「雙胞胎悖論」
賴昭正_96
・2022/08/26 ・6632字 ・閱讀時間約 13 分鐘

  • 文/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

你聽過「雙胞胎悖論」嗎?

我有時會問自己,我是如何發展相對論的。我認為其原因是:一個正常的成年人從不去思考空間和時間的問題——這些都是他小時候就想到的;但我的智力發育遲緩,因此長大後才開始思考空間和時間。

——愛因斯坦(Albert Einstein)),1921年諾貝爾物理獎得主

1905 年,愛因斯坦在題為「關於運動物體之電動力學」的論文裡,從兩個簡單的假設,得到結論謂如果張三與李四相對運動,則張三會認為李四的手錶跑得比較慢。在證明這一稱為「時間膨脹」(time dilation)的現象後,寫道:

由此產生以下奇怪結果。如果(開始時)A 點和 B 點在(靜止坐標)K 中觀察是同步的(即同一時刻),但 A 處的時鐘以速度 v 沿 AB 線到 B,則在到達 B 時,兩個時鐘將不再是同步:移動到 B 後的 A 時鐘將落後於保持不動的 B 時鐘…。我們得出這樣的結論:如果兩個 A 處同步的時鐘,其中一個以恆定速度沿閉合曲線移動 t 秒後返回 A 處,則保持靜止的時鐘將發現剛返回的時鐘慢了 tv2/(2c2)秒(c 為光速)。

昨天才校正過的手錶,怎麼現在又慢了?難道我是在黑洞附近?或是該換新手表的時候了? 圖/作者提供

或許是怕像筆者這樣智力發育遲緩的讀者難懂,愛因斯坦於 1911 年重申並詳細說明這一現象如下:

如果我們把一個活的有機體放在一個盒子裡……我們可以安排這個有機體在經過任意長時間的飛行後,在幾乎沒有改變的情況下返回到它原來的位置。此時保持在原來位置的相應有機體已經早已讓位於新一代,但對於移動的有機體來說,只要運動以接近光速進行,漫長的旅程只是一瞬間而已。

名物理教科書作者雷斯尼克(Robert Resnick)更清楚地解讀謂:

如果靜止的有機體是一個人,而旅行的是他的雙胞胎,那麼旅行者回到家時會發現他的雙胞胎兄弟比自己老得多。但在相對論中,任何一個雙胞胎都可以將另一個視為旅行者,因此再碰面時將比他自己年輕。這在邏輯上看來是一個矛盾的現象,因此被稱為「雙胞胎悖論」(twin paradox)。

雙胞胎悖論」可以說是相對論中最著名的想像實驗,為許多教科書與通俗科學文章所討論的對象;但筆者卻發現在「泛科學」裡只有一篇書評的文章中提到它!

-----廣告,請繼續往下閱讀-----

難道真如諾貝爾獎得主普朗克(Max Planck)所說的:「一個新的科學真理之所以勝利,不是因為說服了它的對手,讓他們看到了光明,而是因為它的對手最終會死去,而熟悉它的新一代會成長起來」?在習以為常的熏陶下,現在的「新一代」已經不再認為「雙胞胎悖論」是值得討論的悖論?

如果你不是這樣的「新一代」,那本文是為你所寫的,相信你在這裡將讀到在其它地方找不到之「雙胞胎悖論」的白話文解讀(不用任何數學)。

同步與同時的「相對性」

普朗克謂:「光速之於相對論就像基本的作用量子之於量子論:光速是相對論的絕對核心。」

可是如何測量光速呢?從甲處發一道光到乙處,將甲乙之距離除以光旅行的時間就得到光速。當然,要能精確地測得光速,甲乙兩處的時鐘必須是互相校正過的、同步(synchronized)的。如何校正甲乙的時鐘呢?相信很多人小時候就已經知道了:將兩個時鐘帶到同一處,然後像電影中之突擊隊,在出發前由隊長發命令說:「讓我們校正時間,現在是……」 。

可是愛因斯坦不知道為什麼竟然沒有想到這一點?或許真的是「智力發育遲緩」,他竟然建議在乙處放一面鏡子來反射甲處在零時刻所發的光,如果乙處接到光的時刻正是甲處光來回所需之時間的一半,我們便說甲乙兩處的時鐘同步化了。用這種方法來同步化時鐘,很顯然在邏輯上我們便不可能測單方向的光速是否為定值了,所以愛因斯坦增加了一個假設,即光是在真空中的傳播速率為一與發射體運動狀態無關的定值 c

-----廣告,請繼續往下閱讀-----

如果我們將同步化的甲乙兩個時鐘分別放在火車月台的兩端,讓它們在同一時刻(零點)往月台中心發射一道激光,則站在月台中心的賴教授應該「同時」收到來自甲乙兩端的激光(圖 a)。

但坐在從乙往甲方向以等速 v 行駛之車廂內的李教授,卻發現甲、乙激光發射後一直在以同一速度 c 逼近賴教授(圖 c);但因賴教授在往乙方向運動,因此如果光同時到達賴教授處(任何人都同意的「事件」,否則賴教授不是說謊就是頭腦有問題),李教授將下結論謂:甲乙兩個時鐘並不同步,甲時鐘顯然先發射,因此比乙時鐘快(甲的零點比乙的零點早)!

所以「同時」將因觀察者之運動而異:賴教授說甲乙兩激光是同時發射的,李教授卻說甲激光先發射的!如果李教授坐的火車是由甲往乙方向行駛呢?他將發現乙激光是先發射的!

這似乎是很明顯的結論,為什麼要等愛因斯坦告訴我們、難道牛頓沒想到嗎?牛頓不是沒想到,而是他認為宇宙中有一獨立於任何觀察者的時鐘,稱為「絕對時間」,所以「同時」是絕對,不會因觀察者之相對運動而異。

-----廣告,請繼續往下閱讀-----

但事實上這結論與絕對時間無關,而是因愛因斯坦之假設—光的傳播速率為一與發射體運動狀態無關的定值—造成的!如果不是這一假設,則光的傳播速率將與發射體運動狀態有關(古典力學),李教授會認為乙激光是以 c-v 逼近、而甲激光則是以 c+v 追趕以 v 速運動的賴教授(圖 b),因此兩道激光當然還是同時到達賴教授處!所以李教授和賴教授都同意時鐘是同步的。

所以很明顯地應是愛因斯坦的「同時相對性」改變了人類根深蒂固的「絕對同時性」觀念。如果我們將「發射激光」改成孿生子(雙胞胎)的「生日慶典」,則賴教授將說他們是同時出生的;但是李教授則會因其運動狀態而說甲孿生子先出生(比較老)或乙孿生子先出生。這不正是「雙胞胎悖論」的一個影本嗎?我們在這裡事實上還看到一個很重要的現象:參考坐標(運動方向)的改變,可能顛倒兩個不同事件的「先後次序」!

雙胞胎悖論

假設雙胞胎張四決定乘坐等速高速太空船去旅行。因他決定一去不回,故在旅行前與張三痛哭擁抱,答應在死前一刻依自己的時鐘將年齡紀錄下來,「寄」回地球。

依照經驗,如果兩人的生理機能完全不受外界的影響,則兩人的壽命應該一樣長;但是依照相對論,張三認為張四是在運動,其(生理)時鐘跑得較慢【稱為「時間膨脹」現象】,因此活得較長;同樣地,張四認為張三是在運動,其(生理)時鐘跑得較慢,因此活得較長!誰對呢?智力發育遲緩的筆者認為這是矛盾的,一定有一個人錯,但愛因斯坦說兩人都沒錯,要筆者耐心地等一等……。

-----廣告,請繼續往下閱讀-----
坐上高速太空船旅行的張四,與留在地球的張三,誰活的時間比較「長」呢? 圖/envatoelements

歲月如梭,張四的信終於抵達地球了;打開一看,怎麼?他的壽命竟然與張三一樣!筆者一個頭兩個大,顯然是不應該學物理—尤其是相對論!請讀者幫幫忙吧!

假設張四離開10年(他的時間)時突然想家,於是緊急剎車,將太空船轉個方向,緊急加速到原來的速度(為了方便,我們可以假設整個過程是「瞬間」),10 年後終於又回到地球,跟雙胞胎張三重新會合,正要擁抱時卻發現張三已經比他老多了!這正是上面愛因斯坦及雷斯尼克所說的結果。

這看似矛盾的結果事實上是很容易理解的:張四在太空中的「緊急剎車、將太空船轉個方向、緊急加速到原來的速度」破壞了兩人運動的對稱性。我們雖然沒有辦法感受到自己是在靜止狀態或者是在等速運動,但我們卻可以知道自己是在加速。所以張四在太空中的急轉彎,不但破壞了兩人運動的對稱性,也應該是造成他們年齡差異的原因。我們可以從兩方面來看為什麼改變速度(加速)造成年齡差異。

從相對論來看,在去程及回程的等速運動時,張四應該一直認為張三比他年輕。但在前面的火車站實驗中,我們發現李教授的火車行駛方向改變會造成「先後次序」的顛倒,因此張四在太空急(「瞬間」)轉彎的過程中會發現張三(「瞬間」)老了許多(不怕數學讀者,可參見附錄二):多得超過了剛提到之等速運動時的年輕數,因此張四在相會時將發現張三比他老!從張三的角度來看,他從未加速,因此認為在運動的張四一直比他年輕!不止如此,他依相對論所算出來的年齡差距,也正是張四依他自己之坐標(包括等速與改速)所算出來的!

-----廣告,請繼續往下閱讀-----

相信某些讀者要問:「老」是生理現象,張四的坐標轉換怎麼會使張三變老呢?火車站實驗中的「先後次序」顛倒,只是李教授的觀點而已,並沒有實質的物理意義,賴教授不是不同意嗎?1905年的相對論沒有回答這個問題,這答案 10 年後才在廣義相對論中出現(詳見愛因斯坦一生中最幸運的靈感-廣義相對論的助產士):加速可以視為是一種重力現象,時間在重力場中跑得比較慢【稱為「重力時間膨脹」(gravitational time dilation)】。

所以張四在太空中急速的減速及加速將造成強大的重力場,使得其(生理)時鐘變得非常慢,因此在這期間老得也非常慢(在黑洞附近的人—如果不被吸進去的話—幾乎可以長生不老)!

太空中急速的減速與加速,將造成強大的重力場,使時間變得非常慢。 圖/GIPHY

長度收縮

特殊相對論還預測一個稱為「長度收縮」(length contraction)的怪現象,謂:一位快跑健將拿著一根棍子沿著棍子方向以速度v飛跑,旁觀人會認為棍子長度變短。這一個怪現象事實上在月台的實驗上已經看到了:要決定兩點之間的距離,我們必須「同時」測兩點的坐標;李教授認為甲的零點比乙的零點早,因此必須「稍等」甲一下才能「同時」記錄甲、乙兩點的坐標,但這一「稍等」,因為甲在往乙方向運動,不是使得測得的距離變短嗎

如果讀者不怕數學,讓我們在這裡用點數學來看「長度收縮」這一怪現象,希望能幫助讀者更進一步了解。

-----廣告,請繼續往下閱讀-----

圖二是旁觀者的坐標,顯示在 t=a 時,棍子的前端進入原點 x=0,然後沿軌跡 x=v(t-a) 繼續前進;棍子的後端則在 t=b 時進入原點,然後沿軌跡 x=v(t-b) 繼續前進。

圖二中的 bc 是棍子後端剛進入原點時,旁觀者的「同時」線,即線上每一點的時間都是 t=b(同步化)。測量棍子的長度必須「同時」觀察其前端及後端的位置,因此他測量得到的棍子長度為 be(他不知道那個時刻棍子前端事實上已經到達 d 點了)!bd 是快跑健將的同時線,其 x 坐標 (xd-xb) 則是 他測量的棍子長度,比 be 長;所以旁觀者說「棍子變短了」。

如果快跑健將的速度不快,則前、後端軌跡將趨近於成垂直,不同運動狀態的「同時」便趨近於相同,我們便又回到我們所熟知的牛頓世界了!

旁觀者測得的棍子長度因快跑健將的速度不同而異(原始長度則是快跑健將所測量道的長度,與其速度無關)。 圖/envatoelements

結論

愛因斯坦1905年的相對論中之「光傳播速率為一與發射體運動狀態無關的定值」假設徹底地毀滅了物理學中「同時」的觀念,因之產生了一些與日常經驗不符的奇怪現象,如「長度收縮」及著名的「雙胞胎悖論」。

-----廣告,請繼續往下閱讀-----

希望本文的解釋不但能讓讀者見怪不怪,甚至發現其實不怪;了解相對論裡所有「矛盾」現象都是因為不同觀察者在「自說自話」造成的:例如在棍子的例子裡,靜止觀察者談論的是他(靜止觀察者)在某個時刻測量得到的長度,而移動觀察者談論的則是他自己(移動觀察者)在另一個瞬間測量的長度。

時間及空間是人類製造出來便利溝通的語言,如果李教授不認為甲地先發射,他沒辦法解釋為什麼賴教授同時看到甲乙兩地發射出來的光(實際經驗到的物理現象);所以「自說自話」原來是為了保持物理定律的不變性(物理定律是用來解釋我們實際經驗到的物理現象)。這些「自說自話」事實上也不是隨便說的,而是靠「洛倫茲轉換」(Lorentz transformation)連接在一起的。

附錄一:「後見之明」輕鬆地推導「洛倫茲(坐標)轉換」公式

K’ 坐標以 + v 速度相對於 K 坐標運動。如果坐標在 t=0 時重合,加上時、空的均勻性(變數沒有二次方):

…………………………………………………………(1)

β 為待解的常數。如果在 t=0 時發射一道光,則光的軌跡為 x=ct;代入上式,得

…………………………………………………………(2)

因為 K’ 坐標及 K 坐標的對稱性:

…………………………………………………………(3)

將 (3) 代入 (2) 解得

…………………………………………………………(4)

從 x = β ( x’ + vt’ ) 解 x’ ,然後代入(1),化簡可得到

…………………………………………………………(5)

公式(1) 、(5), 及(4)就是「洛倫茲(坐標)轉換」公式。長度收縮中之快跑健將棍子的同時線方程式為公式(5) :

附錄二:雙胞胎悖論的數學

假設雙胞胎甲留在地球,雙胞胎乙決定以 v 速度往太空地球 S 旅遊,則甲(x , t)、乙( x’ , t’)兩人的坐標轉換為(為了方便,將光速定為 1,所以 v 應該小於 1 ):

圖三為甲的坐標圖:太空地球 S 的位置為( xs , ts)。依照上面公式轉換,對乙來說,其坐標為( x’s , t’s )。去程時,乙在 S 時的同時線(該線上每一點的時鐘都「同步」) t1s 為:

在到達 S 時,乙瞬間改變方向,其同時線瞬間變為 t2s :

這兩個方程式的時間零點分別為 t0t3 ,因此不能直接用它們來算去程及回程的同時點 t1 及 t2 ;但因為對稱的關係,我們可以將 t1s 延長到 x=2xs 處,用  t’s=β ( t-vx ) 解得:

所以乙的回程坐標轉換一下子讓甲老了

t2 – t1 = v2xs

……舉個實際的例子:如果 v=0.6, xs=6,則 β=1.25,所以對甲來說,乙需要 10(=6/0.6) 年才能到達 S ,也需要 10 年才能回來,因此乙回來時,甲應該已經 20 歲了(為了說明方便,假設他們一出生,乙就到太空旅行)。甲的 S 坐標為(6 , 10),透過坐標轉換,乙的 S 坐標為(0 , 8);所以甲認為乙的時鐘比較慢,只要花 8 年(乙時鐘)的時間就可以到達 S,同樣地也只要花 8 年時間回來,所以乙回來時應該只有 16 歲!

透過乙在 S 時的同時線,可以解得當 x=0 時,t1=6.4。所以對乙來說,他已經 8 歲了,但甲才 6.4 歲,顯然比他年輕(老得慢)!同樣地,在回程時,乙也應該認為他老了 8 歲,但甲才老了 6.4 歲,所以乙回到老家時,乙應該已經 16 歲,但甲才 12.8 歲,比他年輕!

但前面不是說過甲應該已經 20 歲了嗎?矛盾?不!我們忘了乙坐標轉換時的「時差」 :7.2 年!將這「時差」加進去,乙也計算出甲的年齡應該是 20 歲(=6.4+7.2+6.4)!

甲、乙兩個人的結論相同,沒有矛盾!愛因斯坦沒有騙我們!

註:

要決定兩點之間的距離,我們必須「同時」測兩點的坐標;同樣地,要決定兩個事件發生的時差(時間),我們必須在「同點」測兩個事件發生的時刻。相對論不但毀滅了物理學中「同時」的觀念,事實上也摧殘了「同點」的觀念:沒有絕對的空間,「同點」因運動者而異。所以我們也應該可以在類似月台的簡單實驗上尋找到「時間膨脹」的現象(請讀者幫幫忙吧)。

延伸閱讀

愛因斯坦一生中最幸運的靈感-廣義相對論的助產士(科學月刊,2021 年 5 月號)。

-----廣告,請繼續往下閱讀-----
所有討論 5
賴昭正_96
44 篇文章 ・ 58 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。