0

0
0

文字

分享

0
0
0

防震不是只有預警那麼簡單:大地震過後,下一步該怎麼走?

震識:那些你想知道的震事_96
・2018/07/16 ・3509字 ・閱讀時間約 7 分鐘 ・SR值 544 ・八年級
  • 文/馬國鳳、潘昌志(阿樹)

地震可以說是「一瞬間的事」,那一陣強烈的搖晃不過數十秒,卻總帶來令人措手不及的恐慌。位於菲律賓海板塊與歐亞板塊邊界上的臺灣島,板塊運動在你我的腳下地殼不斷累積「能量」,當累積到承受不住時,就會尋找機會釋放出來,於是就發生了地震。

上述概念是地震學者或工作者常用來對大眾說明「地震是什麼」的說法,然而許多人遇到地震學家時,反而更常會問:「那麼何時能預報地震?」只是現在問這個問題似乎還太早了點,雖然預測地震是地震學家的終極目標,但能回答這個問題科學還在發展中,尚未問世。所以我們只能再退回一步的思考:地震是怎麼發生的?又是如何造成災害?

集集地震造成光復國中的校舍倒塌。圖/作者提供

九二一過後,我們可以做些什麼?

民國八十八年的九月二十一日,在接近臺灣島的正中間處,發生了規模7.6的強震。對多數的臺灣人來說,這天是近代地震對人們最深刻烙印,是災民們難以抹滅的傷通,而對一般大眾而言,那一瞬間雖已逐漸塵封到回憶深處,但地震當下的驚恐和對災情的震憾並不會比較少,而對地震研究者而言,地震儀留下的紀錄更成為份外沉重的研究課題。

逝者已矣,重點是活著的人還能做些什麼?以科學角度來看九二一,稍微令人感念的是,臺灣的地震學前輩們的真知灼見,在1990年代推動各種地震觀測站的建設(參見台灣發展地震預警的過往雲煙一文),全臺各地設置了多達九百多部的地震儀,因而留下非常大量又完整的科學資料,這在當時的世界上也是罕見的珍貴資料。

氣象局地震測報中心強震地震觀測網記下集集地震時的沿斷層的地震波形紀錄,數字代表地表振動加速最大值,單位為 cm/s2,這些測站中有多數已超過七級 (400 cm/s2),而  TCU129站更是超過 1g (重力加速度)。圖/作者提供

接著,在後續的研究中,也讓科學家見識到超凡的大自然力量:地震造成車籠埔斷層地表破裂,短短四秒之間,斷層北段滑移了十五公尺之多,也就是說幾乎在一瞬間,地表就抬升了相當於五層樓的高度,可見地震的「力量」之大。

再試想一下「摩擦生熱」的基本道理:這樣快速的滑動,斷層面上的摩擦作用將讓溫度瞬間上升到上百至千度,如此的瞬間高溫,讓斷層帶的物質產生物理及化學變化,進而「潤滑」了斷層面,更加大了滑移量和滑移範圍,斷層在地表破裂的長度也長達85公里。這些研究除了來自於地震波紀錄,還包括了地質與鑽井,在震後數年間我們從這世紀末的地震更進一步推進了地震科學。

九二一集集地震在光復國中被斷層在地表抬升切過的操場,如今已成為九二一地震教育園區的展示區。圖/作者提供

還不能預測地震,不代表科學家對地震完全無能為力,我們還有些事能做,像是前述我們對車籠埔斷層破裂過程的了解,就結合了地震科學、地質科學、地球物理學的基礎資料收集與研究,科學家才能了解斷層的力學機制、發震機制進一步推估斷層錯動的模式(詳見斷層上的短暫瞬間:動與不動之處),並以瞭解地下速度構造、場址效應的特質,了解地震波傳遞時的行為;我們也才會知道地震波至地表後的振動情況。

防震不是只有「預警」那麼簡單

如果只有研究預測地震這條路,那我們就太「浪費」大自然給我們的訊息了。光是從地震波的資訊,我們就足以發展出地震「預警」的系統(詳見這篇這篇),不過,這只能用在地震發生當下的爭取逃生,我們還有更多的事情可做,譬如「地震情境模擬」。

所謂的模擬,當然也需基於科學的根據,現今的研究已知斷層面積、滑移量與地震的規模,有一定的尺度關係(這篇關於「潛移斷層」的介紹,有稍稍提及)。所以,以斷層的幾何資訊,就能估算其可能產生的地震規模,接著再代入許多科學數據與假設(包括從力學條件得到斷層在不同區段的錯動量差異,還有用來模擬地震波傳遞過程的地下速度構造等等),便可得到地震發生時可能搖晃情形與情境。

台灣未來五十年,最大地表加速度值達到0.23g (相對於氣象局震度五級)及0.33g (相對於氣象局震度六級)以上的發生機率。以機率表示等於代表各地遇到該震度搖晃的「風險」。圖/作者提供

「地震預警」目的在於提前告警爭取數秒,而「地震情境模擬」並不是在探討地震會在「何時何地」來襲,而是在地震必然發生的前提下,模擬地震情境以判斷不同地點的危險程度。而知道「地震來的最糟情況」去預先做好準備,對一般大眾而言,其實與平常會做的各種保險機制無異,像是遠離風險較高的斷層帶、選擇耐震建物、準備地震包和逃生計畫等等,在日常即有此思維並做好評估補強做起;多了幾秒預警時間的準備,減少大地震帶來衝擊。

如果把預防準備的層級向上提高,就是企業和政府層級。政府可根據情境模擬的結果推估受損和災防搶救方針,也可協助大眾檢視與提升建物的耐震強度。一般企業也可以分析了解其未來面臨地震時,可能蒙受的損失成本(包含因工廠產能停擺而需承擔的經濟損失),使地震危害及風險得以量化,納入其企業決策之中。

百年來的變化 十餘載的啟示

臺灣近百年傷亡最慘重的地震是1935年的新竹—台中強震,其次就是九二一集集地震,所幸九二一地震的發生時間在凌晨,倒塌最為慘重的中小學校舍並未釀成更重大的傷亡。而我們可以發現,雖然隨著科技和建築技術改進,倒塌的情況會逐漸改善,但隨著社會經濟的發展,人口的密度已與百年前不可同日而語,暴露於地震危害中的生命與財產成倍數般成長。

當人們開始淡忘大地震的威脅時,風險正不斷提高中,至此不禁想提問:下一個大地震,我們準備到哪了?

地震過後,下一步該怎麼走?圖/pixibay

要精準預測地震發生的時間位置,目前還不可能,然而由前段所述的地震預警與情境預估,已有些突破發展和技術整合,接下來我們再談深入一點。臺灣地震模型組織利用地震及地質資料,以機率式地震危害度分析技術,量化未來強地動發生之可能性,提供政府主管機關對重要場址(如:核電廠及學校校舍等)之安全評估。

此外,藉由震源參數拆解分析,科學家可標定造成地震危害的主要震源。根據該震源特性,利用前項所說的地震波模擬技術,考量地震波傳遞過程的物理特性,估算該震源可能造成鄰近或目標地區的震度。政府機關則可根據該地建築物以及人口分布,擬定出因應此地震危害情境之措施,評估各地區之防災設施是否完善(如避難地點、醫院等)。

平時應注意緊急避難路線。圖/pixibay

我們期許當地震來臨時,我們有更完善的準備,正視面對地震可能造成的危害及風險。地震防災工作需要各領域專家共同努力及合作,在科學上挑戰世界性的問題、提出新的理論,同時和世界上其他優秀的地震學家對話,以各國的經驗及資料,一起貢獻人類的地震知識。九二一地震後的十餘載至今,台灣地震學界與世界持續對話,分享經驗及一起面臨挑戰。

科研成果與大眾的距離看似遙遠,然而地震災害本身並無差別待遇,地震研究需要紮實的基礎科學發展,以成就理論知識,有了知識才有更好的防災科技,譬如前述的「情境分析」。後續將與工程及資通科技專業合作,使其能有更有效的防災運用,得以服務人群。地震離我們很近、地震科學當然也離我們不遠,我們期許發揮這些知識,將其帶入科技、走入產業、也走入公部門及企業部門的政策,讓知識發揮更為入世的價值。

本文轉載自震識:那些你想知道的震事,原文為《地震如何致災?科學家如何知災?我們又該如何防災?》,也歡迎追蹤粉絲頁震識:那些你想知道的震事了解更多地震事。





文章難易度
震識:那些你想知道的震事_96
38 篇文章 ・ 6 位粉絲
《震識:那些你想知道的震事》由中央大學馬國鳳教授與科普作家潘昌志(阿樹)共同成立的地震知識部落格。我們希望透過淺顯易懂的文字,讓地震知識走入日常生活中,同時也會藉由分享各種地震的歷史或生活故事,讓地震知識也充滿人文的溫度。


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
952 篇文章 ・ 245 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策