0

0
0

文字

分享

0
0
0

來迷路吧!放下 Google Map,尋找一場美麗的錯誤──《偶然的科學》

PanSci_96
・2018/07/10 ・6208字 ・閱讀時間約 12 分鐘 ・SR值 495 ・六年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

來迷路吧!尋找美麗的錯誤

在本書的尾聲中我們該向大家提出一個請求請不要把生活裡的所有不確定性都予以消除GPS到書籍推薦科技正在讓我們周遭的一切變得精確又可預測但這不見得是好事有時候我們的幸福有可能因偶然而生而這是凱薩琳德蘭格 (Catherine de Lange) 發現的道理

放下手上的 Google Map,迷路的過程或許會發現什麼新鮮事。圖/pixibay

當我沿著繁忙的高速公路,緊跟著我跟蹤的目標而行時,我確實不容易被發現。但是,當我的目標把車開往住宅區的街道時,我就開始擔心了。我稍微放慢速度,讓自己慢下來,和這個女人保持更安全的距離,並且繼續跟蹤她。

不久之後,她轉了一個彎,穿過一座又大又漂亮的公園。儘管這裡距離我家只有幾分鐘的路程,但我很驚訝地發現自己居然從沒到過這裡。當我重新來到街道的另一邊時,那個女人不見了,而我卻迷路了。我拿出我的智慧型手機,查看衛星定位的路線。「右轉到加斯科尼大道,」它說,「然後找一個看起來很孤單的人,上前要求和他們並肩而行一會兒。」我們再來一次吧。

跟蹤隨機的陌生人,看看我最後會抵達哪個終點,這樣的事不是我平常在週六下午會做的事。但是,人生也許就該如此。科技興起是為了簡化我們的生活,從衛星定位設備到推薦服務皆然,所以我們現在已經很少會需要偶然了。一個才剛成立的研究機構表示,就人類的幸福來說,人們嚴重低估偶然的重要性。有些應用程式叫做「偶然產生器」,鼓勵我們把一些古怪念頭帶回生活之中,藉此反抗超級效率的趨勢。這樣的應用程式,能幫助我們克服人類對不確定性固有的恐懼嗎?

網路讓我們全都被優化了!

這些新應用程式之所以會出現,反映出人們更早之前對現代效率的暴政所提出的抗議。19世紀中葉,法國革命帶來的秩序,引發一種被稱為「漫遊」 (flânerie) 的文化現象。巴黎人不滿意現代城市如此緊迫和疏離,希望能在城市生活中鼓勵一些漫無目的的愉悅遊蕩。一個世紀之後,隨著都市計畫者使用制式框架打造城市,城市變得更加可以預測,地圖也變得無所不在。於是,藝術家和活動家再次抵制有序的實用主義。這一次,他們刻意用地圖隨意漫遊。例如一群被稱為激流派的藝術家,創作了「踩在城市每一個水坑」的有趣指引。

早期的網際網路,並不是不滿的漫遊者要反抗的目標。當網路在1990年代興起時,主要是為了讓人們和不認識的人分享他們喜歡的東西,那是我們用來和通常不會相遇的人交往的方式;換句話說,那是一個促成巧合的良好機會。

然後,事情開始有了改變。「從20世紀到21世紀,人們很強調優化。」一位設計偶然性應用程式的藝術家馬克.謝潑德 (Mark Shepard) 說。「我們現在認為,讓事情變得更有效率,是科技該為我們做的事。」這種想法把機器當作人類謙遜的僕人,讓我們的生活可以過得更輕鬆。

我們活在「優化」之中,失去了許多可能性。圖/pixibay

隨著推薦系統的興起,演算法利用你購買、喜歡和瀏覽的歷史,還有別人的紀錄,計算出你之後可能有興趣購買哪些產品。

現在,每個智慧型手機都有衛星定位,引導你抵達任何一個目的地。從超市中選擇買什麼,到找到你的方向而不迷路⋯⋯,你口袋裡的設備可以保證你再也不用依賴偶然。我們的生活幾乎完全被優化了。

偶然生產器,用錯誤的路線帶給你驚喜!

這些偶然性應用程式來得正巧,正好回應了都市漫遊的精神,刻意讓你失去方向。許多人直接批評會對他們耍詐的推薦系統。「這些推薦系統都會給你更安全的選擇,結果卻犧牲了你到更有趣地方的機會。」英國林肯大學計算機科學家班.柯爾曼 (Ben Kirman) 說,他專門研究社會遊戲。

這就是為什麼柯爾曼創建了偶然生產器「迷路機器人」(Getlostbot)。這個應用程式,鼓勵使用者突破舊有做法,嘗試到不同的地方去。只要下載這個程式,它會默默監控你在四方廣場 (Foursquare) 的打卡紀錄。當你的行蹤太能被預測時—例如,你老是在週五晚上去同一間酒吧—那麼這個偶然產生器,就會發送一個你從未嘗試過的路線給你。

未知是一種驚喜,試著尋找偶然吧!圖/pixibay

過去兩年中,許多類似的應用程式和服務悄然激增。例如,像 Highlight 這個應用程式,會連接到你附近的陌生人;另一個叫做 Graze 的線上服務,會帶給你驚喜的食物。

漫遊者和藝術家所實踐的偶然性,看起來可能非常異想天開,但最近一份研究幸福的結果顯示,他們的做法大幅降低了人性中的深刻衝突。推薦系統之所以如此吸引人,部分原因在於在大多數時候,消除不確定性是個很好的想法。維吉尼亞大學的心理學家提姆.威爾遜 (Tim Wilson) 說,「人類一直努力讓世界變得有意義。」如果你瞭解了一些事,而且如果它們是好東西的話,你就會想辦法讓它們再度發生;抑或是,如果它們是壞東西的話,你要能防止它們再度發生。

「不確定性」為人們帶來幸福感

所以,當你知道某個糟糕的結果—無論那是一齣很差勁的電影,還是徹底迷路—可能發生時,會讓你最不開心的就是不確定性。其實迷路或買到不喜歡的東西,並不會對我們的人生構成威脅,但我們也許可以在更嚴重的情境下,理解人們為什麼不願意面對不確定性。例如,有個研究曾針對做過亨廷頓舞蹈症基因檢測的人進行,而這群人正等待檢驗結果出來。無論檢驗結果是陽性還是陰性,所有得知檢測結果的人的幸福感都提升了;但是無法確定檢驗結果的人狀況就大相逕庭了。一年之後,這群人的沮喪程度,比起得知自己必須終生與這種性命攸關又讓人病懨懨疾病共處的人更甚。

不確定性會帶來幸福感。圖/pixibay

為什麼會這樣呢?許多研究證實,當意想不到的事件出現,人們的反應會更情緒化。這個機制也是一樣,無論它放大的只是一個讓人稍微不快的事件,或是一個非常嚴重的事件。無論事情大小,我們都會花更長時間去思考它,試圖找出其中的解釋。一旦我們提出了一個理由,我們就會接受它,把它融入日常世界中。

那麼,根除生活中的不確定性,似乎是一個很好的幸福策略。

不幸的是,這種看法並非全貌。大多數針對不確定性的研究,往往只側重消極的一面。在過去十年中,心理學家已開始研究不確定性帶來的美好體驗,他們的發現正成為強而有力的案例:讓不確定性強化壞狀況的機制,可能也是帶來幸福的關鍵因素。

威爾遜有個理論說,當我們在面對愉快的事件時,保持不確定性會比較好。為了測試這想法,他設計了一系列的實驗。在一項研究中,參與者得知他們有機會參加某個比賽,並要從中選出他們最想贏得的兩個獎項。後來研究人員告訴所有人他們贏了,其中一群人馬上就會得到他們最喜歡的獎品,然而另一群人在研究結束之前,都不會知道將得到兩種獎品中的哪一種。威爾遜發現,那些被迫要花時間琢磨自己可能得到哪種獎品的人,比起那些馬上得到滿足的人,體驗到更長時間的美好心情。

當我們在面對愉快的事件時,保持不確定性會比較好。圖/pixibay

這群人也花了更長時間觀賞可能得到的獎品圖片。因此,這實驗支持了一個理論的說法,那就是當事情尚不明朗時,人們會花更多時間專注在可能的結果上。對於快樂的結果來說,這放大了人們可以從中得到的樂趣。

所以,面對一起曖昧不明的愉快事件,人們被迫把注意力放在它身上更久,從而延長了情緒熱度;這造就了心理學家所謂的「愉悅的悖論」現象:我們想要瞭解世界,但這種瞭解會剝奪我們從意外事件中得到的樂趣。

來繞路吧!別顧著看GPS

這些研究只不過是整個研究的一小部分,卻顯示了透過不確定性的力量,我們可以得到多少樂趣,並且在我們生活中引入偶然因素的技術,可以提升我們日常生活的心情。這就是為什麼我會在某個下雨天的午後,在北倫敦北部跟蹤一個陌生人。我正在測試偶然產生器 (Serendipitor),這個衛星導航程式可以擴大你行進路徑的範圍。它會給你小小的建議,讓你稍微改變方向、繞路或是走其他路。

這種應用程式的設計師,試圖說服人們跨越一條線。他們甘冒犯眾怒危險,因為這程式可能會讓某些人覺得荒謬。「偶然產生器是種諷刺的說法:當我們生活在一個需要下載應用程式才能得到偶然性的社會裡,這代表什麼?」設計這個應用程式的設計師謝潑德說。然而,偶然性產生器和簡單的偶然性不同,這個應用程式讓你可以設定權重,確保出來的結果是好的。例如輕輕擦一下,就可以剔除你真的很討厭的食物;此外,就算你連到可靠的谷歌地圖,偶然性產生器也可以讓你迷路。

換條路走,前方或許會有不一樣的世界等著你。圖/pixibay

我計畫好午餐要吃什麼之後,便用這個應用程式查詢路線。走路到餐廳只要六分鐘,我的手機也顯示了通往主要幹道的可預測路線。一旦我出發,偶然性產生器就設定了我的第一個挑戰:挑一個人,跟蹤他走兩個街口(謝潑德說他從激流藝術家那裡,借來許多另類指引)。我在路上挑了一個拖著行李箱的女人,跟在她後面,不久後她橫越馬路,帶我來到我從不知道的公園。現在,這程式的優點漸漸變得清晰,我忍不住在想,如果我挑到其他人,我對這個地方就會一無所知了。

你願意使用偶然生產器嗎?

我不是唯一一個會被「這樣的事也許永遠不會發生」這想法所迷惑的人。2008年,哈佛大學心理學家丹尼爾.吉伯特 (Daniel Gilbert) 招募了一群至少已擁有五年幸福感情的人,他把這群人分組,要求其中一半的人寫下他們與伴侶相遇的故事,其他人則描述可能無法與伴侶相遇的故事。測試結束後,那些描述自己沒遇到伴侶的人,比起描述實際愛情故事的人,對這段感情的滿足感更大。

在電影《風雲人物》 (It’s A Wonderful Life) 中,天使讓主角喬治.貝禮看到這個世界如果少了他會變成如何的面貌,威爾森把這現象稱為「喬治貝禮效應」 (George Bailey effect) 。天使說,如果喬治沒有出生,一切好事也許永遠不會發生。是喬治把活力注入已喪失新奇光芒的生活之中。

美國經典電影《風雲人物》海報。圖/wikipedia

在這次偶然的遭遇中,我除了到處亂走之外,做些隨機的事情也讓我興奮莫名。跟著女人走到公園後,我花了一段時間才鼓起勇氣,問某個路人我是否可以拍一張他的照片。不過,這卻給了我一種成就感,雖然這樣做真的很蠢。然而我不禁想到,要不是為了執行任務而去做這些事,我平日真有可能會使用這種應用程式嗎?

事實是,人們一直低估不確定性的正面影響。沒有人比柯爾曼更瞭解這一點。他發現,儘管人們認為偶然生產器的概念很好,但當螢幕上真的給出建議,要求人們嘗試新東西時,大家都不太願意這樣做;換句話說,人們喜歡這個應用程式,會下載它,但不會使用它。

如果拒絕不確定性還不足以構成問題,那麼另一個妨礙人們接納偶然性的障礙,則是商業化—因為讓人迷路的應用程式賺不了錢。

打破同溫層吧!擁抱偶然性

但這並不表示我們不需要這樣的程式。根據麻州劍橋微軟研究部門的達娜.博依德 (Danah Boyd) 的說法,我們越來越依賴推薦系統,這表示人們最後會活在同質性極高的「同溫層」之中,讓我們的視野變得越發狹隘。她總結了目前線上偶然性生產器技術的方法,它混合了人們對未知的恐懼,以及待在安全同溫層的壓力。

因此博依德認為,這些技術永遠不會在主流中占據主導地位,但卻反映出一種有用的對抗思維。她說,「和那些與我們的世界觀迥異的人往來,是件非常重要的事,但我們已經無法理解這樣的事了。」

她發現,人們的態度大約在2005年出現轉變,媒體注意到網路上嗜血分子的出現,讓人們對「周遭的陌生人產生道德恐慌」。大約在同一時間,我們看到社群網路興起,人們用網路與熟人聯繫,而不是與不認識的人互通往來。

網路資訊讓人們對陌生人產生不信任感。圖/pixibay

受到限制的不僅僅是我們的網路生活。「最重要是讓你的孩子擁抱偶然性,」博伊德說,「以前,這說的是跳上你的單車,說走就走,而如今我們已經失去這種能力了。」這些推薦應用程式、衛星導航和其他安全技術彼此相互連結,是否會改變人們對風險的容忍度?在過去幾年中,華盛頓特區的皮尤研究中心發現,美國學開車的青少年越來越少了,腳踏車的銷售量也急劇下滑。就算其他州有比較好的工作,年輕人也不太願意搬到那些地方去。

所以,刻意製造的偶然性也許仍有發展的希望,某些大公司已開始在玩這個想法了。根據報導,蘋果公司在2008年申請了一個專利,這個專利是說:如果兩台機器突然靠得很近,它們就會自動連線。比方說,你會發現自己正和某個朋友在同一個區域,而朋友卻沒有意識到這點。谷歌的定位應用程式也正在做同樣的事。

我不期望哪一天谷歌地圖會從一開始,就指引我跟著某個陌生人走,但該公司是否可能運用這種技術,在目前地圖上「最快」和「最短」的選項之外,加入「最具冒險性」的選項?

畢竟,在我們每天使用的技術裡面多加入一些驚喜,我們就有可能再次注意到我們因不斷追求效率而錯過的事物。「這是目前最暢銷書籍的主要故事情節,」博伊德說,「故事中的人物會遇到一些隨機的事情,這些事情非常神奇,於是他們便出發前往未知之地。我們幻想著這些東西,但我們該如何讓幻想回到我們的現實中呢?」

 

 

本文選自泛科學2018年7月選書《偶然的科學:好運、隨機及機率背後的秘密》,八旗文化。

文章難易度
PanSci_96
1015 篇文章 ・ 1238 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!免疫功能低下病患防疫新解方—長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2882字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022 年美、法、英、澳及歐盟等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示該藥品針對 Omicron、BA.4、BA.5 等變異株具療效。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
帕克斯洛維德
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度

0

4
3

文字

分享

0
4
3
讓你一看就懂的無人機原理!——《世界第一簡單無人機》
世茂出版_96
・2022/03/23 ・2311字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

為什麼無人機飛得起來?

不管是載人的直升機,還是無人機,飛起來的原因都相同。轉子可帶動螺旋槳旋轉,使螺旋槳上下的氣壓產生差異。當螺旋槳上方的氣壓比下方的氣壓低,就會有一股拉力將螺旋槳往上拉(升力,將物體垂直向上拉升的力量),如此一來便能讓機體上升。

再來,同時使用多個螺旋槳,並分別調整各螺旋槳的轉速,就可以讓無人機自由上升 / 下降、前進 / 後退、左 / 右移動。事實上,仔細觀察飛行中的無人機螺旋槳,會發現相鄰的螺旋槳旋轉方向剛好相反。

想讓無人機前進時,會讓機體前方下傾。左右移動時也一樣,會讓前進方向的機體部份下傾。只要讓其中一側的螺旋槳轉速下降,就可以讓那一側的機體下傾,往那個方向移動。如果要讓四軸無人機旋轉,則需讓其中一條對角線上的螺旋槳轉速降低。

無人機的運動機制

無人機需靠轉子(馬達)轉動螺旋槳才能移動。大疆 Phantom 系列的多軸無人機所搭載的馬達,是所謂的無刷馬達(brushless motor)。

大疆「精靈4」民用無人機。圖/維基百科

無刷馬達顧名思義,就是沒有電刷的馬達。相對的,學校自然科課程中提到的電刷馬達則是需要讓電刷與整流子持續摩擦旋轉,使用時會逐漸磨損。無刷馬達則是透過特殊電路驅動其旋轉,可以減輕維護的負擔。而且,無刷馬達可以透過名為 Hall IC 的磁場感應器持續監測馬達狀態,故可穩定控制其速度,當發生馬達負荷過重、線路接觸不良、斷線等異常狀況,可以馬上停止馬達運作,並發出警告訊號,以提高無人機的安全性。其他還有速度可控範圍廣、均勻扭矩(flat torque)、高功率等優點。

另外,將訊號送至轉子的零件叫做 ESC(Electric Speed Controller)。也可以說,ESC 就是控制轉子旋轉速度的零件。原則上,無人機搭載的 ESC 數量會與轉子數量相同。

ESC 的輸出端有三條電線,電流可控制轉子的旋轉。隨著轉子位置的不同,ESC 會輸出不同方向、不同大小的電流,使轉子能夠持續旋轉。也就是說,無刷馬達中的 ESC,扮演著一般馬達中整流子及電刷的角色。

相對的,ESC 的輸入端也有三條電線,分別是連接到電源正負極的電源線,以及從 FC(Flight Controller)接收訊號的訊號線。其中,FC 會蒐集來自陀螺儀感應器、加速度感應器、氣壓感應器、超音波感應器、磁場方位感應器、GPS 等裝置的資訊,以控制機體的行動。

A generic ESC module rated at 35 amperes with an integrated eliminator circuit。圖/維基百科

無人機的感應器

  • 陀螺儀感應器與加速度感應器

陀螺儀感應器可以計算機體傾斜的角度,是穩定機體時不可或缺的感應器。相對的,與陀螺儀感應器十分相似的加速度感應器,則用於檢測速度。陀螺儀感應器與加速度感應器的組合,可以同時計算「傾斜狀況」與「速度」兩者的變化量,並控制機體往傾斜方向的反方向拉回,保持機體平衡,懸停於空中。簡單來說,陀螺儀感應器與加速度感應器就是能夠保持無人機姿態平衡的重點感應器。

  • 氣壓感應器與超音波感應器

高度越高時,氣壓感應器會測到越低的氣壓,故無人機可參考氣壓數字,以維持在特定高度。不過畢竟這只能用來偵測氣壓,要是遇到陣風或其他原因造成的氣壓變化,就有可能會失去功能。

超音波感應器可以利用超音波的回聲來感應自身高度。在無人機起飛或降落時,如果位於地表附近的無人機沒辦法透過氣壓感應器蒐集到足夠的高度資訊,就會用到超音波感應器。在高空使用氣壓感應器,在地表附近使用超音波感應器,兩種感應器的組合搭配,便可讓無人機在每個高度區間都能維持一定高度。

  • 磁場方位感應器與 IMU

磁場方位感應器有時也直接稱做羅盤,可感應地球的磁場(地磁),藉此瞭解無人機目前朝向東西南北哪個方向。不過,地磁的北邊(磁北)與地圖的北邊有一定差異,即磁偏角。而且隨著時間與地點的不同,磁偏角也不大一樣。舉例來說,札幌的磁北比地圖北邊往西偏了 9°,那霸卻只偏了 5°(參考自日本國土地理院網站)。因此,若換一個地方飛無人機,就需進行「羅盤校正」,重新確認磁場感應器所指示的北方,與實際北方間的差異。

  • IMU

GPS 是全球衛星導航系統(GNSS:Global Navigation Satellite System)的一種,是美國的衛星系統。就像汽車的導航系統與智慧型手機的位置資訊服務一樣,無人機可接收 GPS 的電波,藉此判斷自身所在位置,並設定好飛行路線的經緯度自動飛行,或是可以懸停在某個固定位置。這就是所謂的「衛星定位系統」,用於戶外飛行的無人機多會裝設相關的電波收訊器。不過,就像汽車在進入隧道後,導航系統會失效一樣,無人機使用 GPS 時也有可能會突然收不到訊號。因此,為了維持無人機的安全飛航,操控者需隨時注意 GPS 電波的接收狀況。

另外,包括 Phantom 在內的某些多軸無人機,不僅會接收 GPS 訊號,也會同時接收俄羅斯衛星系統 GLONASS 的訊號,偵測機體本身的位置。

這些控制機體姿態的感應器通稱為 IMU(慣性測量單元:Inertial Measurement Unit)。

當出現「IMU 錯誤訊息」「機體不穩定」「羅盤方向不對」「穩定器傾斜」等狀況,就需進行「IMU 校正」。請養成攝影前以及在他處飛行前,一定要進行 IMU 校正的習慣。

——本文摘自《世界第一簡單無人機》,2021 年 9 月,世茂出版
世茂出版_96
1 篇文章 ・ 1 位粉絲
旗下有三家出版公司,分別是世茂出版有限公司、世潮出版有限公司及智富出版有限公司。出版品以養生保健、銷售管理、親子幼教、簡易圖解科學、芳香精油、寵物教養、心理勵志、NLP等類為主。

1

4
3

文字

分享

1
4
3
解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?
科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

所有討論 1
科技大觀園_96
82 篇文章 ・ 1109 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。