Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

布拉格父子與 X光繞射 │ 科學史上的今天:07/02

張瑞棋_96
・2015/07/02 ・1124字 ・閱讀時間約 2 分鐘 ・SR值 537 ・八年級

科學的進展就如牛頓所說的「站在巨人的肩膀上」,少不了前人的經驗累積。布拉格父子在 X光繞射的發現與應用上扮演的傳承角色就是典型的代表,而且他們人生道路上的許多交會也頗耐人尋味。

起點當然是今天生日的老布拉格(William Henry Bragg, 1862-1942)。他於 1885 年自英國三一學院以優異的成績畢業後即獲聘至澳洲阿德雷得大學(University of Adelaide),講授數學與實驗物理。數學是他的專長,而他雖然上過 J. J. 湯姆森一年的物理課,卻未深入研究,另一方面,學校的實驗器材也不足,在這遠離歐洲的邊陲地帶,他只能硬著頭皮一邊自學物理,一邊到廠商那兒當學做儀器。因此可以想見,當拉塞福於 1895 年從紐西蘭要前往英國跟 J. J. 湯姆森做研究,途經澳洲來拜訪老布拉格後,兩人就此成為世交。

1896 年,5 歲的小布拉格(William Lawrence Bragg, 1890-1971)跌傷骨折,老布拉格想起不久前侖琴發現的 X射線,於是動手打造 X射線管,幫兒子照 X光。這是他們兩人與 X光的初次相遇。後來小布拉格進入阿德雷得大學就讀,自然也成了老爸的學生。他畢業後,老布拉格獲聘至英國里茲大學任教,於是舉家於 1909 年遷回英國,小布拉格進入老爸的母校三一學院,而且指導教授又是 J. J. 湯姆森。

當時仍不清楚 X射線的本質是什麼,直到 1912 年夏天,德國物理學家勞厄(Max von Laue)發現 X光穿過晶體會產生繞射現象(就像水波或光波因干涉作用而產生明暗相間的條紋),才確定 X射線其實就是一種電磁波。原本就一直在研究 X射線的老布拉格得知後,趕忙把兒子找來一起做實驗,小布拉格很快在當年十一月就發表「布拉格定律」,不但給出解釋 X光繞射現象的模型,還可以根據 X射線的波長、角度,推算出晶體的晶格間距,因而得知晶體的結構。老布拉格也沒閒著,他在第二年發明了 X射線光譜儀,提供實際可行的測量工具。

-----廣告,請繼續往下閱讀-----

1914 年,勞厄先獲得諾貝爾物理獎,接著第二年,由布拉格父子共同獲頒諾貝爾物理獎,創下史上唯一親子檔一起獲獎的紀錄;而小布拉格年僅 25 歲就獲獎,至今仍是諾貝爾科學獎項中最年輕的紀錄保持人。

拉塞福於 1937 年過世後,小布拉格接替他擔任卡文迪許實驗室主任直到 1953 年。華生與克里克正是在他任內來卡文迪許實驗室進行研究,而於 1953 年解開 DNA 的雙螺旋結構;成為破解關鍵的「51 號相片」也是羅莎琳 · 弗蘭克林(Rosalind Franklin)以 X光繞射原理攝得的。

布拉格父子兩人的一生就像雙螺旋,以當代重要的科學家為鏈結,彼此互繞;也像 DNA般傳遞了 X光繞射的技術,為科學的進展提供了重要的助力。回顧當時科學家們的交會,饒富趣味;喔,後來小布拉格的女兒還與 J. J. 湯姆森的孫子結為連理呢。

 

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1030 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
缺乏火燒痕跡,也能判斷遠古人類已知用火?
寒波_96
・2023/01/11 ・3336字 ・閱讀時間約 6 分鐘

人類最早在什麼時候用火?這個問題非常難以回答。經過很久很久以後,火燒的痕跡不見得還會留下,分辨天然起火或人為生火也不容易。2022 年發表的兩篇論文採用不同分析辦法,判斷約 80 萬年前的以色列人已知用火。

🔥沒有痕跡,也能得知曾經炙熱

常理想來,物品被火燒過的痕跡應該很明顯。但是考古學、古人類學研究的對象距今幾千年起跳,甚至超過一百萬年,那麼久以前的火燒如今還能被分辨嗎?最近問世的兩項研究,順利突破此一難題。

一項研究採用的方法是「拉曼光譜」(Raman spectroscopy)。最最最基礎的原理是,材料被火高溫加熱過後,內部分子層級的排列會發生改變,即使外觀完全沒有變化,也有機會透過拉曼光譜分辨。

拉曼光譜考察的材料來自以色列的 Evron 採石場遺址,這兒出土一批石器與動物骨頭,估計年代為距今 80 到 100 萬年前。光看外觀,毫無被火燒過的跡象,但是分析後得知,有些燧石製作的石器曾經被加熱到超過 400 度,遺址中其他石頭卻沒有。動物骨頭方面,有一件象牙被加熱過。

-----廣告,請繼續往下閱讀-----

遺址內沒有或有被火燒過的樣本,顏色、大小、形狀都沒有任何差異。按照以前的分析方法,我們會誤以為該群古早人不曾與火打過交道,這兒拉曼光譜的價值顯而易見。

光看石頭外觀,當年是否被火燒過,完全沒有差異。圖/參考資料 1

這篇論文的作者認為,以色列距今 80 到 100 萬年前的古早人已經懂得用火,他們有能力控制火源,長期小規模燃燒。更重要的是,這項研究證實,即使遺址乍看缺乏用火的痕跡,也可能只是舊的分析辦法看不出來,實際上用火未必那麼罕見。

🔥已知用火,不過做什麼用?

然而,當時的人類真的已經有意識控火,也就是已知用火嗎?光看這項研究的證據,其實有些疑慮。用火有目的,遺址環境是開放的空地,生火可能有煮食、取暖、威嚇掠食者等意圖,最容易判斷的應該是煮食。

被人類放在火上燒的動物性食物,骨頭應該也被加熱過,可是這項研究分析的動物骨頭卻只有一件象牙被火燒過,而象牙並非食物。除非是被加熱的動物骨頭沒有保留至今,否則實在難以想像,已知用火的古人類不會順便烹飪。

-----廣告,請繼續往下閱讀-----

也許有讀者好奇,石頭不能吃,石器為什麼會被火燒呢?火是能改變物質狀態的能量,數萬年前的人類,有一種用火加熱修飾石器的技術;但是這種製作石器的手法相當先進,超過 80 萬年的古早人應該還沒這麼機智。更有可能是用過丟掉的石器(和象牙),在火堆旁順便被燒到,而非有意為之。

光是 Evron 採石場遺址的紀錄,天然起火也有機會產生一樣的結果。那個年代的古早人真的已知用火嗎?所幸幾個月後發表的另一篇論文打消我的疑慮,因為這項研究找到煮食的證據!

Evron 採石場遺址。圖/參考資料 3

🔥水深火熱的鯉魚

另一篇論文的分析方法是「X光繞射」(X-ray powder diffraction,簡稱 XRD),一如拉曼光譜,它能探索加熱過後物體內部的晶格變化,估計曾經升溫到幾度。

考察材料來自以色列的 Gesher Benot Ya’aqov(簡稱 GBY)遺址,這兒古時候是 Hula 湖的湖畔,有不少古代生態的記錄,出土阿舍利石器等人造物,也證實古人類曾在此生活。

-----廣告,請繼續往下閱讀-----

GBY 遺址距今 78 萬年的地層中,出土許多魚的骨頭,超過 4.3 萬件,約有 4 萬件可以歸類,大部分屬於鯉科(carp,學名 Cyprinidae)、塘虱(catfish,學名 Clariidae)、慈鯛科(Tilapiini,學名 Cichlidae),都是淡水魚。

死魚骨頭不見得是人為造成,也可能是自然死亡沉積所致。另一處 Kinneret 古湖遺址也出土很多魚骨,兩處的化石組成卻截然不同。Kinneret 超過 99% 是魚骨,GBY 遺址則有超過 95% 是咽頭齒(pharyngeal teeth)

GBY 遺址出土的魚類遺骸,不只部位和天然遺存不一樣,也大量出現 2 種鯉魚:Luciobarbus longiceps 以及 Carasobarbus canis,都是口味適合人類食用的款式。由此推論,至少一些魚牙化石來自人類吃剩的大餐。

研究者先用現代魚牙測試,紀錄不同溫度燒過後,珐瑯質的晶格改變。接著再分析化石牙齒,對照估計化石當年經歷過多高的溫度。

-----廣告,請繼續往下閱讀-----

結果判斷有些魚牙曾經被火燒過,多數未滿 500 度;這差不多就是露天生火的正常溫度,也足以將魚煮熟。由此推論,78 萬年前的以色列人或許已經配備火塘,會捕魚再煮熟來吃。

火烤就是美味?距今 78 萬年前的 Hula 湖畔,想像圖。圖/參考資料 5

🔥認識人類用火歷史的新方向

和稍早問世的論文一同考慮,僅管 78 萬年前的火烤魚稍遲一些,卻強烈佐證早於 80 萬年前的以色列人已知用火,因為用火煮魚顯然是有意識的控火行為,假設同一地區更早幾萬年的人群也具備類似技能,十分合理。最早生火煮食的年代,想來不只 78 萬年。

如今智人獨存,過往「人類」則有許多成員,距今 78 到 100 萬年前,已知用火的以色列古早人是什麼人呢?這題缺乏直接證據。可能是直立人,也可能是很初期的海德堡人(或波多人)。直立人起源於 200 萬年前的非洲,後來分佈廣泛又十分多變,海德堡人算是直立人的衍生型號;如果真是直立人已知用火,那麼可謂是機智的直立人。

何時已知用火依然是不容易回答的問題,根據現有資訊,距今 40 萬年前過後用火變得普及,距離遙遠的許多遺址,相對短期內出現用火的紀錄,有學者懷疑涉及文化與知識的傳播。

-----廣告,請繼續往下閱讀-----

然而,新研究告訴我們,生火不見得會留下痕跡,也許早於 40 萬年前已有不少地方的人懂得用火,可是缺乏紀錄。還有可能 40 萬年內使用火源的人類,比已知還要更多。不論如何,2022 年發表的兩篇論文,預示了新的探討方向。

延伸閱讀

參考資料

  1. Stepka, Z., Azuri, I., Horwitz, L. K., Chazan, M., & Natalio, F. (2022). Hidden signatures of early fire at Evron Quarry (1.0 to 0.8 Mya). Proceedings of the National Academy of Sciences, 119(25), e2123439119.
  2. Evidence of fire use at ancient campsite in Israel
  3. Artificial intelligence may have unearthed one of the world’s oldest campfires
  4. Zohar, I., Alperson-Afil, N., Goren-Inbar, N., Prévost, M., Tütken, T., Sisma-Ventura, G., … & Najorka, J. (2022). Evidence for the cooking of fish 780,000 years ago at Gesher Benot Ya’aqov, Israel. Nature Ecology & Evolution, 1-13.
  5. Oldest evidence of the controlled use of fire to cook food
  6. MacDonald, K., Scherjon, F., van Veen, E., Vaesen, K., & Roebroeks, W. (2021). Middle Pleistocene fire use: The first signal of widespread cultural diffusion in human evolution. Proceedings of the National Academy of Sciences, 118(31), e2101108118.
  7. Widespread cultural diffusion of knowledge started 400 thousand years ago

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1093 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

2

10
2

文字

分享

2
10
2
2021 諾貝爾物理獎得主真鍋淑郎——地表模型開山始祖,研究地表模式都要引用他的論文
Y.-S. Lu
・2021/10/14 ・2990字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者|盧彥森,目前任職於 德國于利希研究中心 能源與氣候研究所

第一個地表模型的開發者——真鍋淑郎

在大氣科學領域中,有一部份專業領域統稱為「氣象模擬」,其中,有一門名為「地表模式」的領域,是專門算地表上各種物理、化學、生物作用的行為。

在做這些模擬的研究者中,有個很有名的日本名字,叫做 Manabe,他的論文會一直出現在大家眼前,也就是(只有我們在乎的)《 Manabe 1969, CLIMATE AND THE OCEAN CIRCULATION I : THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE 》[1]最近因為大量的報導,我才知道原來他名字的漢字是——真鍋淑郎,也就是第一個地表模型的開發者,而在 2021 年時,他拿下了諾貝爾獎。

真鍋淑郎,2021年諾貝爾物理學獎得主之一。圖/維基百科

地表模式(Land Surface Model)在大氣模擬中有舉足輕重的地位,可以算地面是怎麼跟大氣作反應的,像是降水是怎麼被樹冠層截流、土壤水是怎麼變成地表逕流跟地下水、水是怎麼靠蒸散發回到大氣中;還有太陽光怎麼被地面或葉面吸收、能量怎麼被蒸散發作用給吸收、地面上的溫度增加或減少了多少,還有太陽輻射是有多少返回大氣層。

而真鍋淑郎的地表模式,則涵蓋了一大部份的物理反應,供美國國家海洋暨大氣總署(NOAA)的 Geophysical Fluid Dynamics Laboratory 的全球大氣模型使用。

-----廣告,請繼續往下閱讀-----
Geophysical Fluid Dynamics Laboratory 圖/Geophysical Fluid Dynamics Laboratory

不過學界是殘酷的。在那個電腦比房子貴的年代(房價在 1960 年的中位數約為$11,900,CNBC報導),真鍋順便背了個學界的鍋,像是:你的模型是不夠真實的、你的土壤濕度估算不夠物理……等因為電腦計算跟理論發展還不夠成熟,所以尚未發展的物理與計算方法。

後來的論文也會稱真鍋的地表模式是水桶模型(因為其計算土壤濕度的方法宛如水桶一樣,滿了就去除,而非經土壤中水流方法流走的)。但無論如何,第一個地表模型,基本上就是真鍋與他在普林斯頓的好夥伴們發展出來的。因此,真鍋的地表模型也在後來的論文中,尊稱為第一代的地表模式,建立起祖師爺等級的封號(Sellers et al., 1997)。

水桶模型後,百家爭鳴的地表模式大戰

雖然第一代的地表模式,土壤當做水桶,地上也沒有植物,更不要說可以進行光合作用或是碳排放來研究二氧化碳是怎麼搞壞我們的人生,但也讓後續的第二代地表模型有了出發點。

1980年後,在個人電腦逐漸普及後,地表模式也開始百家爭鳴,其中真鍋的身影也就只存在各家論文的引用中了。後來再出現時,則是在地表模式大戰——PILPS(Project for the Intercomparison of Land-surface Parametrization Schemes)[2]。這個計畫中,以水桶模型這個稱號出現。基本上始於 1995 年的 PILPS 計畫,就是利用荷蘭的 Cabauw 量測站測到的氣象狀況,來驗證各家第二代的地表模式中,誰才是最強的。

荷蘭 Cabauw 村莊。圖/維基百科

當然結果就是,沒有誰家最強。

更重要的是,雖然地表模式都比真鍋的模型更複雜了一點,但是有個東西是沒有人考慮到的:光合作用

-----廣告,請繼續往下閱讀-----

當時各家的蒸散發公式,主要都是用Jarvis的葉面氣孔參數化公式做考量[3],所以也沒有真的考慮到二氧化碳、水、太陽之間的直接關聯。而做出這個關連性主要公式——Farquhar等人[4] 的二氧化碳同化作用公式,才在 1980 年時正式發表,離他同事 Berry 拿去演化成植物氣孔跟光合作用的連動公式[5],還有七年。而在地表模型大戰中發表的模型,其實都長得 87% 像。

在 1997 年時,NASA 的 Sellers等人[6],與多位同樣是地表模式的作者與植物氣孔模擬專家,在《Science》期刊中,登高一呼:我們要有能夠計算生態跟複雜物理的模型!畢竟在 PILPS 的大戰中,沒有真正的勝者,也沒有真正的輸家,甚至我們的真鍋大哥在水文計算上也沒有輸[2]

所以在 2003 年,集合了 PILPS 大戰中和解的部份朋友們,第一支集眾人之力誕生的通用地表模式(Common Land Model)上線了[7],這支從 1998 年開始寫的程式,過了近五年後才發表,算是第三代地表模式的代表作

而這個第三代中,植物終於開始有了它的意義,這植物的葉子終於可以隨四季生長了,也會行光合作用了,土壤也增厚到兩公尺多了,土壤也會依不飽和水流公式往下滲流,也可以計算堆雪了。其中最重要的,就是那光合作用公式的應用。

-----廣告,請繼續往下閱讀-----

持續再精進與貢獻

之後的地表模式,就一直著重在地面植物的改良,讓植物越來越真,從一開始的沒有植物,到會蒸發水,再到會跟二氧化碳互動,以及跟氮交互作用,計算植物的農作產出,一步步朝著更精細的方向前進。

當然地表模式也有很多需要改良的地方,首先是地表模型是假設地表跟大氣是一維方向的互動,而土壤中水流也是只會向下滲流,如果要計算真正的水流,就必須要進行三維的地下水流動,這就是另外一個耗資源的計算。另外植物也不是真的植物,植物被假設只有四片葉子,還只有一層。

英國的「JULES」模型曾報告說他們做了個多層葉冠層的模型,最後只能淡淡的說因為計算資源耗太兇,所以沒算完 [8]。更甚者,地底下的根是「死」的,一年四季,不生不滅、不垢不淨,持續地在只有兩公尺厚的土裡,把水吸到植物中行光合作用(Pitman, 2003)[9]

所以無論如何,地表模型不僅不死,其勢更烈,因為有太多的東西可以靠地表模式來計算,像是人類對地球表面的影響、化合物排放,也都可以靠地表模式計算其對大氣的影響,就連地下水模型也都要拜託地表模式處理複雜的地表水文狀況[10]

從 1969 年到 2021 年,無數的改良與改版,還有兩次的超級地表模式大戰(第二次利用 Rhône 流域量測結果[11]),都增加了人們對大氣系統的了解,並且一步步改善天氣預報的準確度,而其中的功臣之一,當然是真鍋博士在 1969 年,比 Unix 更早發表的地式模型,所以的確功不可沒,而現在地球科學的眾多估算中,地表模式解決了很多的水文與能量問題,更遑論對氣候變遷的計算,才能在1975年提出二氧化碳加劇溫度上升的研究[12]。拿下諾貝爾獎,不僅僅是贊同真鍋博士的功勞,更是對大氣模擬界的慰勞吧。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Manabe S. (1969). CLIMATE AND THE OCEAN CIRCULATION 1: I. THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE. Mon. Weather Rev. 97:739–774.
  2. Pitman, A. J., Henderson-Sellers, A., Desborough, C. E., Yang, Z. L., Abramopoulos, F., Boone, A., … & Xue, Y. (1999). Key results and implications from phase 1 (c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 15(9), 673-684.
  3. Jarvis PG. (1976). The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273:593–610.
  4. Farquhar, G. D., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149(1), 78-90.
  5. Ball JT., Woodrow IE., Berry JA. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer, 221–224.
  6. Sellers PJ., Dickinson RE., Randall DA., Betts AK., Hall FG., Berry JA., Collatz GJ., Denning AS., Mooney HA., Nobre CA., Sato N., Field CB., Henderson-Sellers A. (1997). Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 275:502–509
  7. Dai Y., Zeng X., Dickinson RE., Baker I., Bonan GB., Bosilovich MG., Denning AS., Dirmeyer PA., Houser PR., Niu G. (2003). The common land model. Bull. Am. Meteorol. Soc. 84.
  8. Best MJ., Pryor M., Clark DB., Rooney GG., Essery RLH., Ménard CB., Edwards JM., Hendry MA., Porson A., Gedney N., Mercado LM., Sitch S., Blyth E., Boucher O., Cox PM., Grimmond CSB., Harding RJ. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci Model Dev 4:677–699
  9. Pitman AJ. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. Int J Clim. 23:479–510.
  10. Kollet SJ., Maxwell RM. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. 29:945–958.
  11. Boone A., Habets F., Noilhan J., Clark D., Dirmeyer P., Fox S., Gusev Y., Haddeland I., Koster R., Lohmann D. 2004. The Rhone-Aggregation land surface scheme intercomparison project: An overview. J. Clim. 17:187–208.
  12. Manabe, S., & Wetherald, R. T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences, 32(1), 3-15.


-----廣告,請繼續往下閱讀-----
所有討論 2
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。