0

0
0

文字

分享

0
0
0

布拉格父子與 X光繞射 │ 科學史上的今天:07/02

張瑞棋_96
・2015/07/02 ・1124字 ・閱讀時間約 2 分鐘 ・SR值 537 ・八年級

科學的進展就如牛頓所說的「站在巨人的肩膀上」,少不了前人的經驗累積。布拉格父子在 X光繞射的發現與應用上扮演的傳承角色就是典型的代表,而且他們人生道路上的許多交會也頗耐人尋味。

起點當然是今天生日的老布拉格(William Henry Bragg, 1862-1942)。他於 1885 年自英國三一學院以優異的成績畢業後即獲聘至澳洲阿德雷得大學(University of Adelaide),講授數學與實驗物理。數學是他的專長,而他雖然上過 J. J. 湯姆森一年的物理課,卻未深入研究,另一方面,學校的實驗器材也不足,在這遠離歐洲的邊陲地帶,他只能硬著頭皮一邊自學物理,一邊到廠商那兒當學做儀器。因此可以想見,當拉塞福於 1895 年從紐西蘭要前往英國跟 J. J. 湯姆森做研究,途經澳洲來拜訪老布拉格後,兩人就此成為世交。

1896 年,5 歲的小布拉格(William Lawrence Bragg, 1890-1971)跌傷骨折,老布拉格想起不久前侖琴發現的 X射線,於是動手打造 X射線管,幫兒子照 X光。這是他們兩人與 X光的初次相遇。後來小布拉格進入阿德雷得大學就讀,自然也成了老爸的學生。他畢業後,老布拉格獲聘至英國里茲大學任教,於是舉家於 1909 年遷回英國,小布拉格進入老爸的母校三一學院,而且指導教授又是 J. J. 湯姆森。

當時仍不清楚 X射線的本質是什麼,直到 1912 年夏天,德國物理學家勞厄(Max von Laue)發現 X光穿過晶體會產生繞射現象(就像水波或光波因干涉作用而產生明暗相間的條紋),才確定 X射線其實就是一種電磁波。原本就一直在研究 X射線的老布拉格得知後,趕忙把兒子找來一起做實驗,小布拉格很快在當年十一月就發表「布拉格定律」,不但給出解釋 X光繞射現象的模型,還可以根據 X射線的波長、角度,推算出晶體的晶格間距,因而得知晶體的結構。老布拉格也沒閒著,他在第二年發明了 X射線光譜儀,提供實際可行的測量工具。

-----廣告,請繼續往下閱讀-----

1914 年,勞厄先獲得諾貝爾物理獎,接著第二年,由布拉格父子共同獲頒諾貝爾物理獎,創下史上唯一親子檔一起獲獎的紀錄;而小布拉格年僅 25 歲就獲獎,至今仍是諾貝爾科學獎項中最年輕的紀錄保持人。

拉塞福於 1937 年過世後,小布拉格接替他擔任卡文迪許實驗室主任直到 1953 年。華生與克里克正是在他任內來卡文迪許實驗室進行研究,而於 1953 年解開 DNA 的雙螺旋結構;成為破解關鍵的「51 號相片」也是羅莎琳 · 弗蘭克林(Rosalind Franklin)以 X光繞射原理攝得的。

布拉格父子兩人的一生就像雙螺旋,以當代重要的科學家為鏈結,彼此互繞;也像 DNA般傳遞了 X光繞射的技術,為科學的進展提供了重要的助力。回顧當時科學家們的交會,饒富趣味;喔,後來小布拉格的女兒還與 J. J. 湯姆森的孫子結為連理呢。

 

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
0

文字

分享

0
2
0
缺乏火燒痕跡,也能判斷遠古人類已知用火?
寒波_96
・2023/01/11 ・3336字 ・閱讀時間約 6 分鐘

人類最早在什麼時候用火?這個問題非常難以回答。經過很久很久以後,火燒的痕跡不見得還會留下,分辨天然起火或人為生火也不容易。2022 年發表的兩篇論文採用不同分析辦法,判斷約 80 萬年前的以色列人已知用火。

🔥沒有痕跡,也能得知曾經炙熱

常理想來,物品被火燒過的痕跡應該很明顯。但是考古學、古人類學研究的對象距今幾千年起跳,甚至超過一百萬年,那麼久以前的火燒如今還能被分辨嗎?最近問世的兩項研究,順利突破此一難題。

一項研究採用的方法是「拉曼光譜」(Raman spectroscopy)。最最最基礎的原理是,材料被火高溫加熱過後,內部分子層級的排列會發生改變,即使外觀完全沒有變化,也有機會透過拉曼光譜分辨。

拉曼光譜考察的材料來自以色列的 Evron 採石場遺址,這兒出土一批石器與動物骨頭,估計年代為距今 80 到 100 萬年前。光看外觀,毫無被火燒過的跡象,但是分析後得知,有些燧石製作的石器曾經被加熱到超過 400 度,遺址中其他石頭卻沒有。動物骨頭方面,有一件象牙被加熱過。

-----廣告,請繼續往下閱讀-----

遺址內沒有或有被火燒過的樣本,顏色、大小、形狀都沒有任何差異。按照以前的分析方法,我們會誤以為該群古早人不曾與火打過交道,這兒拉曼光譜的價值顯而易見。

光看石頭外觀,當年是否被火燒過,完全沒有差異。圖/參考資料 1

這篇論文的作者認為,以色列距今 80 到 100 萬年前的古早人已經懂得用火,他們有能力控制火源,長期小規模燃燒。更重要的是,這項研究證實,即使遺址乍看缺乏用火的痕跡,也可能只是舊的分析辦法看不出來,實際上用火未必那麼罕見。

🔥已知用火,不過做什麼用?

然而,當時的人類真的已經有意識控火,也就是已知用火嗎?光看這項研究的證據,其實有些疑慮。用火有目的,遺址環境是開放的空地,生火可能有煮食、取暖、威嚇掠食者等意圖,最容易判斷的應該是煮食。

被人類放在火上燒的動物性食物,骨頭應該也被加熱過,可是這項研究分析的動物骨頭卻只有一件象牙被火燒過,而象牙並非食物。除非是被加熱的動物骨頭沒有保留至今,否則實在難以想像,已知用火的古人類不會順便烹飪。

-----廣告,請繼續往下閱讀-----

也許有讀者好奇,石頭不能吃,石器為什麼會被火燒呢?火是能改變物質狀態的能量,數萬年前的人類,有一種用火加熱修飾石器的技術;但是這種製作石器的手法相當先進,超過 80 萬年的古早人應該還沒這麼機智。更有可能是用過丟掉的石器(和象牙),在火堆旁順便被燒到,而非有意為之。

光是 Evron 採石場遺址的紀錄,天然起火也有機會產生一樣的結果。那個年代的古早人真的已知用火嗎?所幸幾個月後發表的另一篇論文打消我的疑慮,因為這項研究找到煮食的證據!

Evron 採石場遺址。圖/參考資料 3

🔥水深火熱的鯉魚

另一篇論文的分析方法是「X光繞射」(X-ray powder diffraction,簡稱 XRD),一如拉曼光譜,它能探索加熱過後物體內部的晶格變化,估計曾經升溫到幾度。

考察材料來自以色列的 Gesher Benot Ya’aqov(簡稱 GBY)遺址,這兒古時候是 Hula 湖的湖畔,有不少古代生態的記錄,出土阿舍利石器等人造物,也證實古人類曾在此生活。

-----廣告,請繼續往下閱讀-----

GBY 遺址距今 78 萬年的地層中,出土許多魚的骨頭,超過 4.3 萬件,約有 4 萬件可以歸類,大部分屬於鯉科(carp,學名 Cyprinidae)、塘虱(catfish,學名 Clariidae)、慈鯛科(Tilapiini,學名 Cichlidae),都是淡水魚。

死魚骨頭不見得是人為造成,也可能是自然死亡沉積所致。另一處 Kinneret 古湖遺址也出土很多魚骨,兩處的化石組成卻截然不同。Kinneret 超過 99% 是魚骨,GBY 遺址則有超過 95% 是咽頭齒(pharyngeal teeth)

GBY 遺址出土的魚類遺骸,不只部位和天然遺存不一樣,也大量出現 2 種鯉魚:Luciobarbus longiceps 以及 Carasobarbus canis,都是口味適合人類食用的款式。由此推論,至少一些魚牙化石來自人類吃剩的大餐。

研究者先用現代魚牙測試,紀錄不同溫度燒過後,珐瑯質的晶格改變。接著再分析化石牙齒,對照估計化石當年經歷過多高的溫度。

-----廣告,請繼續往下閱讀-----

結果判斷有些魚牙曾經被火燒過,多數未滿 500 度;這差不多就是露天生火的正常溫度,也足以將魚煮熟。由此推論,78 萬年前的以色列人或許已經配備火塘,會捕魚再煮熟來吃。

火烤就是美味?距今 78 萬年前的 Hula 湖畔,想像圖。圖/參考資料 5

🔥認識人類用火歷史的新方向

和稍早問世的論文一同考慮,僅管 78 萬年前的火烤魚稍遲一些,卻強烈佐證早於 80 萬年前的以色列人已知用火,因為用火煮魚顯然是有意識的控火行為,假設同一地區更早幾萬年的人群也具備類似技能,十分合理。最早生火煮食的年代,想來不只 78 萬年。

如今智人獨存,過往「人類」則有許多成員,距今 78 到 100 萬年前,已知用火的以色列古早人是什麼人呢?這題缺乏直接證據。可能是直立人,也可能是很初期的海德堡人(或波多人)。直立人起源於 200 萬年前的非洲,後來分佈廣泛又十分多變,海德堡人算是直立人的衍生型號;如果真是直立人已知用火,那麼可謂是機智的直立人。

何時已知用火依然是不容易回答的問題,根據現有資訊,距今 40 萬年前過後用火變得普及,距離遙遠的許多遺址,相對短期內出現用火的紀錄,有學者懷疑涉及文化與知識的傳播。

-----廣告,請繼續往下閱讀-----

然而,新研究告訴我們,生火不見得會留下痕跡,也許早於 40 萬年前已有不少地方的人懂得用火,可是缺乏紀錄。還有可能 40 萬年內使用火源的人類,比已知還要更多。不論如何,2022 年發表的兩篇論文,預示了新的探討方向。

延伸閱讀

參考資料

  1. Stepka, Z., Azuri, I., Horwitz, L. K., Chazan, M., & Natalio, F. (2022). Hidden signatures of early fire at Evron Quarry (1.0 to 0.8 Mya). Proceedings of the National Academy of Sciences, 119(25), e2123439119.
  2. Evidence of fire use at ancient campsite in Israel
  3. Artificial intelligence may have unearthed one of the world’s oldest campfires
  4. Zohar, I., Alperson-Afil, N., Goren-Inbar, N., Prévost, M., Tütken, T., Sisma-Ventura, G., … & Najorka, J. (2022). Evidence for the cooking of fish 780,000 years ago at Gesher Benot Ya’aqov, Israel. Nature Ecology & Evolution, 1-13.
  5. Oldest evidence of the controlled use of fire to cook food
  6. MacDonald, K., Scherjon, F., van Veen, E., Vaesen, K., & Roebroeks, W. (2021). Middle Pleistocene fire use: The first signal of widespread cultural diffusion in human evolution. Proceedings of the National Academy of Sciences, 118(31), e2101108118.
  7. Widespread cultural diffusion of knowledge started 400 thousand years ago

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1019 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

2

10
2

文字

分享

2
10
2
2021 諾貝爾物理獎得主真鍋淑郎——地表模型開山始祖,研究地表模式都要引用他的論文
Y.-S. Lu
・2021/10/14 ・2990字 ・閱讀時間約 6 分鐘

  • 作者|盧彥森,目前任職於 德國于利希研究中心 能源與氣候研究所

第一個地表模型的開發者——真鍋淑郎

在大氣科學領域中,有一部份專業領域統稱為「氣象模擬」,其中,有一門名為「地表模式」的領域,是專門算地表上各種物理、化學、生物作用的行為。

在做這些模擬的研究者中,有個很有名的日本名字,叫做 Manabe,他的論文會一直出現在大家眼前,也就是(只有我們在乎的)《 Manabe 1969, CLIMATE AND THE OCEAN CIRCULATION I : THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE 》[1]最近因為大量的報導,我才知道原來他名字的漢字是——真鍋淑郎,也就是第一個地表模型的開發者,而在 2021 年時,他拿下了諾貝爾獎。

真鍋淑郎,2021年諾貝爾物理學獎得主之一。圖/維基百科

地表模式(Land Surface Model)在大氣模擬中有舉足輕重的地位,可以算地面是怎麼跟大氣作反應的,像是降水是怎麼被樹冠層截流、土壤水是怎麼變成地表逕流跟地下水、水是怎麼靠蒸散發回到大氣中;還有太陽光怎麼被地面或葉面吸收、能量怎麼被蒸散發作用給吸收、地面上的溫度增加或減少了多少,還有太陽輻射是有多少返回大氣層。

而真鍋淑郎的地表模式,則涵蓋了一大部份的物理反應,供美國國家海洋暨大氣總署(NOAA)的 Geophysical Fluid Dynamics Laboratory 的全球大氣模型使用。

-----廣告,請繼續往下閱讀-----
Geophysical Fluid Dynamics Laboratory 圖/Geophysical Fluid Dynamics Laboratory

不過學界是殘酷的。在那個電腦比房子貴的年代(房價在 1960 年的中位數約為$11,900,CNBC報導),真鍋順便背了個學界的鍋,像是:你的模型是不夠真實的、你的土壤濕度估算不夠物理……等因為電腦計算跟理論發展還不夠成熟,所以尚未發展的物理與計算方法。

後來的論文也會稱真鍋的地表模式是水桶模型(因為其計算土壤濕度的方法宛如水桶一樣,滿了就去除,而非經土壤中水流方法流走的)。但無論如何,第一個地表模型,基本上就是真鍋與他在普林斯頓的好夥伴們發展出來的。因此,真鍋的地表模型也在後來的論文中,尊稱為第一代的地表模式,建立起祖師爺等級的封號(Sellers et al., 1997)。

水桶模型後,百家爭鳴的地表模式大戰

雖然第一代的地表模式,土壤當做水桶,地上也沒有植物,更不要說可以進行光合作用或是碳排放來研究二氧化碳是怎麼搞壞我們的人生,但也讓後續的第二代地表模型有了出發點。

1980年後,在個人電腦逐漸普及後,地表模式也開始百家爭鳴,其中真鍋的身影也就只存在各家論文的引用中了。後來再出現時,則是在地表模式大戰——PILPS(Project for the Intercomparison of Land-surface Parametrization Schemes)[2]。這個計畫中,以水桶模型這個稱號出現。基本上始於 1995 年的 PILPS 計畫,就是利用荷蘭的 Cabauw 量測站測到的氣象狀況,來驗證各家第二代的地表模式中,誰才是最強的。

荷蘭 Cabauw 村莊。圖/維基百科

當然結果就是,沒有誰家最強。

更重要的是,雖然地表模式都比真鍋的模型更複雜了一點,但是有個東西是沒有人考慮到的:光合作用

-----廣告,請繼續往下閱讀-----

當時各家的蒸散發公式,主要都是用Jarvis的葉面氣孔參數化公式做考量[3],所以也沒有真的考慮到二氧化碳、水、太陽之間的直接關聯。而做出這個關連性主要公式——Farquhar等人[4] 的二氧化碳同化作用公式,才在 1980 年時正式發表,離他同事 Berry 拿去演化成植物氣孔跟光合作用的連動公式[5],還有七年。而在地表模型大戰中發表的模型,其實都長得 87% 像。

在 1997 年時,NASA 的 Sellers等人[6],與多位同樣是地表模式的作者與植物氣孔模擬專家,在《Science》期刊中,登高一呼:我們要有能夠計算生態跟複雜物理的模型!畢竟在 PILPS 的大戰中,沒有真正的勝者,也沒有真正的輸家,甚至我們的真鍋大哥在水文計算上也沒有輸[2]

所以在 2003 年,集合了 PILPS 大戰中和解的部份朋友們,第一支集眾人之力誕生的通用地表模式(Common Land Model)上線了[7],這支從 1998 年開始寫的程式,過了近五年後才發表,算是第三代地表模式的代表作

而這個第三代中,植物終於開始有了它的意義,這植物的葉子終於可以隨四季生長了,也會行光合作用了,土壤也增厚到兩公尺多了,土壤也會依不飽和水流公式往下滲流,也可以計算堆雪了。其中最重要的,就是那光合作用公式的應用。

-----廣告,請繼續往下閱讀-----

持續再精進與貢獻

之後的地表模式,就一直著重在地面植物的改良,讓植物越來越真,從一開始的沒有植物,到會蒸發水,再到會跟二氧化碳互動,以及跟氮交互作用,計算植物的農作產出,一步步朝著更精細的方向前進。

當然地表模式也有很多需要改良的地方,首先是地表模型是假設地表跟大氣是一維方向的互動,而土壤中水流也是只會向下滲流,如果要計算真正的水流,就必須要進行三維的地下水流動,這就是另外一個耗資源的計算。另外植物也不是真的植物,植物被假設只有四片葉子,還只有一層。

英國的「JULES」模型曾報告說他們做了個多層葉冠層的模型,最後只能淡淡的說因為計算資源耗太兇,所以沒算完 [8]。更甚者,地底下的根是「死」的,一年四季,不生不滅、不垢不淨,持續地在只有兩公尺厚的土裡,把水吸到植物中行光合作用(Pitman, 2003)[9]

所以無論如何,地表模型不僅不死,其勢更烈,因為有太多的東西可以靠地表模式來計算,像是人類對地球表面的影響、化合物排放,也都可以靠地表模式計算其對大氣的影響,就連地下水模型也都要拜託地表模式處理複雜的地表水文狀況[10]

從 1969 年到 2021 年,無數的改良與改版,還有兩次的超級地表模式大戰(第二次利用 Rhône 流域量測結果[11]),都增加了人們對大氣系統的了解,並且一步步改善天氣預報的準確度,而其中的功臣之一,當然是真鍋博士在 1969 年,比 Unix 更早發表的地式模型,所以的確功不可沒,而現在地球科學的眾多估算中,地表模式解決了很多的水文與能量問題,更遑論對氣候變遷的計算,才能在1975年提出二氧化碳加劇溫度上升的研究[12]。拿下諾貝爾獎,不僅僅是贊同真鍋博士的功勞,更是對大氣模擬界的慰勞吧。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Manabe S. (1969). CLIMATE AND THE OCEAN CIRCULATION 1: I. THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE. Mon. Weather Rev. 97:739–774.
  2. Pitman, A. J., Henderson-Sellers, A., Desborough, C. E., Yang, Z. L., Abramopoulos, F., Boone, A., … & Xue, Y. (1999). Key results and implications from phase 1 (c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 15(9), 673-684.
  3. Jarvis PG. (1976). The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273:593–610.
  4. Farquhar, G. D., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149(1), 78-90.
  5. Ball JT., Woodrow IE., Berry JA. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer, 221–224.
  6. Sellers PJ., Dickinson RE., Randall DA., Betts AK., Hall FG., Berry JA., Collatz GJ., Denning AS., Mooney HA., Nobre CA., Sato N., Field CB., Henderson-Sellers A. (1997). Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 275:502–509
  7. Dai Y., Zeng X., Dickinson RE., Baker I., Bonan GB., Bosilovich MG., Denning AS., Dirmeyer PA., Houser PR., Niu G. (2003). The common land model. Bull. Am. Meteorol. Soc. 84.
  8. Best MJ., Pryor M., Clark DB., Rooney GG., Essery RLH., Ménard CB., Edwards JM., Hendry MA., Porson A., Gedney N., Mercado LM., Sitch S., Blyth E., Boucher O., Cox PM., Grimmond CSB., Harding RJ. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci Model Dev 4:677–699
  9. Pitman AJ. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. Int J Clim. 23:479–510.
  10. Kollet SJ., Maxwell RM. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. 29:945–958.
  11. Boone A., Habets F., Noilhan J., Clark D., Dirmeyer P., Fox S., Gusev Y., Haddeland I., Koster R., Lohmann D. 2004. The Rhone-Aggregation land surface scheme intercomparison project: An overview. J. Clim. 17:187–208.
  12. Manabe, S., & Wetherald, R. T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences, 32(1), 3-15.


所有討論 2
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

6

12
3

文字

分享

6
12
3
【2021諾貝爾物理學獎】如何觀測地球暖化?有「氣候模型」及「複雜物理系統」就搞定!
PanSci_96
・2021/10/05 ・2286字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

2021 年諾貝爾物理獎於5日下午揭曉!本次獎項由美籍日裔學者真鍋淑郎(Syukuro Manabe)、德國學者哈斯曼(Klaus Hasselmann)及義大利學者帕里西(Giorgio Parisi)等 3 位學者共同獲獎。

真鍋淑郎與哈斯曼,因為地球暖化的研究建立了可預測的物理模型,幫助人類「了解地球氣候」及「地球氣候如何被人類影響」而獲獎;帕里西則是成功用物理系統,描述從原子到行星尺度下的各種無序的(disorder)「相互作用」和「波動」(fluctuations)而獲獎。

人類活動讓二氧化碳劇增,就是地球暖化元兇!

氣候,是一個對人類至關重要的複雜系統,而真鍋淑郎的研究為當前氣候模型的發展奠定了基礎。在 1960 年代, 真鍋淑郎領導了地球氣候物理模型的開發,他也是第一個探討輻射平衡和氣團垂直運運輸之間交互作用的科學家,在那個電腦運算能力比現在慢上幾十萬倍的年代,他建立的模型證實了全球溫度的升高,與大氣中二氧化碳的含量有關。

真鍋淑郎建立的模型證實了全球溫度的升高,與大氣中二氧化碳的含量有關。圖/The Nobel Prize

大約十年後,哈斯曼創建了一個將天氣和氣候聯繫在一起的模型,證實了雖氣候多變且混亂,但氣候模型仍然可靠。自然現象和人類活動都會在氣候中留下痕跡,他開發的模型可以辨識這些活動的特定信號和指紋圖譜,因此可以進一步地觀測人類對於氣候系統的影響。

-----廣告,請繼續往下閱讀-----

哈斯曼創建的模型證實了人類活動加劇了溫室效應;自 19 世紀中葉以來,大氣中的二氧化碳含量增加了 40%。在這數十萬年來,地球的大氣層從未包含如此多的二氧化碳,溫度測量也顯示,在過去的 150 年中,全球溫度升高了 1°C。這證明了大氣溫度的升高,是由於人類活動產生的二氧化碳所導致的。

這兩位得獎者的研究,讓我們清楚的知道,地球溫度的確在上升,原因是因為大氣中的溫室氣體含量增加,而造成這個現象的原因,並不是因為自然因素,很明顯的,人類就是始作俑者。

哈斯曼創建的模型證實了人類活動加劇了溫室效應。圖/The Nobel Prize

複雜系統背後隱藏的規律

1980 年左右,帕里西在無序的複雜材料中,發現了隱藏的規律。 這個發現不只是能成功解釋複雜材料,更是對複雜系統理論中最重要的貢獻之一。帕里西提出的規律,讓理解或描述各式不同的複雜材料和現象成為可能,不僅在物理學中,也在其他如數學、生物學、神經科學和機器學習等領域中被運用。

A 編按:已努力修復,如果有錯或需要補充隨時在線。(20211007)

從物理來談複雜系統,就必須先從統計力學說起。

-----廣告,請繼續往下閱讀-----

微觀下的粒子運動具有隨機性,導致無法精確算出每個粒子確切的運動,為了解決這個問題,統計力學不再看「一個粒子」,而是「一整群粒子」的運動,用統計的方式算出每個粒子的平均效果,這樣算出來的結果也能解釋巨觀現象。最接近生活的例子就是「溫度」,在微觀尺度下,溫度被描述為系統內粒子的平均動能,而在巨觀現象上,溫度這個指標也能解釋固液氣三態變化的原因。

但還有一些狀況是過去統計力學較難解釋的,以下圖為例,下圖的藍色球體是一種微小的氣體粒子,當你不斷對這群氣體粒子降溫或加壓,會讓氣體變成液體,最後結晶成固體。

降溫或加壓後形成的固體結晶,一般情況下會有固定的晶體結構,但如果溫度或壓力快速改變,就會擠壓出不規則的晶體結構,且就算用同樣的方式改變溫度或壓力,也不會出現相同的結構(下圖 a 與 b 所示)。

同樣的氣體分子被相同的方法快速壓縮後,會出現不同的結構。圖/The Nobel Prize

說這是隨機造成的也沒錯,但這結晶問題的背後,難道真的沒有規律可言嗎?

帕里西最初是研究稱為「自旋玻璃(Spin glass)」的材料,自旋玻璃並不是玻璃,是在非磁性金屬中摻入少量磁性金屬的合金,例如在銅裡面摻入少量的鐵,這時,摻入的少量鐵原子會隨機進入銅的結構中,而這些鐵原子的排列方式,卻令物理學家頭疼。

-----廣告,請繼續往下閱讀-----

我們可以把一顆鐵原子當作一塊小磁鐵,而一般常見的磁鐵,是裡頭的鐵原子都往同一個方向排列(自旋方向相同)。但自旋玻璃中的鐵原子,有些會跟旁邊的鐵原子指向同一個方向,有些則相反,這時若有第三顆鐵原子在系統中,第三顆鐵原子就會面臨兩難的局面,不知道要往哪個方向才對,形成所謂「受挫(frustration,如下圖所示)」的狀態。

「受挫」狀態示意圖。圖/The Nobel Prize

針對自旋玻璃的「受挫」狀態,帕里西的書中提到:「就像你想同時跟兩人交朋友,但這兩人卻互相討厭對方。」

1970 年代,許多物理學家都研究過自旋玻璃問題,他們想用統計力學中的「副本方法(Replica method)」來解釋,但最初計算的結果是失敗的,直到 1979 年,帕里西巧妙地運用副本方法解決了自旋玻璃問題,並花了多年時間證明這套方法在數學上的正確性。之後,這套巧妙的副本方法被用於許多無序系統,成為複雜系統的基石。

諾貝爾物理學委員會主席Thors Hans Hansson表示,今年獲獎的研究發現表明,我們對地球氣候變遷的理解建立在堅實的科學基礎上。3位獲獎者基於嚴謹的觀測分析,為我們更深入地了解「複雜物理系統」(complex physical systems)的特性和演化做出了貢獻。

所有討論 6
PanSci_96
1219 篇文章 ・ 2197 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。