網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

驗證量子纏結的貝爾不等式 │ 科學史上的今天:06/28

張瑞棋_96
・2015/06/28 ・1194字 ・閱讀時間約 2 分鐘 ・SR值 576 ・九年級

今天生日的愛爾蘭物理學家貝爾(John S. Bell, 1928-1990)是古典力學的擁護者。愛因斯坦去世的第二年,他拿到博士;一代宗師已逝,再無人能力抗量子力學,捍衛古典力學的信念。事實上古典陣營與量子陣營的爭辯熱潮早已過去,當年愛因斯坦對量子力學的陣陣攻詰被波耳一一拆解,只剩 1935 年提出的 EPR 悖論尚懸而未決──究竟是「不確定性原理」仍不完備,或是量子纏結真的有「鬼魅的超距作用」?

問題在於這個思想實驗難以驗證。兩個纏結粒子的某些量子性質互補(例如一個自旋向上,另一個必定自旋向下)是已經確定的事,也就是說測量結果必定如此,如何知道過程中間是否有超距作用?對貝爾而言,他更想為愛因斯坦證明超距作用並不存在。

量子力學談的是機率,就用機率來解決。1964 年,貝爾提出可以驗證 EPR悖論 的方法。A 粒子的自旋「投影」在的方向非正即負,因此共有八種可能;與 A 纏結的 B 粒子也是,但恰恰跟 A 相反,例如 A 是(+,+,-)的話,B 就是(-,-,+)。但我們事先無法知道粒子的自旋方向,測量時也只能從 X、Y、Z 三軸中任選一軸來測量其方向為正或負。

我們定義 Pxy 代表在 X 軸方向測量 A 粒子與在 Y 軸方向測量 B 粒子所得到的相關性。以前例而言,A 是 + 而 B 是 -,兩者相反,所以 Pxy = -1;同理,Pxz = +1,Pyz = +1。因為每次只能選擇一軸進行測量,所以每一對纏結粒子的測量結果只會得到 Pxy、Pxz或 Pyz  其中一項的值。貝爾證明,我們若依這三種配對方向測量大量的纏結粒子對,所得到的平均值一定會符合這個不等式:

|Pxz – Pzy | <= 1 + Pxy

是的,依照古典力學,測量 A 粒子與測量 B 粒子是獨立的兩件事,彼此不會互相影響,這項定理絕對成立。貝爾深信實驗結果一定符合他導出的不等式,證明超距作用並不存在。

結果自 1972 年起至今,科學家用光子做過不下二十次實驗,實驗越來越精確完備、光子距離越拉越遠,但所有實驗數據都不符合貝爾不等式,代表「兩個光子的測量是獨立事件」的假設是錯的。也就是說,A 光子與 B 光子之間真的存在「鬼魅的超距作用」!於是,原本想給予量子力學致命一擊的貝爾不等式,反而成為證明量子力學哥本哈根詮釋的最佳利器。

貝爾也只能黯然接受。1990 年,他因此獲得諾貝爾物理獎的提名,卻與之擦身而過──因為依慣例諾貝爾獎只頒給生者,然而他當年時卻因腦溢血死亡。直到去世,他對於獲得提名一事都毫無所悉。

 

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 353 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。


0

12
5

文字

分享

0
12
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》