0

8
2

文字

分享

0
8
2

水熊蟲真的能跟量子位元「量子糾纏」嗎?

linjunJR_96
・2022/01/20 ・2131字 ・閱讀時間約 4 分鐘

身形嬌小的水熊號稱地表最強生物,能夠透過獨特的「隱生」能力在最極端的環境下存活。這種狀態有點類似冬眠,遇見不利生存的條件時將所有代謝活動停止。

近期,有一國際研究團隊宣稱這種生物還有另一種出乎意料的能耐:和超導量子位元進行量子糾纏。用生物體做量子糾纏可是前所未聞,讓大家都嚇壞了。不過這個實驗究竟做出了什麼結果,讓作者可以做出這種宣稱?科學家沒事又為什麼要去抓水熊來糾纏呢?

掃描式電子顯微鏡下的水熊成蟲。圖/EOL

什麼是量子糾纏?

量子糾纏是量子力學獨有的一種描述,至於實際上到底是在「糾纏」什麼,可以參考先前這篇文章[2]

儘管名字聽起來很神祕,但量子糾纏並不只存在於科幻電影和內容農場,現今在實驗室中造出糾纏的粒子對早已是稀鬆平常的技術。量子計算和量子傳送等應用領域就是以糾纏作為基礎發展至今。

雖然這樣說,但利用糾纏粒子將物品或人類在星際間傳送的夢想可能還得再等等。因為目前能夠成功被「糾纏」的都是個別的金屬離子、奈米大小的粒子、和鑽石結晶這類易於控制,結構簡單的微小目標物。

-----廣告,請繼續往下閱讀-----

相對於這些乾淨整齊的系統,生物體的結構可說是極為雜亂複雜,難以成為量子實驗的對象。

此外,為了減少物質本身熱能所帶來的振動影響,糾纏的實驗程序時常需要在接近絕對零度的低溫環境下進行。在這種溫度下不只生命無法延續,許多物質的特性也都已經改變。

因此,儘管實驗方面已經發展許久,要對活生生的生物進行量子糾纏仍是相當遙遠的目標。對量子力學來說,整個生物世界太亂又太熱,完全不會想靠近一步。正因如此,這篇拿水熊做實驗的文章才引起了大家的關注。

水熊和超導量子位元的糾纏

水熊一般只有幾百微米大,算是「巨觀」生物中相對微小的種類,要做量子實驗的話較好下手;更重要的是水熊能夠以隱生狀態度過嚴苛的實驗環境,爾後再重新恢復活力,如此一來要是成功便也算是對生物體進行量子糾纏了。

實驗團隊於是將一隻水熊放到了絕對溫標 0.01 度(也就是只比絕對零度高 0.01 度),同時接近真空的環境中,在此和兩個超導量子位元進行實驗。他們將水熊放入其中一個量子位元零件中,並觀察到位元的共振頻率產生改變。接著他們用常見的量子計算程序將兩個位元進行糾纏,並測試糾纏結果。

根據測試的結果,作者宣稱水熊和兩個量子位元形成了三個位元的組合態。也就是說,水熊在這裡變成了第三個等效的量子位元,和另外兩個超導位元糾纏在一起!實驗結束後,水熊周遭的溫度和壓力被緩慢恢復至適合生存的範圍,最後重新開始代謝活動。

-----廣告,請繼續往下閱讀-----

作者宣布他們突破了以往的實驗限制,打開了通往量子生物學的大門,並以「水熊和超導量子位元的糾纏」為題,將文章的預印版放上了 arXiv 網站,引起科學界一片譁然。

圖/GIPHY

等等,這其實不用量子力學也能解釋

雖然實驗相當有趣,媒體也爭相報導,但是許多物理學家認為這份研究的標題過為聳動,突破性恐怕也是過於誇大。

超導量子位元其實跟一般電子零件一樣,裡面有電容、電感等等基本單元所組成的電路;而接近絕對零度的水熊,基本上能當成一小團冰塊。

實驗團隊將冰塊放到電容裡面,會改變它的共振頻率等特性其實不足為奇。如果電容裡面掉進了一些灰塵,其電路性質也會受到類似的影響。

不論零件中放入冰塊,灰塵,還是螞蟻,這些影響都是「傳統」的電磁學可以描述的,並非量子現象。

也就是說,作者宣稱的「整隻水熊做為一個量子位元進入了量子糾纏態」這個解讀不只言過其實,甚至有誤導之嫌。這篇文章目前還未投稿至期刊,因此沒有經歷同行科學家的審查,還不算是夠格的科學實驗結果。

-----廣告,請繼續往下閱讀-----

關於這份研究有哪些方面需要改進,目前仍是備受爭辯的有趣問題。不過有件事是大部分人都同意的,那就是這次實驗再度刷新了水熊生存能力的極限。或許將來某天,水熊的隱生能力真的能成為生物世界和量子物理之間的橋樑。不過就目前而言,好奇心滿點的物理學家得再更努力些。

編按:該如何驗證量子糾纏,可以參考〈驗證量子纏結的貝爾不等式 │ 科學史上的今天:06/28〉,此論文的主要問題是不能藉由實驗設計,來確認三者共振頻率改變是源自於量子糾纏。

參考資料

  1. 看過「水熊蟲」走路嗎?——牠的步態與 50 萬倍大的昆蟲很相似!
  2. 照出黑洞不算什麼,科學家連量子纏結都能拍到!?
  3. 水熊和超導量子位元的糾纏(原文)
文章難易度
linjunJR_96
33 篇文章 ・ 885 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

2
2

文字

分享

0
2
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
2

文字

分享

0
3
2
量子革命的開端——物質波的發現
PanSci_96
・2024/07/08 ・2311字 ・閱讀時間約 4 分鐘

德布羅意的物質波

在 20 世紀初期的物理學界,一個年輕人的大膽想法引發了一場徹底改變人類認知的革命浪潮。1924 年,德國物理學家路易.德布羅意在他的博士論文中提出了一個令人震驚的觀點:除了電磁波之外,構成物質的基本粒子,也應該具有波動的特性。

路易.德布羅意。圖/wikimedia

當時,德布羅意這一前衛想法招來了廣泛的質疑和不解,甚至差點畢不了業。畢竟,波動一直被視為光和其他電磁輻射的特徵,而粒子則被認為是一個個實體。說這兩者具有相同性質……無疑是有違傳統觀念的。然而,正是這樣一個大膽的假說,為量子力學理論的誕生開啟了嶄新的大門,也為物理學的發展鋪出一條革命之路。

幸運的是,德布羅意獲得了當代著名科學家阿爾伯特.愛因斯坦的支持。儘管愛因斯坦自己也未能完全理解德布羅意論文中隱含的物理真相,但他意識到其中蘊藏的巨大潛力。有了愛因斯坦的背書,德布羅意最終順利獲得了博士學位。

而在短短三年後,德布羅意的理論就得到了實驗的直接驗證。美國科學家克林頓.戴維森和勞倫斯.革末,以及英國物理學家喬治.普賴斯.湯姆森,分別進行了一系列關於電子繞射的實驗。

-----廣告,請繼續往下閱讀-----

顛覆想像的電子繞射實驗

他們發現,當電子束穿過特定障礙物時,其行為表現與光波繞射現象如出一轍。就如同光在穿過狹縫或小孔後,會在後方形成一系列明暗相間的繞射圖樣,電子也會產生類似的現象。這直接證實了德布羅意的理論:微觀粒子確實同時具有波動的特性。

電子繞射實驗範例。圖/wikimedia

電子繞射實驗的意義極為重大,不僅為德布羅意的理論提供了實驗上的佐證,更重要的是,它徹底顛覆了人類對粒子和波動本質的傳統認知。在經典物理學框架內,粒子和波曾被視為截然不同的兩種存在形式。但電子繞射實驗卻揭示了微觀粒子同時具有波動與粒子的雙重特性,給當時的科學家帶來了巨大的觀念衝擊。它突破了波動性質只與電磁波有關的傳統思維,訴說微觀世界與人類的日常經驗大相逕庭。

此外,值得一提的是,完成電子繞射實驗的英國物理學家喬治.普賴斯.湯姆森,也是最早發現電子存在的科學家——約瑟夫.約翰.湯姆森的兒子。

約瑟夫.約翰.湯姆森。圖/wikimedia
喬治.普賴斯.湯姆森。圖/wikimedia

1897 年,約瑟夫.約翰.湯姆森在研究陰極射線時首次觀測到了電子,確認了它是構成物質的基本微粒。經過三十年,他的兒子喬治不僅證實了電子同時也具有波的特性,更印證了德布羅意關於任何粒子都兼具波粒二象性的理論。父子倆在發現電子的「粒子」和「波」兩個層面上,都作出了不可磨滅的貢獻,見證了人類對物質本質認知的徹底演進。

-----廣告,請繼續往下閱讀-----

物質波的應用

物質波現象的發現不僅在理論層面意義非凡,在現實應用中也發揮著舉足輕重的作用。其中最著名的例子莫過於電子顯微鏡的問世。

光學顯微鏡利用的是可見光,因此放大倍率會受到使用光線的波長限制。一般的光學顯微鏡波長約略在數百奈米的範圍,頂多只能放大一千多倍,差不多就是我們用光學顯微鏡觀測的最大極限。

而電子顯微鏡,正是利用電子的物質波波長遠小於可見光波長的特性,以電子取代可見光波,讓電子顯微鏡突破傳統光學顯微鏡的分辨率極限。現在的電子顯微鏡,解析度約在 0.1 奈米左右,甚至還能夠看到原、分子,也已經成為科學研究不可或缺的工具。

電子顯微鏡的發明為生物學、材料科學、奈米技術等諸多領域的研究帶來了全新契機,推動了科學技術的飛速發展。可以說,物質波現象的發現不僅在理論層面上極具革命性意義,在現實應用上也是物理學家們的一大創舉。

-----廣告,請繼續往下閱讀-----
1980 年代的掃描式電子顯微鏡。圖/wikimedia

結語

物質波的發現標誌著量子力學理論的誕生,它徹底改變了人類對粒子和波動本質的認知。這場思維革命,對於人類認識世界的方式產生了深遠的影響,其餘波盪漾直到今天仍在延續。

事實上,物質波的發現並非量子力學革命的終點。德布羅意的物質波理論為量子力學奠定了基礎,而量子力學本身又為當代物理學乃至整個科學發展開啟了嶄新的大門。

隨著量子理論的不斷深入和發展,人類對微觀世界的理解越來越透徹,卻也越發察覺到一個令人費解的事實:我們熟悉的經典物理定律,在微觀領域幾乎完全失效。在這個奇特的量子世界中,物質不僅展現出波粒二象性,還呈現出一些令人錯愕的現象,比如量子糾纏、量子疊加等。 這些現象彷彿在諷刺人類對世界的認知有多麼淺薄,也引發了科學家對宇宙運行法則的激烈討論。

討論功能關閉中。

2

2
1

文字

分享

2
2
1
奠定現代通信基礎的克勞德.香農(Claude Shannon)
數感實驗室_96
・2024/06/06 ・743字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

以前小時候如果調皮不聽話,就會被大人叫去跪算盤,現在的家長家裡沒算盤了,反而會拿出電路板讓小孩跪。

咦?為什麼總是拿算數工具來懲罰小孩呢?

電路板上看似複雜電路板密密麻麻的,是電腦進行邏輯計算的關鍵。這小小的薄片能執行驚人的運算功能,背後的奧秘離不開一位傳奇科學家的貢獻。他不僅奠定了現代通信的基礎,還開創了人工智慧研究,這可不是一般人一生能做到的成就,但克勞德.香農(Claude Shannon)卻一次搞定。

-----廣告,請繼續往下閱讀-----

這位非凡的科學家是如何改變了我們的時代?

他讓我們今天能享受高效的通訊技術和智慧生活。如果你也覺得現在生活離不開手機和電腦,那你應該感謝這位數學和電機工程的天才。

對於 2000 年後出生的人而言,或許覺得用手機傳訊息、用電腦看影片再平常不過。但在 Shannon 出現之前,沒有人能系統性地定義「資訊」和「通訊」。他以其對動手實驗的熱忱,將這些看似無形的概念轉化為實際的理論,為世界帶來了一場資訊革命。

正是因為 Shannon 的卓越貢獻,我們才能享受如此便捷的現代通信技術。他不僅改變了科學的面貌,還深刻地影響了我們的日常生活。

Shannon 的故事也提醒我們,熱愛與好奇心是推動進步的核心力量。他用智慧和創造力,為我們打造現代通信的基礎,並開啟未來的無限可能。

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

所有討論 2
數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/