0

1
0

文字

分享

0
1
0

「世界上最後一個無所不知的人」湯瑪斯 · 楊誕辰 │ 科學史上的今天:6/13

張瑞棋_96
・2015/06/13 ・874字 ・閱讀時間約 1 分鐘 ・SR值 538 ・八年級

兩歲即能閱讀;六歲就把聖經從頭到尾讀完兩遍,並開始自學拉丁文;青少年時已精通十二種語言、會製作顯微鏡與望遠鏡,除了歷史、法律、音樂,還自學牛頓那艱澀的微積分與《光學原理》,以及拉瓦謝的《化學要論》。這樣的天才兒童日後出類拔萃一點兒也不奇怪吧!不過,湯瑪斯 · 楊(Thomas Young, 1773-1829)所跨的領域之廣,所作的貢獻之多,用「天才科學家」都還不足以形容。

楊原本以行醫為職志,因此從十八歲到二十八歲這十年間發表的論文都是關於視覺的研究。他研究水晶體如何調節焦距,率先提出眼睛有三種感光細胞接收不同波長的色光,而產生彩色的視覺。因此他被譽為生理光學的創始人。

1800 年,他發表科學史上首度描述波的干涉現象的論文。以此為起點,他開始研究光的性質,根據繞射、干涉等現象,主張光是一種波,而非牛頓所言之粒子。但粒子說已盛行百餘年,即使楊提出各種實驗結果作為佐證,仍難以撼動牛頓的權威,直到法國物理學家菲涅耳(Augustin Fresnel)提出更明確的實驗與理論根據後,波動說才自 1820 年代開始獲得普遍認同。

而楊於 1803 年所做的雙狹縫實驗更是影響深遠。他讓一道光同時通過兩個狹縫投射到屏幕上,結果出現明暗相間的干涉條紋;他認為這足以證明光就是波。沒想到一百多年後的物理學家改用電子、質子,甚至是由 60 個碳原子組成的巴克球重做雙狹縫實驗,竟然也都出現干涉現象!雙狹縫實驗還衍伸出更奇特的量子現象,成為哥本哈根詮釋的最佳佐證。

-----廣告,請繼續往下閱讀-----

1819 年,楊發揮其語言天分,率先指認出羅塞塔石碑上某一重複出現、有著外框的古埃及象形文字,係作為表音符號代表「托勒密」這個外國人名的音譯(就跟我們中文做法一樣),而成為商博良(Jean-François Champollion)破譯埃及象形文字的關鍵。

除此之外,楊還在材料力學、表面張力、血液流動、音樂的平均律等不同領域都作出重要的貢獻,只可惜這位「世界上最後一個無所不知的人」未滿 56 歲就離開人世了。

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
0

文字

分享

0
2
0
地震之島的生存法則!921地震教育園區揭開台灣的防災祕密
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/20 ・4553字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

為什麼台灣會像坐在搖搖椅上,總是時不時地晃動?這個問題或許有些令人不安,但卻是我們生活在這片土地上的現實。根據氣象署統計,台灣每年有 40,000 次以上的地震,其中有感地震超過 1,000 次。2024年4月3日,花蓮的大地震發生後,台灣就經歷了超過 1,000 次餘震,這些數據被視覺化後形成的圖像,宛如台北101大樓般高聳穿雲,再次引發了全球對台灣地震頻繁性的關注。

地震發生後,許多外國媒體擔心半導體產業會受影響,但更讓他們稱奇的是,台灣竟然能在這麼大的地震之下,將傷害降到這麼低,並迅速恢復。不禁讓人想問,自從 25 年前的 921大地震以來,台灣經歷了哪些改變?哪些地方可能再發生大地震?如果只是遲早,我們該如何做好更萬全的準備?

要找到這些問題的答案,最合適的地點就在一座從地震遺跡中冒出的主題博物館:國立自然科學博物館的 921地震教育園區。

圖:跑道捕捉了地震的瞬間 / 圖片來源:劉志恆/青玥攝影

下一個大地震在哪、何時?先聽斷層說了什麼

1999年9月21日凌晨1點47分,台灣發生了一場規模7.3的大地震,震央在南投縣集集鎮,全台 5 萬棟房子遭震垮,罹難人數超過 2,400 人。其中,台中霧峰光復國中校區因車籠埔斷層通過,地面隆起2.6公尺,多棟校舍損毀。政府決定在此設立921地震教育園區,保留這段震撼人心的歷史,並作為防災教育的重要基地。園區內兩處地震遺跡依特性設置為「車籠埔斷層保存館」和「地震工程教育館」。

-----廣告,請繼續往下閱讀-----

車籠埔斷層保存館建於原操場位置,為了保存地表破裂及巨大抬升,所以整體設計不採用樑柱結構,而是由82根長12公尺、寬2.4公尺、重約10噸的預鑄預力混凝板組成,外觀為曲線造型,技術難度極高,屬國內外首見,並榮獲多項建築獎。而地震工程教育館保留了原光復國中受損校舍,讓民眾親眼見證地震的驚人破壞力,進一步強調建築結構與安全的重要性。毀損教室旁設有由園區與「國家地震工程研究中心」共同策劃的展示館,透過互動展示,讓參觀者親手操作,學習地震工程相關知識。

國立自然科學博物館地質學組研究員蔣正興博士表示,面積上,台灣是一個狹長的小島,卻擁有高達近4000公尺的山脈,彰顯了板塊激烈擠壓、地質活動極為活躍的背景。回顧過去一百年的地震歷史,從1906年的梅山地震、1935年的新竹-台中地震,到1999年的921大地震,都發生在台灣西部,與西部的活動斷層有密切關聯,震源位於淺層,加上人口密度較高,因此對台灣西部造成了嚴重的災情。

而台灣東部是板塊劇烈擠壓的區域,地震震源分佈更廣。與西部相比,雖然東部地震更頻繁,但由於人口密度相對較低,災情相對較少。此外,台灣東北部和外海也是地震多發區,尤其是菲律賓海板塊往北隱沒至歐亞板塊的隱沒地震帶,至沖繩海槽向北延伸,甚至可能影響到台北下方,發生直下型地震,這種地震因震源位於城市正下方,危害特別大,加上台北市房屋非常老舊,若發生直下型地震,災情將非常嚴重。

除了台北市,蔣正興博士指出在台灣西部,我們特別需要關注的就是彰化斷層的影響,該斷層曾於1848年發生巨大錯動。此外,我們也需要留意西南部的地震風險,如 1906 年的梅山地震。此兩條活動斷層距今皆已超過 100 年沒活動了。至於東部,因為存在眾多活動斷層,當然也需要持續注意。

-----廣告,請繼續往下閱讀-----

我們之所以擔心某些斷層,是因為這些區域可能已經累積了相當多的能量,一旦達到臨界點,就會釋放,進而引發地震。地質學家通常會沿著斷層挖掘,尋找過去地震的證據,如受構造擾動沉積物的變化,然後透過定年技術來確定地震發生的時間點,估算出斷層的地震週期,然而,這些數字的計算過程非常複雜,需要綜合大量數據。

挑戰在於,有些斷層的活動時間非常久遠,要找到活動證據並不容易。例如,1906年的梅山地震,即使不算久遠,但挖掘出相關斷層的具體位置仍然困難,更不用說那些數百年才活動一次的斷層,如台北的山腳斷層,因為上頭覆蓋了大量沉積物,要找到並研究這些斷層更加困難。

儘管我們很難預測哪個斷層會再次活動,我們仍然可以預先對這些構造做風險評估,從過往地震事件中找到應變之道。而 921 地震教育園區,就是那個可以發現應變之道的地方。

圖:北棟教室毀損區 / 圖片來源:劉志恆/青玥攝影

921 後的 25 年

在園區服務已 11 年的黃英哲擔任志工輔導員,常代表園區到各地進行地震防災宣導。他細數 921 之後,台灣進行的六大改革。制定災害防救法,取代了總統緊急命令。修訂了建築法規,推動斷層帶禁限建與傳統校舍建築改建。組建災難搜救隊伍,在面對未來災害時能更加自主應對。為保存文化資產,增設了歷史建築類別,確保具有保存價值的建築物得到妥善照料。

-----廣告,請繼續往下閱讀-----

最後,則是推行防災教育。黃英哲表示,除了在學校定期進行防災演練,提升防災意識外,更建立了921地震教育園區,不僅作為教育場所,也是跨部門合作的平台,例如與交通部氣象署、災害防救辦公室、教育部等單位合作,進行全面的防災教育。園區內保留了斷層線的舊址,讓遊客能夠直觀地了解地震的破壞力,最具可看性;然而除此之外,園區也是 921 地震相關文物和資料的重要儲存地,為未來的地震研究提供了寶貴的資源。

堪稱園區元老,在園區服務將近 19 年,主要負責日語解說工作的陳婉茹認為,園區最大的特色是保存了斷層造成的地景變化,如抬升的操場和毀壞的教室場景,讓造訪的每個人直觀地感受地震的威力,尤其是對於年輕的小朋友,即使他們沒有親身經歷過,也能透過這些真實的展示認識到地震帶來的危險與影響。

陳婉茹回憶,之前有爸媽帶著小學低年級的小朋友來參觀,原本小朋友並不認真聽講,到處跑來跑去,但當他看到隆起的操場,立刻大聲說這他在課本看過,後來便聚精會神地聽完 40 分鐘的解說。

圖:陳婉茹在第一線負責解說工作 / 圖片來源:921地震教育園區

除了每看必震撼的地景,園區也透過持續更新策展,邀請大家深入地震跟防災的各個面向。策展人黃惠瑛負責展示設計、活動規劃、教具設計等工作。她提到,去年推出的搜救犬特展和今年的「921震災啓示展」與她的個人經歷息息相關。921 大地震時的她還是一名台中女中的住宿生,當時她儘管驚恐,依舊背著腿軟的學姊下樓,讓她在策劃這些展覽時充滿了反思。

-----廣告,請繼續往下閱讀-----

在地震體驗平臺的設計中,黃惠瑛強調不僅要讓觀眾了解災害的破壞力,更希望觀眾能從中學到防災知識。她與設計師合作,一樓展示區採用了時光機的概念,運用輕鬆、童趣的風格,希望遊客保持積極心態。二樓的地震體驗平臺結合六軸震動臺和影片,讓遊客真實感受921地震的情境。她強調,這次展覽的目標是全民,設計上避免了血腥和悲傷的元素,旨在讓觀眾帶著正向的感受離開,並重視防災意識。

圖:地震體驗劇場 / 圖片來源:921地震教育園區

籌備今年展覽的最大挑戰是緊迫的時間。從五月開始,九月完成,為了迅速而有效地與設計師溝通,黃惠瑛使用了AI工具如ChatGPT與生成圖像工具,來加快與設計師溝通的過程。

圖:黃惠瑛與設計師於文件中討論設計/ 圖片來源:921地震教育園區

蔣正興博士說,當初學界建議在此設立地震教育園區,其中一位重要推手是法國地質學家安朔葉。他曾在台灣指導十位台灣博士生,這些博士後來成為地質研究的中堅力量。1999年921大地震後,安朔葉教授立刻趕到台灣,認為光復國中是全球研究斷層和地震的最佳觀察點,建議必須保存。為紀念園區今年成立20週年,在斷層館的展示更新中,便特別強調安朔葉的貢獻與當時的操場圖。

此外,作為 20 週年的相關活動,今年九月也將與日本野島斷層保存館簽署合作備忘錄(MOU),強化合作並展示台日合作歷史。另一重頭戲則是向日本兵庫縣人與自然博物館主任研究員加藤茂弘致贈感謝狀,感謝他不遺餘力,長期協助園區斷層保存館的剖面展品保存工作。

-----廣告,請繼續往下閱讀-----
右圖:法國巴黎居禮大學安朔葉教授。左圖:兵庫縣立人與自然博物館主任研究員加藤茂弘
/ 圖片來源:921地震教育園區

前事不忘,後事之師

盡力保存斷層跟受創校舍,只因不想再重蹈覆徹。蔣正興博士表示,921地震發生在車籠埔斷層,其錯動形式成為全球地質研究的典範,尤其是在研究斷層帶災害方面。統計數據顯示,距離車籠埔斷層約100公尺內,住在上盤的罹難率約為1%,而下盤則約為0.6%。這說明住在斷層附近,特別是上盤,是非常危險的。由於台灣主要是逆斷層活動,這一數據清楚告訴我們,在上盤區域建設居住區應特別小心。

2018年花蓮米崙斷層地震就是一個例證。

在921地震後,政府在斷層帶兩側劃設了「地質敏感區」。因為斷層活動週期較長,全球大部分地區難以測試劃設敏感區的有效性,但台灣不同,斷層活動十分頻繁。例如 1951 年,米崙斷層造成縱谷地震,規模達 7.3,僅隔 67 年後,在 2018 年再次發生花蓮地震,這在全球是罕見的,也因此 2016 年劃設的地質敏感區,在 2018 年的地震中便發現,的確更容易發生地表破裂與建築受損,驗證了地質敏感區劃設的有效性。

圖:黃英哲表示曾來園區參訪的兒童寄來的問候信,是他認真工作的動力 / 圖片來源:921地震教育園區

在過去的20年裡,921地震教育園區不僅見證了台灣在防災教育上的進步,也承載著無數來訪者的情感與記憶。每一處地震遺跡,每一項展示,都在默默提醒我們,那段傷痛歷史並未走遠。然而,我們對抗自然的力量,並非源自恐懼,而是源自對生命的尊重與守護。當你走進這座園區,感受那因地震而隆起的操場,或是走過曾經遭受重創的教室,你會發現,這不僅僅是歷史的展示,更是我們每一個人的責任與使命。

-----廣告,請繼續往下閱讀-----

來吧,今年九月,走進921地震教育園區,一起在這裡找尋對未來的啓示,為台灣的下一代共同築起一個更堅固、更安全的家園。

圖:今年九月,走進921地震教育園區 / 圖片來源:劉志恆/青玥攝影

延伸閱讀:
高風險? 家踩「斷層帶、地質敏感區」買房留意
「我摸到台灣的心臟!」法國地質學家安朔葉讓「池上斷層」揚名國際
百年驚奇-霧峰九二一地震教育園區|天下雜誌

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
208 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

7
1

文字

分享

0
7
1
你聽過「量子意識」嗎?電子雙狹縫實驗讓人猜測意識會影響物質世界,真的假的?
PanSci_96
・2024/03/06 ・3805字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

在市面上,我們常會看到號稱運用量子力學原理的商品或課程,像是量子內褲、量子能量貼片、量子首飾、量子寵物溝通、量子速讀、量子算命、量子身心靈成長課程等等。有人說,量子力學代表了意識具有能量,藉由調整心靈的共振頻率,就能保持身心健康,只要你利用量子力學原理進行療癒或冥想,就能提昇自己的能量,人能長高、身體變壯、每次考試都考一百分;又像是,量子力學就代表一種信息場,讓你跟別人有心電感應,只要轉念,讓宇宙能量幫助你,你就能發大財還能避免塞車。也有人說,別人吃一個下午茶,你也馬上吃一個下午茶,別人喝一杯咖啡,你也馬上喝一杯咖啡,別人跟家人吵架,你也馬上找一件事跟家人吵架,這就是量子糾纏。

然而,量子到底是什麼?跟身心靈、宗教和玄學真的扯得上關係嗎?是否真能幫助你維持健康又賺大錢呢?

在這一系列影片裡,我們就要來討論,量子力學的原理為何?背後又是基於哪些科學的研究成果。等你看完之後,相信對於量子力學跟上述五花八門商品究竟有沒有關係,心裡自然會有所答案。

量子力學和意識有關?

坊間常會聽到量子力學跟意識有關的說法;或許也是因為這樣,量子力學被許多身心靈成長課程甚至玄學拿來作為背書。但,量子力學真的是這樣子嗎?

說到量子力學跟意識的關係,我們就必須來看看,量子力學最著名的實驗之一,20 世紀的物理學大師費曼(Feynman)甚至曾經說過,這個實驗「包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。」它,就是雙狹縫干涉實驗。

-----廣告,請繼續往下閱讀-----

雙狹縫干涉實驗

現在我拿的器材,上面有兩道狹縫,中間間隔了非常短的距離。等一下,我們會讓雷射光通過這兩道狹縫,看看會發生什麼事。

我們看到,雷射光在打向雙狹縫之後,於後面的牆上呈現有亮有暗的條紋分布,這跟我們在國、高中學過的波的性質有關。

在兩道光波的波峰相會之處,會產生建設性干涉,即亮紋的位置;而暗紋的部分,則是來自破壞性干涉,是兩道光的波峰和波谷交會之處,亦即,光的效應被抵銷了。

在歷史上,雙狹縫干涉實驗占有非常重要的地位。19 世紀初,英國科學家、也是被譽為「世界上最後一個什麼都知道的人」的湯瑪士.楊(Thomas Young),利用雙狹縫實驗,證明了光是一種波。

-----廣告,請繼續往下閱讀-----

那麼,如果我們拿不是波的東西,來進行雙狹縫實驗,會看到什麼結果呢?讓我們試驗一下。

現在我手邊有一堆的彈珠,前面是用紙板做成的兩道狹縫,後面則是統計彈珠落點的紙板。我們讓這些彈珠朝狹縫的地方滾過去,並在彈珠最後的落點劃下記號;若在同樣位置的記號越多,就代表有越多彈珠打中該位置。

在丟了一百顆彈珠之後,我們可以看到,扣除掉一部份因為路徑被擋住、通不過狹縫的彈珠之外,彈珠最終抵達的位置,大致分別以兩道狹縫的正後方為最多,呈現兩個區塊的分布,不像先前光的雙狹縫干涉實驗中,出現明暗相間的變化。

所以,我們得到結論:若是拿具有物理實體的東西進行雙狹縫實驗,因為其一次只能選一邊通過,所以落點最終只會聚集在兩個狹縫後方的位置;而且要是行進的路徑不對,還可能會被擋住。

-----廣告,請繼續往下閱讀-----

至於波的情形,那就不同了,只要狹縫的大小適當,波可以同時通過兩個狹縫,並互相干涉,產生明暗相間的條紋。

換言之,是波,還是物質,兩者在雙狹縫實驗的表現是截然不同的。

只不過,以上的實驗似乎並沒有什麼太令人感到意外的地方,我們也看不出來,它跟量子,還有意識,到底有什麼關係?事實上,若要真正顯示出它的獨特之處,就要來看電子的雙狹縫干涉實驗。

電子的雙狹縫干涉實驗

我們知道,電子是組成原子的基本粒子之一,而原子又組成了世間萬物。可以說,電子是屬於物質的一種極微小粒子。

-----廣告,請繼續往下閱讀-----

在電子的雙狹縫干涉實驗,科學家朝雙狹縫每次發射一顆電子,並在發射了很多顆電子之後,觀察電子的最終落點分布會怎麼呈現。

既然電子是物質的微小粒子,那麼在想像中,應該會跟我們前面使用彈珠得到的結果差不多,電子會分別聚集在兩道狹縫後方的區域。

從實驗的記錄影片中可以看到,在一開始、電子數量還很少的時候,其落點比較難看得出有明顯規律,但隨著電子的數目越來越多,我們慢慢能夠看出畫面上具有明暗分布,跟使用光進行雙狹縫實驗時得到的干涉條紋,有著類似的結構。

這樣的結果,著實令人困惑。直覺來想,既然電子是一顆一顆發射的,它勢必不可能像光波一樣,同時通過兩個狹縫,並且兩邊互相干涉,產生明暗相間的條紋。

-----廣告,請繼續往下閱讀-----

但無可否認,當我們用電子進行雙狹縫實驗時,最後得到的結果,看起來就跟干涉條紋沒什麼兩樣。

對這出人意表的觀測結果,為了搞清楚發生什麼事,科學家又做了更進一步的實驗:

在狹縫旁放置偵測器,以一一確認這些電子到底是通過哪一個狹縫、又如何可能在通過狹縫後發生干涉。

這下子,謎底就能被解開了――正當大家這麼想的時候,大自然彷彿就像在嘲笑人類的智慧一樣,反將一軍。

科學家發現,如果我們去觀測電子的移動路徑,只會看到電子一顆一顆地通過兩個狹縫其中之一,並最終分別聚集在兩個狹縫的後面――換言之,干涉條紋消失了!

-----廣告,請繼續往下閱讀-----

在那之後,科學家做過無數類似的實驗,都得到一樣的結果:只要你測量了電子的路徑或確切位置,那麼干涉條紋就會消失;反過來說,只要你不去測量電子的路徑或位置,那麼電子的雙狹縫實驗就會產生干涉條紋。

在整個過程中,簡直就像是電子知道有人在看一樣,並因此調整了行為表現。

在日常生活中,若有人要做壞事,往往會挑沒人看得到的地方;反過來說,當有其他人在看,我們就會讓自己的言行舉止符合公共空間的規範。

量子系統也有點像這樣,觀測者的存在與否,會直接影響到量子系統呈現的狀態。

-----廣告,請繼續往下閱讀-----

只不過,這就帶出了一個問題:到底怎麼樣才算是觀測?如果我們在雙狹縫旁邊只放偵測器不去看結果算嗎?我們不放偵測器只用肉眼在旁邊看算嗎?或是,整個偵測過程沒有人在場算嗎?

這就是量子力學裡著名的觀測問題(measurement problem)。

結語

在量子力學剛開始發展的數十年,有許多地方都還不是那麼清楚,觀測問題就是其一。在歷史上,不乏一些物理學家,曾經認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。

如果真是這樣的話,那麼「意識」就存在非常特別的意義,而且似乎暗示人的意識能夠改變物質世界的運作。

有一些物理學家曾認真思考,是否要有「人的意識」參與其中,才能代表「觀測」。圖/envato

可以想見地,上述出自量子力學觀測問題的猜測,後來受到部分所謂靈性導師跟身心靈作家的注意,於是,形形色色宣揚心靈力量或利用量子力學原理進行療癒、冥想或身心靈成長的偽科學紛紛出籠,直到近年都還非常流行。

另一方面,可能因為量子兩個字帶給人一種尖端科學的想像,坊間琳瑯滿目的商品即使跟量子力學一點關係都沒有,也都被冠上量子兩字;除此之外,商品宣傳裡也常出現一堆量子能量、量子共振等不知所謂的概念,不然就是濫用量子力學的專有名詞如量子糾纏、量子穿隧等,來幫自己的商品背書。只要有量子兩字,彷彿就是品質保證,讓你靈性提升、身體健康、心想事成。

對此,我就給三個字:敢按呢(Kám án-ne)?

事實上,量子力學至今仍是持續演進的學問,我們對量子力學的理解也隨時間變得越來越豐富。現代的物理學家,基本上不認為我們可以用意識改變物質世界,也不認為「意識」在「觀測」上佔據一席之地,甚至可以說正好相反,人的意識在觀測上根本無關緊要。

不過,我們不會那麼快就直接進入觀測問題的現代觀點。在之後接下來的幾集,我們會先從基本知識開始說起,循序漸進,讓你掌握量子力學的部分概念。而在本系列影片的最後一集,我們才會重新回到觀測問題,並介紹量子力學領域近幾十年來在此問題上獲得的進展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1244 篇文章 ・ 2378 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

10
8

文字

分享

2
10
8
多重宇宙與量子力學的派系之爭
linjunJR_96
・2022/05/09 ・5054字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/林祉均

從《瑞克與莫蒂》到最近的《媽的多重宇宙》和《奇異博士2:失控多重宇宙》,多重宇宙的浪漫概念一直是各種作品愛用的元素。主角穿越到其它平行宇宙中,遇見各種不同的可能性,實現未能完成的心願。

可惜的是,現實中似乎沒有這種好事情。眼睛所看到的世界就只有一個,一切就照著原本的劇本發生,沒有穿越或是重來的機會。

不過,這些幻想作品的描述,其實並不如你所想的這麼天馬行空。創作科幻作品所需要的想像力,對於科學家來說,其實也是重要的技能。打從二十世紀中期開始,正經的量子物理討論中,便出現了「多重世界」的說法。

「多重世界」是對於量子現象許多詮釋中的其中一種。實事求是的物理學家為什麼要訴諸這麼虛幻的說法呢?說到底,他們也是情非得已。這一切要從量子物理帶給他們的難題說起。

在量子時代前,物理學家的世界

在量子時代之前,物理學家用來解釋世間萬物的方法是「古典力學」與「電磁學」。

-----廣告,請繼續往下閱讀-----
  • 「古典力學」是「牛頓運動定律」的進階版,解釋了「具有質量的粒子(物質)如何運動」
  • 「電磁學」則是一切電磁波相關技術(你的手機訊號)的基礎,解釋了「不具質量的能量如何在空間中以波動傳遞」。

「古典力學」與「電磁學」把世間分成「粒子」與「波動」兩種不同的問題來解釋,彼此井水不犯洪水,分別「近乎完美地」解釋所有日常生活中常見的現象,然而,有一個現象在深入研究之後,卻出現了矛盾,這個現象就是雙狹縫實驗(Double-slit experiment)

雙狹縫實驗的詭異之處

如果讓光束通過一條狹縫,會在後方的屏幕映照出中間較亮,兩側較暗的圖樣。奇妙的是,如果將實驗改成兩條狹縫,屏幕上的圖案並不會等於兩個單狹縫的圖案相加,而是會變成亮暗間隔的條紋。這種圖案只能由波動產生,因為波峰和波谷會互相抵銷,因此產生較暗的部分。

雙狹縫實驗成為了光是波動的證據,屬於「電磁學」解釋的範疇,後續的推導也證明了光是一種電磁波。

上圖為可見光的單狹縫實驗結果,下圖為可見光的雙狹縫實驗結果。圖/Wikipedia

如果故事停在這裡倒也還好,但後來卻觀測到「用電子或中子打入雙狹縫,也會得到跟光進入雙狹縫時類似的結果」。

-----廣告,請繼續往下閱讀-----
電子經過雙狹縫後所形成的圖形,圖/Wikipedia

這問題就有點大了,因為電子或中子這些粒子的運動,在雙狹縫實驗時必須要跟光一樣,用波動才能解釋,傳統物理「粒子與波動」的二分法似乎失效了。

量子時代新概念——波函數(波包)

因應這些觀察,物理學家開始用「波動力學」來解釋雙狹縫實驗,也就是薛丁格方程式(Schrödinger equation)

「波動力學」是將所有物體都當成是「一小段波動」,也就是波函數,並寫下它如何隨著時間演化。原本的粒子現在變成像是下圖中一塊一塊的「波包」,在空間中隨著薛丁格方程式移動。

圖/Wikipedia

這些「波包」成功解釋了粒子如何在穿過雙狹縫後互相干涉,形成亮暗條紋。但問題是,沒有人看得到這些波函數(波包),在觀測時,看到的只有一顆顆電子通過狹縫撞在屏幕上。

雖然薛丁格所提出的方程式與運算結果完全符合實驗結果,但為什麼這樣算是對的?波函數(波包)又代表什麼?卻沒有一個很好的解釋。

波函數不是實體,而是物體的機率分布——哥本哈根詮釋

為了解釋這個問題,首先是由海森堡一夥人提出的「哥本哈根詮釋」,他們認為:波函數代表的是物體出現位置的機率分布,而薛丁格方程式規範的是機率分布如何隨時間改變。

當我們介入觀察,波函數便會依照這個機率分布隨機地塌縮至一個特定的值,這個值就是我們所觀察到的物理量。

以雙狹縫來說,穿過狹縫後的波函數產生了波動會有的干涉現象。後方的屏幕讓波函數塌縮,因此出現了一個確切的光點。至於光點會出現在哪裡,完全是機率性的,機率多寡由波函數主掌。在波峰和波谷抵銷的地方,機率很小,幾乎不會有光點出現;反之亦然。下圖可以看到個別粒子的位置看似隨機,但隨著實驗的粒子數增加,波函數的機率分布開始浮現。

-----廣告,請繼續往下閱讀-----
當越來越多電子經過雙狹縫後(a 到 e),所形成的圖形(位置分布),就是由波函數的機率分布決定的,圖/Wikipedia

編按:哥本哈根詮釋認為,波函數涵蓋了物體落到任何地方的所有可能性,且每個可能性都有一個機率值。而薛丁格方程式算的是每一種可能性的機率變化。

在多個相同物體重複經歷相同的事件(例如電子不斷進進入雙狹縫),就會看見波函數控制物體運動過程的證據(屏幕上最後的圖形)。

至於「單個物體」為什麼會移動到某個確定的位置,以及「單個物體」實際上是怎麼移動的,基本上是不可知的,一切都是波函數的決定,因此哥本哈根詮釋就以「崩塌」,來代稱其他可能性消失的情況。

對哥本哈根詮釋的質疑

約一百年後的今天,這個詮釋已經成為主流,但當時的學界中有一部份人並不買單。

一來是因為這個說法直接擁抱了機率性,物理世界完全交由波函數塌縮的隨機過程來決定,我們能知道的只有波函數的樣貌;二來則是「塌縮」這種語焉不詳但又扮演中心角色的詞彙,讓人有一種硬湊答案的感覺。另外,人或是儀器作為觀察者的角色為何如此重要,好像也說不清楚。

為了點出荒謬之處,薛丁格搬出了他舉世聞名的貓咪。

由於原子的放射衰變也是由波函數描述,我們可以用放射性原子打造一種可以殺死貓咪的裝置,然後把貓咪跟裝置關在箱子裡。隨著時間過去,原子的狀態處於衰變和未衰變的機率分布,因此貓咪也同樣處於「死和活的機率分布」。直到觀測者將箱子打開,才能將原子和貓咪的波函數塌縮。

這個實驗和樂透開獎的情況本質上並不一樣。雖然樂透好像也是機率問題,但是每個樂透號碼球都是巨觀的、可以被古典力學描述的物體。因此,早在開獎前,每個號碼球的位置就都已經決定好了,只是沒有人能夠準確預測。

-----廣告,請繼續往下閱讀-----

可是,原子衰變是量子的範疇。量子理論最初的發展,便是起源於光電效應和原子光譜這類小尺度世界,這些領域中的實驗觀察無法由古典力學概括,只能用波函數的機率來解釋。

而薛丁格的目標就是將微小的量子物體(原子)和巨觀的生物(貓咪)牽連在一起,試圖說明由機率分布和塌縮主宰的物理世界有多麼讓人不舒服。

隨著哥本哈根勢力的擴張,薛丁格的這隻貓也逐漸轉型成展示量子世界奇妙之處的招牌。圖/Wikipedia

在薛丁格方程式和哥本哈根學派交鋒過後的幾十年內,關於觀察和塌縮究竟是怎麼一回事,仍有許多討論。後續的許多研究,在哥本哈根的架構下,提出了修補的細節,許多人也就漸漸接受了機率性的塌縮這件事。

爾後,有另一批人馬企圖想出一種不需要機率塌縮的量子世界,其中包括不喜歡上帝丟骰子的愛因斯坦等人。他們認為粒子一直都有明確的位置與軌跡,只是其演化方式不如我們所想像,背後有不為人知的物理機制,而哥本哈根的世界觀只是統計的結果,並不是完整的圖像。

這類詮釋統稱為隱變數詮釋(hidden variable theory),歷史上有許多不同版本。不過在貝爾定理(Bell’s theorem)的相關實驗後,局域性的隱變數理論幾乎完全被排除。現今還站得住腳的隱變數理論,聲稱波函數像是電磁場一樣佈滿整個空間,能夠以特定方式引導粒子的運動軌跡。

-----廣告,請繼續往下閱讀-----

全部的可能性都持續存在——多世界詮釋

這些新理論儘管在某種程度上去掉了塌縮的成分,但聽起來依然十分玄妙。在 1950 年代,有位美國物理學家艾弗雷特(Hugh Everett III)在他的博士論文中提出了全新的方案:

「大家都不要吵了,波函數中所有可能發生的機率,確實就是發生了,只是所有可能性以互不交錯的世界線同時存在。」

以貓咪為例子,當你打開箱子時,並沒有把貓咪的波函數塌縮到單一的死或活狀態,而是將原本的世界線一分為二,當中分別有一個看到死貓的你和看到活貓的你。於是,波函數永遠不需要塌縮到我們看到的單一狀態。

換句話說,這種觀點中沒有所謂「非量子」的「觀察者」來讓波函數成為現實。世界上所有的原子、貓咪、人,都被涵蓋在整個宇宙的波函數中。艾弗雷特原本的論文標題並沒有提到多重世界,而是稱之為全體波函數理論(Theory of the Universal Wavefunction)。波函數描述的不是觀察的機率分布——波函數就是本體,根據薛丁格方程式演化出各個世界線。

或許是因為太過前衛,他的這篇論文發表時,幾乎沒有引起任何討論,甚至沒什麼人花時間質疑。艾弗雷特最終抱著遺憾離開學術界,跑去五角大廈工作。所幸他的想法在十幾年後,終於在幾位支持者的努力之下,以「多世界詮釋(the many-worlds interpretation)」的名號發揚光大。

-----廣告,請繼續往下閱讀-----

儘管一開始聽起來很難接受,但是人們發現,這種詮釋其實並不比原本的塌縮詮釋荒唐。

它同樣能夠解釋所有的實驗現象,而且比起機率性的塌縮,總體波函數可以完全遵循方程式的預測,不需要引入量子世界外的觀察者,來讓波函數塌縮至單一狀態。許多物理學家認為這是一套更簡潔的思考方法。到今天,多世界詮釋已經累積了不少聲量和支持者。

尋找多重宇宙

那麼多重世界線真的存在嗎?要找到答案恐怕不容易。如果艾弗雷特所言不假,也就是所有人和所有儀器都是總體波函數的一部份,那麼便沒有人能立於一切之外,看見總體波函數中的所有可能,或是做實驗來驗證多重世界的存在。

不過,除了量子理論的研究者之外,還有一群人也十分認真看待多重宇宙的想法。在宇宙學中,有一理論預測我們的可觀測宇宙只是顆小泡泡,身處許多其它的泡泡宇宙之中,也就是實際意義上的多重宇宙。這些宇宙不斷地處於膨脹階段,而這個理論被稱為永恆暴脹(eternal inflation)

無窮宇宙,在宇宙中存有大量的可觀測區(有著紅色十字中心的紅圈),我們的「宇宙」不過是其中的一個可觀測區而已
多重宇宙理論認為我們的可觀測宇宙只是顆小泡泡,身處許多其它的泡泡宇宙之中。圖/Wikipedia

相較於多世界作為量子力學的詮釋,永恆暴脹是個科學理論,需要可以被驗證。照理來說,任何來自其它宇宙泡泡的訊號都跑不贏膨脹的速度,永遠無法抵達我們的可觀測宇宙。不過在膨脹初期,泡泡之間的碰撞會在宇宙背景輻射的地景上留下溫度足跡。大約十年前,科學家就在威爾金森微波各向異性探測器(WMAP)的觀測資料中,找到了四個統計上顯著的碰撞痕跡。

-----廣告,請繼續往下閱讀-----

那我們怎麼還不出發前往其它宇宙呢?雖然在分析方法上是個振奮人心的嘗試,但還需要補足更多觀測資料才能做更好的判斷。繼 WMAP 後,普朗克衛星(Planck)也帶回了解析度高三倍的背景輻射影像,但關於多重宇宙是否真的存在,依然沒有定論。

結語

回顧歷史,隨著量子實驗的結果浮上檯面,不同的理論模型往往需要數十年來分出高下。雙狹縫實驗在 1801 年就已經完成,但多世界詮釋的誕生是 150 年後的事。正如同二十世紀初的量子物理,膨脹理論和多重宇宙都是目前發展空間很大的領域。或許還要一段時間,我們才能見證這些科幻內容成為課本中的教材。

不論結果如何,總體波函數中無限分岔的可能性,以及膨脹中的多重泡泡宇宙,都展示了科學研究的迷人之處,那就是——科學和科幻文本都一同站在人類想像力的最前端。

-----廣告,請繼續往下閱讀-----
所有討論 2
linjunJR_96
33 篇文章 ・ 905 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。