Loading [MathJax]/extensions/tex2jax.js

1

2
1

文字

分享

1
2
1

超大質量的黑洞會吞掉銀河系嗎?──黑洞大解密(三)

htlee
・2018/07/30 ・2124字 ・閱讀時間約 4 分鐘 ・SR值 469 ・五年級

-----廣告,請繼續往下閱讀-----

本文為系列文章,前文請見:
黑洞是什麼?速度要多快才能脫離黑洞呢?──黑洞大解密(一)
太陽會變成黑洞嗎?可不可以利用黑洞做時空旅行?──黑洞大解密(二)

超大質量黑洞是什麼?

依照黑洞的質量來分類,黑洞主要分成兩種,一種是恆星質量黑洞,這是超過 25 倍太陽質量恆星演化的最終結果,這類黑洞的質量大約是幾倍到幾十倍的太陽質量之間。另一種是超大質量黑洞,超大質量黑洞的質量非常巨大,大約是數十萬到數十億太陽質量。我們銀河系中心有一個超大質量黑洞,這顆黑洞位在人馬座的方向,所以被稱為人馬座 A*(Sgr A*),它距離我們約 26000 光年。

錢卓 X 光觀測衛星拍攝人馬座 A*的 X 射線影像,圖/NASA

人馬座 A* 黑洞的質量有多大呢?算出人馬座 A* 黑洞質量的方法,跟算出太陽質量的方法是一樣的。我們知道地球跟太陽的距離和地球繞太陽的時間,運用簡單的牛頓力學就可以得到太陽的質量。

科學家用地面上的巨大望遠鏡,經過數十年的觀測,發現幾顆恆星以橢圓軌道繞著人馬座 A* 運行,人馬座 A* 位在橢圓的焦點上。這些恆星都繞著人馬座 A* 運行,不過它們並沒有被黑洞吞食。這些恆星運行的速度非常快,如果不是人馬座 A* 有強大的重力把它們拉住,它們早就不知道飛到哪裡去了。

其中一顆編號 S2 的恆星繞人馬座 A* 的週期是 15.6 年,S2 距離人馬座 A* 最近時只有 120 天文單位,也就是地球和太陽距離的 120 倍。根據 S2 的運行軌道,科學家就可以算出人馬座 A* 的質量,這個黑洞的質量大約是太陽質量的 400 萬倍!

-----廣告,請繼續往下閱讀-----
根據 S2 的橢圓軌道和繞人馬座A* 的週期,運用牛頓力學就可以算出人馬座A* 的質量。圖/Eisenhauer, F. et al.

人馬座 A* 這個超大質量黑洞會吞掉整個銀河系嗎?當然不會,因為它連距離非常近的恆星 S2 都吃不到,其他的天體離人馬座 A* 更遠,更不會受人馬座 A* 影響,所以人馬座 A* 不會吞掉整個銀河系。

人馬座 A* 事實上正在挨餓中?

我們的銀河系中心有個巨大黑洞,其他星系的中心也有巨大黑洞嗎?根據天文學家的研究,幾乎每個大質量星系的中心都有一個超大質量黑洞存在著。距離我們相當近的仙女座星系,就有一顆大約 1 億倍太陽質量的黑洞!另外,M87 橢圓星系裡的超大質量黑洞則超過 10 億倍太陽質量!

目前人馬座 A* 並不活躍,也就是它幾乎沒有在進食,這一點可以從人馬座 A* 的 X 射線影像看出來。超大質量黑洞發出愈強的 X 射線,代表黑洞吞食愈多物質、愈活躍,而目前人馬座 A* 發出的 X 射線並不強烈,表示人馬座 A* 沒有在進食。不過人馬座 A* 並不是在節食不吃東西,而是食物吃完了,又沒有人持續餵它食物,所以這個超大質量黑洞目前在挨餓中⋯⋯。

不過,一樣是超大質量黑洞,類星體的超大質量黑洞可就幸運多了,它現在可正在大吃特吃呢!類星體是一種相當特別的天體,它的超高亮度正是因為這顆吃貨超大質量黑洞,類星體 3C 273 就是一個例子。

-----廣告,請繼續往下閱讀-----

類星體 3C 273 是什麼?

1959 年,英國劍橋大學發表第三個無線電波天體目錄(Third Cambridge Catalogue of Radio Sources,簡稱為 3C),這是當時最完整的無線電天體目錄之一,目錄中一共有 471 個天體。這些無線電波天體就以 3C 加上流水號命名,3C 273 就是這個目錄中第 273 號天體。

天文學家在無線電波發現新的天體時,通常會先去找這個天體在可見光相對應的天體,這是因為天文學家對可見光的天體比較熟悉。這 471 個天體中,有些是已知會放出無線電波的電波星系和超新星殘骸,例如 3C 405 是天鵝座 A 電波星系, 3C 461 則是仙后座 A 超新星殘骸。

不過天文學家對其中一些無線電波源卻是一無所知,例如 3C 273。天文學家在仔細比對 3C 273 的位置後,發現 3C 273 在可見光是一個像星星的天體,看起來相當於 13 等星。因為這類的天體看起來像是一顆星星,所以稱它們為「類星體」。

哈伯太空望遠鏡拍攝的 3C 273 影像,3C 273 看起來就像是一顆星,它的十點鐘方向有一個從黑洞噴發出來的噴流。 圖/NASA

根據光譜的觀測,3C 273 的紅位移是 0.16,表示 3C 273 距離我們相當遙遠;即使看起來像顆星星,卻不屬於銀河系,它是距離我們大約 24 億光年的天體!從 3C 273 的距離,推算它的亮度大約是銀河系這樣星系的百倍以上!

-----廣告,請繼續往下閱讀-----

為什麼類星體那麼亮?

根據天文學家的研究,類星體跟我們的銀河系都一樣是星系,它們的核心都有一個超大質量黑洞,不同的地方是類星體的超大質量黑洞正在吞食吸積盤上的物質,而銀河系內的超大質量黑洞則正在節食。銀河系的能量主要來自於恆星發出的光,而類星體則來自於環繞黑洞的吸積盤,吸積盤上的物質相互摩擦,發出巨大能量!這種產生能量的效率比恆星的核融合反應還要高約十倍以上!這就是為什麼類星體會這麼亮的原因。

類星體中超大質量黑洞的示意圖。超大質量黑洞有一個吸積盤,它在吸積物質時也會形成一股巨大的噴流。 圖/NASA

類星體中的超大質量黑洞是怎麼來的?是靠恆星質量黑洞吞食黑洞和恆星而形成的嗎?如果超大質量黑洞是恆星質量黑洞和恆星合併來的,那至少需要數萬顆恆星質量黑洞或恆星合併在一起,黑洞和黑洞(或恆星)之間的距離遙遠,要讓這麼多天體合併在一起相當困難。要如何形成一顆超大質量黑洞?這些問題對科學家來說還是一個未解之謎。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
htlee
19 篇文章 ・ 9 位粉絲
屋頂上的天文學家-李昫岱,中央大學天文所博士,曾經於中央研究院天文所和美國伊利諾大學厄巴納-香檳分校從事研究工作。著有《噢!原來如此 有趣的天文學》、《天文很有事》,翻譯多本國家地理書籍和特刊。 目前在國立中正大學教授「漫遊宇宙101個天體」和「星空探索」兩門通識課。天文跟其他語文一樣,有自己的文法和結構,唯一的不同是天文寫在天上!現在的工作是用科學、藝術和文化的角度,解讀、翻譯和傳授這本無字天書,期望透過淺顯易懂的方式介紹天文的美好!

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
用「世界上最大的望遠鏡」觀測黑洞!臺灣也參與其中!
PanSci_96
・2024/07/15 ・3876字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

台北時間 1 月 18 號下午四點,中研院天文所公布了一張黑洞照!別小看這張照片,裡頭有玄機!不論是驗證愛因斯坦的廣義相對論,還是要研究 M87 黑洞有沒有什麼特性,都得從這張照片著手。

為什麼我們能拍到比之前更清楚的照片呢?這是因為,這次「事件視界望遠鏡」的團隊,加入了格陵蘭望遠鏡的觀測數據。它不僅是全球第一座位於北極圈內的重要天文觀測站,此外,這座觀測站,也和台灣脫不了關係喔!

就讓我們來看看,這張黑洞照到底是怎麼拍的?這幾張黑洞甜甜圈照,又藏有哪些重要資訊?

近年的黑洞觀測

大家應該都還記得 2019 年的黑洞熱潮,當年 4 月,人類第一張黑洞照——M87 的真面目,被公開了,我們終於取得了黑洞存在的最直接證據。3 年後的 2022 年 5 月,我們也終於看清楚那個在我們所在的星系中,在銀河系最深處的黑洞——人馬座 A*。這兩張像是甜甜圈的照片,掀起黑洞熱潮,也帶給我們不少感動,想必很多人都還記得。

-----廣告,請繼續往下閱讀-----
圖/ESO、EHT Collaboration

但是,這兩張模糊的甜甜圈,不管對於科學家還是我們,想必都還不滿足!我們想看到的,是能跟電影星際效應中一樣,帶給我們強烈震撼的完整黑洞樣貌。

很快就有好消息,在 M87 照片公開的三年後。2022 年 4 月,天文學家展示了另一組 M87 的照片,除了原本的黑洞以外,還能看到外圍三條噴流,與圍繞在黑洞旁邊的吸積流,更加完整的黑洞結構同時存在在一張照片上。

圖/Lu, RS., Asada, K., Krichbaum, T.P. et al. A ring-like accretion structure in M87 connecting its black hole and jet. Nature 616, 686–690 (2023). https://doi.org/10.1038/s41586-023-05843-w

有趣的是,在 2022 發表的觀測結果中,黑洞似乎胖了一圈,直徑比 2019 年發表的結果大了 50%。這可不是說黑洞在幾年間就變胖了 1.5 倍,不用擔心,宇宙不會因此毀滅。這主要是選用觀察的電磁波波段不一樣,2019 年觀察的電磁波波長是 1.3 毫米,2022 年的波長則是 3.5 毫米。但其實,1.3 毫米比 3.5 毫米的電磁波穿透力更好。也就是 2019 年的影像更接近黑洞的實際長相。

對了,2022 年的黑洞照並不是事件視界望遠鏡發的。你知道「事件視界望遠鏡」並不是唯一在進行黑洞觀測的計劃嗎?

-----廣告,請繼續往下閱讀-----

為了觀測黑洞,全球的電波望遠鏡進行同步串聯,打算打造一個等效直徑幾乎等於地球直徑的超大望遠鏡。因為我們無法直接打造一面面積跟地球一樣大的望遠鏡,因此我們得將分布在各地的望遠鏡同步串聯,由數據分析來拼湊出整體樣貌。你可能不知道,全球的大型黑洞觀測國際合作計畫其實有兩個,一個就是大家比較常聽到的「事件視界望遠鏡 」,簡稱 EHT,主要以 1.3 毫米的波段進行觀測,也就是大家熟悉的甜甜圈照。而另一個大計畫是「全球毫米波特長基線陣列」,簡稱 GMVA,以 3.5 毫米為主要觀測波段。2018 年 GMVA 還加入了新成員,讓我們能看到最新的這張照片。其中一個是超強力助手 ALMA,另一個,就是第一座位於北極圈內,由台灣中研院主導的格陵蘭望遠鏡 GLT。

為什麼黑洞會那麼難觀察?

現在大家都知道,我們已經能確實拍到黑洞了。即使黑洞的本體是全黑的,圍繞在黑洞周邊快速旋轉的物質,也會因為彼此摩擦與同步輻射,放出強烈的電磁波,被我們看到。

但即便它會發光,仍然是個難以觀測的天體,直到近年,我們才補捉到它樣貌。這是因為,比起亮度,更難的地方在於尺寸,黑洞好小,更準確來說,是看起來好小。M97 和人馬座 A* 實際上都比太陽大上不少,但因為距離我們十分遙遠,從地球上來看,人馬座 A* 與 M87 黑洞的陰影尺寸,分別是 50 微角秒和 64 微角。從我們的視角來看,就跟月球上的一顆甜甜圈一樣大。

但即便很困難,看到黑洞對我們來說十分重要,我們需要有確切的證據來證明我們對於黑洞的預測並沒有錯。例如在 2022 年有照片證明「銀河系中間真的有黑洞!」之前,2020 的諾貝爾物理獎頒獎時,仍以「大質量緻密天體」來稱呼銀河系中央的「那個東西」。現在,從黑洞噴流、吸積盤、自轉軸、到光子球層,我們還有好多黑洞特性,需要更高解析度的照片來幫我們驗證,驗證廣義相對論的預測是否正確,而我們對於黑洞與宇宙的認識是否需要調整。

-----廣告,請繼續往下閱讀-----

好的,我們知道為了追星,嗯,是追黑洞,科學家無不卯足全力提升望遠鏡的解析度。但是為何格陵蘭望遠鏡的加入,就能提升照片解析度呢?

組成世界上最大的望遠鏡?

越大的望遠鏡看得越清楚,為了將全世界的電波望遠鏡串聯,打造等效口徑幾乎等於地球的超大望遠鏡。這些望遠鏡使用了特長基線干涉測量法,這些望遠鏡則稱為電波干涉儀。

這些電波干涉儀通常由一系列的天線組成,例如位於智利的阿塔卡瑪大型毫米及次毫米波陣列 ALMA,就是由 66 座天線組成,最遠的兩座天線距離長達 16 公里。在觀測同一個訊號時,透過比較每座望遠鏡收到訊號的相位差,就能計算出訊號的方位角,進一步推算出原始訊號的樣貌。而當這些天線數量越多、距離越遠,就等於是一座更高解析度、口徑更大的望遠鏡。例如 ALMA 的影像解析度高達 4 毫角秒,能力比知名的哈伯太空望遠鏡還要好上 10 倍。另一座位於夏威夷的次毫米波陣列望遠鏡 SMA,則是由 8 座天線組成,雖然單座天線的直徑只有 6 公尺,卻足以以模擬出一座直徑 508 公尺的大型望遠鏡。

利用相同技術,只要透過原子鐘將全球的望遠鏡同步,就能模擬出直徑幾乎等於地球直徑的超巨大望遠鏡,也就是「事件視界望遠鏡 」或是「全球毫米波特長基線陣列」。

-----廣告,請繼續往下閱讀-----

沒錯,格陵蘭望遠鏡 GLT 也扮演重要角色。但為什麼要把望遠鏡建在北極圈內?

畢竟這可不簡單,為了讓望遠鏡能在最低零下 70 度 C 的嚴苛環境中工作,還期望它能發揮超越過去的實力,科學家改造了不少設備,甚至還要加裝除霜裝置。

但這一些都是值得的,因為光是 ALMA、SMA、GLT 三座望遠鏡,就可以在地球上構成一個大三角型,等於一台巨大的電波干涉儀。

圖/First M87 Event Horizon Telescope Results. II. Array and Instrumentation – Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Map-of-the-EHT-Stations-active-in-2017-and-2018-are-shown-with-connecting-lines-and_fig1_333104103 [accessed 15 Jul, 2024]

而對於事件視界望遠鏡來說也十分重要,因為在地球的南邊已經有南極望遠鏡了,東西向則有許多來自中低緯度的望遠鏡。剩下的關鍵位置,當然就是北極的格陵蘭望遠鏡了。而特長基線干涉技術要在不同頻段發揮作用,每個望遠鏡的相對位置也十分重要。格陵蘭的地理位置與良好的大氣環境,讓格陵蘭望遠鏡可以觀測 230GHz 這個特殊波段的訊號,並且補足黑洞的諸多細節。根據官方消息,未來還要真的登高望遠,更上一層樓地把整座格陵蘭望遠鏡搬上格陵蘭島山頂的峰頂站台基地 (Summit Camp ),觀測 690GHz 的特殊訊號,期待能看到黑洞的光子球層,驗證廣義相對論的預測。

-----廣告,請繼續往下閱讀-----

順帶一提,這邊提到的 SMA、ALMA 和格陵蘭望遠鏡,不僅合作關係密切,這些重要計畫台灣還都參與其中!

SMA 是 2003 年啟用,全世界第一座可觀測次毫米波的望遠鏡陣列,也是史密松天體物理台與台灣中研院天文所合作興建與運作的望遠鏡,每年也有許多台灣參與或主導的研究發表。

2013 年啟用,位於智利的 ALMA,則是由東亞、歐洲、北美共同合作的國際計畫,台灣當然也參與其中。擁有66座望遠鏡的 ALMA,也是地面上最大的天文望遠鏡計畫。而有趣的是,由中研院主導的格陵蘭望遠鏡所使用的天線,就是使用 ALMA 的原型機改造而成的!

最後,這次最新的黑洞照就是這張,在 2018 年 4 月拍攝,歷經將近 6 年分析,才正式公布的照片。它與 2017 拍攝,2019 年公開的第一張黑洞照一樣,主角都是 M87。

-----廣告,請繼續往下閱讀-----

你說兩張照片看起來都一樣?嗯,沒錯,雖然還是看得出差異,但兩張照片大致上看起來的確差不多。

這兩張照片所得出的光環半徑相同,代表在相隔一年的拍攝期間,黑洞半徑並沒有產生變化。因為 M87 並不會快速增加質量,所以這個觀測結果非常符合廣義相對論對於光環直徑的預測。並且這張照片也讓我們更加確定,2017 年拍攝到的甜甜圈結構,並不是黑洞的偶然樣貌。

有相同的地方,也有不一樣的地方。這兩張照片光環上最亮的位置逆時針偏轉了 30 度,光是這點,就將開啟下一波的黑洞研究熱潮。透過比較不同時間拍攝的照片,科學家將可以深入研究黑洞的自轉軸角度,以及自轉軸隨著時間偏轉的「進動」現象,並更進一步分析黑洞周圍的磁場與電漿理論。

因為 GLT 的加入,有效提升了 EHT 的影像保真度,科學家能取得更加真實的黑洞照,為未來的黑洞研究打下基礎,例如挑戰很難被拍到的光子環。

-----廣告,請繼續往下閱讀-----

特別感謝中研院天文所研究員,同時也是格陵蘭望遠鏡計畫執行負責人的陳明堂老師協助製作。我們還有一場與陳明堂老師的直播對談,直接來和大家聊聊這次的黑洞結果以及回答各式各樣的黑洞問題。一起繼續來體驗黑洞的魅力吧!

也想問問大家,現在有了一批新資料,你最期待下一次的黑洞成果發表,帶來什麼消息呢?

  1. 我們成功觀察到了霍金輻射!
  2. 黑洞的模擬結果發現超越廣義相對論的新理論!
  3. 黑洞中其實有其他文明,而且我們已經成功接觸了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

4
1

文字

分享

0
4
1
快速通道與無盡地界:科幻作品裡的黑洞——《超次元.聖戰.多重宇宙》
2046出版
・2024/02/08 ・4430字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

星際捷徑

一個無底深淵怎能成為星際飛行的捷徑呢?原來按照愛因斯坦的理論,黑洞是一個時空曲率趨於無限大——也就是說,時空本身已「閉合」起來的區域。但往後的計算顯示,若收縮的星體質量足夠大的話,時空在閉合到某一程度之後,會有重新開敞的可能,而被吸入的物體,將可以重現於宇宙之中。只是,這個「宇宙」已不再是我們原先出發的宇宙,而是另一個宇宙、另一個時空(姑毋論這是甚麼意思)。按照這一推論,黑洞的存在,可能形成一條時空的甬道(稱為「愛因斯坦-羅森橋接」),將兩個本來互不相干的宇宙連接起來。

這種匪夷所思的推論固然可以成為極佳的科幻素材,但對於克服在我們這個宇宙中的星際距離,則似乎幫助不大。然而,一些科學家指出,愛因斯坦所謂的另一個宇宙,很可能只是這一宇宙之內的別的區域。如果是的話,太空船便可由太空的某處飛進一個黑洞之內,然後在遠處的一個「白洞」(white hole)那兒走出來,其間無須經歷遙遠的星際距離。把黑洞和白洞連結起來的時空甬道,人們形象地稱之為「蛆洞」、「蛀洞」或「蟲洞」(wormhole)。

科幻作品裡常以穿越蟲洞作為星際旅行的快速通道。圖/envato

「蛆洞」是否標誌著未來星際旅行的「捷徑」呢?不少科幻創作正以此為題材。其中最著名的,是《星艦奇航記》第三輯《太空站深空 9 號》(Deep Space Nine, 1993-1999),在劇集裡,人類發現了一個遠古外星文明遺留下來的「蛆洞」,於是在旁邊建起了一個龐大的星際補給站,成為了星際航運的聚散地,而眾多精彩的故事便在這個太空站內展開。

我方才說「最著名」,其實只限於《星艦》迷而言。對於普羅大眾,對於「蛆洞」作為星際航行手段的認識,大多數來自二○一四年的電影《星際效應》(Interstellar,港譯:《星際啟示錄》),其間人類不但透過蛆洞去到宇宙深處尋找「地球 2.0」(因為地球環境已大幅崩壞),男主角更穿越時空回到過去,目睹多年前與年幼女兒生離死別的一幕。電影中既有大膽的科學想像,也有感人的父女之情,打動了不少觀眾。大家可能有所不知的是,導演基斯杜化.諾蘭(Christopher Nolan, 1970-)邀請了知名的黑洞物理學基普.索恩(Kip Thorne, 1940-)作顧問,所以其中所展示的壯觀黑洞景象,可不是憑空杜撰而是有科學根據的呢!

-----廣告,請繼續往下閱讀-----
星際效應裡的黑洞景象。圖/wikimedia

那麼蛆洞是否就是人類進行星際探險的寄託所在呢?

然而事情並非這麼簡單。我們不要忘記,黑洞的周圍是一個十分強大的引力場,而且越接近黑洞,引力的強度越大,以至任何物體在靠近它時,較為接近黑洞的一端所感受到的引力,與較為遠離黑洞的一端所感受到的,將有很大的差別。這種引力的差別形成了一股強大之極的「潮汐張力」(tidal strain),足以把最堅固的太空船(不要說在內的船員)也撕得粉碎。

潮汐張力的危險不獨限於黑洞,方才提及的中子星,其附近亦有很強的潮汐力。 拉瑞.尼文(Larry Niven, 1938-,港譯:拉利.尼雲)於一九六六年所寫的短篇〈中子星〉(Neutron Star),正以這一危險作為故事的題材。

尤有甚者,即使太空船能抵受極大的潮汐力,在黑洞的中央是一個時空曲率趨於無限,因此引力也趨於無限的時空「奇點」(singularity)。太空船未從白洞重現於正常的時空,必已在「奇點」之上撞得粉碎,星際旅程於是變了死亡旅程。

然而,往後的研究顯示,以上的描述只適用於一個靜止的、沒有旋轉的黑洞,亦即「史瓦西解」所描述的黑洞。可是在宇宙的眾多天體中,絕大部分都具有自轉。按此推論,一般黑洞也應具有旋轉運動才是。要照顧到黑洞自旋的「場方程解」,可比單是描述靜止黑洞的史瓦西解複雜得多。直至一九六三年,透過了紐西蘭數學家羅伊・卡爾(Roy Kerr, 1934-)的突破性工作,人類才首次得以窺探一個旋轉黑洞周圍的時空幾何特性。

-----廣告,請繼續往下閱讀-----
圖/envato

旋轉的黑洞

科學家對「卡爾解」(The Kerr solution)的研究越深入,發現令人驚異的時空特性也越多。其中一點最重要的是:黑洞中的奇點不是一個點,而是一個環狀的區域。即只要我們避免從赤道的平面進入黑洞,理論上我們可以毋須遇上無限大的時空曲率,便可穿越黑洞而從它的「另一端」走出來。

不用說,旋轉黑洞(也就是說,自然界中大部分的黑洞)立即成為科幻小說作家的最新寵兒。

一九七五年,喬.哈德曼(Joe Haldeman,1943-)在他的得獎作品《永無休止的戰爭》(The Forever War, 1974)之中,正利用了快速旋轉的黑洞(在書中稱為「塌陷體」——collapsar)作用星際飛行——以及星際戰爭得以體現的途徑。

由於黑洞在宇宙中的分佈未必最方便於人類的星際探險計劃,一位科學作家阿德里安.倍里(Adrian Berry,1937-2016)更突發奇想,在他那充滿想像的科普著作《鐵的太陽》(The Iron Sun, 1977)之中,提出了由人工製造黑洞以作為星際轉運站的大膽構思。

-----廣告,請繼續往下閱讀-----

要特別提出的一點是,飛越旋轉黑洞雖可避免在奇點上撞得粉碎,卻並不表示太空船及船上的人無須抵受極強大的潮汐力。如何能確保船及船員在黑洞之旅中安然無恙,是大部分作家都只有輕輕略過的一項難題。

此外,按照理論顯示,即使太空船能安然穿越黑洞,出來後所處的宇宙,將不是我們原先出發的那個宇宙;而就算是同一個宇宙,也很可能處於遙遠的過去或未來的某一刻。要使這種旅程成為可靠的星際飛行手段,科幻作家唯有假設人類未來對黑洞的認識甚至駕馭,必已達到一個我們今天無法想像的水平。

然而,除了作為星際飛行途徑,黑洞本身也是一個怪異得可以的地方,因此也是一個很好的科幻素材。黑洞周圍最奇妙的一個時空特徵,就是任何事物——包括光線——都會「一進不返」的一道分界線,科學家稱之為「事件穹界」(event horizon)。這個穹界(實則是一個立體的界面),正是由當年史瓦西計算出來的「史瓦西半徑」(Schwarzschild radius)所決定。例如太陽的穹界半徑是三公里,也就是說,假若一天太陽能收縮成一個半徑小於三公里的天體,它將成為一個黑洞而在宇宙中消失。「穹界」的意思就是時空到了這一界面便有如到了盡頭,凝頓不變了。

圖/envato

簡單地說,穹界半徑就是物體在落入黑洞時的速度已達於光速,而相對論性的「時間延長效應」(time dilation effect)則達到無限大。對太空船上的人來說,穿越界面的時間只是極短的頃刻,但對於一個遠離黑洞的觀測者,他所看到的卻是:太空船越接近界面,船上的時間變得越慢。

-----廣告,請繼續往下閱讀-----

而在太空船抵達界面時,時間已完全停頓下來。換句話說,相對於外界的人而言,太空船穿越界面將需要無限長的時間!

無限延長的痛苦

了解到這一點,我們便可領略波爾.安德遜(Poul Anderson, 1926-2001)的短篇〈凱利〉(Kyrie, 1968)背後的意念。故事描述一艘太空船不慎掉進一個黑洞,船上的人自是全部罹難。但對於另一艘船上擁有心靈感應能力的一個外星人來說,情況卻有所不同。理由是她有一個同樣擁有心靈感應能力的妹妹在船上,而遇難前兩人一直保持心靈溝通。由於黑洞的特性令遇難的一剎(太空船穿越穹界的一剎)等於外間的永恆,所以這個生還的外星人,畢生仍可在腦海中聽到她妹妹遇難時的慘叫聲。

安德遜這個故事寫於一九六八年,可說是以黑洞為創作題材的一個最早嘗試。

短篇〈凱利〉便是利用黑洞的特性——遇難的一剎等於外間的永恆——使生還者感受無盡的痛苦。圖/envato

太空船在穹界因時間停頓而變得靜止不動這一情況在阿爾迪斯一九七六年寫的《夜裡的黑暗靈魂》(The Dark Soul of the Night)中,亦有頗為形象的描寫。恆星的引力崩塌,在羅伯特.史弗堡(Robert Silverberg)的《前往黑暗之星》(To the Dark Star, 1968)之中卻帶來另一種(雖然是假想的)危險。故事中的主人翁透過遙感裝置「親身」體驗一顆恆星引力塌陷的過程,卻發覺時空的扭曲原來可以使人的精神陷於瘋狂甚至崩潰的境地。

-----廣告,請繼續往下閱讀-----

以穹界的時間延長效應為題材的長篇小說,首推弗雷德里克.波爾(Frederik Pohl, 1919-2013)的得獎作品《通道》(Gateway, 1977),故事描述人類在小行星帶發現了由一族科技極高超的外星人遺留下來的探星基地。基地內有很多完全自動導航的太空船,人類可以乘坐這些太空船穿越「時空甬道」抵達其他的基地,並在這些基地帶回很多珍貴的,因此也可以令發現者致富的超級科技發明。

故事的男主角正是追尋這些寶藏的冒險者之一。他和愛人和好友共乘一艘外星人的太空船出發尋寶,卻不慎誤闖一顆黑洞的範圍。後來他雖逃脫,愛人和好友卻掉進黑洞之中。但由於黑洞穹界的時間延長效應,對於男主角來說,他的愛人和好友永遠也在受著死亡那一刻的痛苦,而他也不歇地受著內疚與自責的煎熬。

故事的內容由男主角接受心理治療時逐步帶出。而特別之處,在於進行心理治療的醫生不是一個人,而是一副擁有接近人類智慧的電腦。全書雖是一幕幕的人機對話,描寫卻是細膩真摯、深刻感人,實在是一部令人難以忘懷的佳作。

圖/envato

由於這篇小說的成功,波氏繼後還寫了兩本續集:《藍色事件穹界以外》(Beyond the Blue Event Horizon, 1980)及《希徹會晤》(Heechee Rendezvous, 1984)。而且兩本都能保持很高的水準。

-----廣告,請繼續往下閱讀-----

時間延長效應並非一定帶來悲劇。在先前提及的《永無休止的戰爭》的結尾,女主角正是以近光速飛行(而不是飛近黑洞)的時間延長效應,等候她的愛侶遠征歸來,為全書帶來了令人驚喜而又感人的大團圓結局。

七○年代末的黑洞熱潮,令迪士尼(Walt Disney)的第一部科幻電影製作亦以此為題材。在一九七九年攝製的電影《黑洞》(The Black Hole)之中,太空船「帕魯明諾號」在一次意外中迷航,卻無意中發現了失蹤已久的「天鵝號」太空船。由於「天鵝號」環繞著一個黑洞運行,船上的人因時間延長效應而衰老得很慢。這艘船的船長是一個憤世疾俗的怪人,他的失蹤其實是故意遠離塵世。最後,他情願把船撞向黑洞也不願重返文明。

比起史提芬.史匹堡(Steven Spielberg, 1946-)的科幻電影,這部《黑洞》雖然投資浩大,拍來卻是平淡乏味,成績頗為令人失望。除了電影外,科幻作家艾倫.迪安.霍斯特(Alan Dean Foster, 1946-)亦根據劇本寫成的一本同名的小說。

這張圖片的 alt 屬性值為空,它的檔案名稱為 ___72dpi.jpeg

——本文摘自《超次元.聖戰.多重宇宙》,2023 年 11 月,二○四六出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。